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Efficient Salient Region Detection with Soft Image Abstraction

Ming-Ming Cheng Jonathan Warrell Wen-Yan Lin Shuai Zheng Vibhav Vineet Nigel Crook
Vision Group, Oxford Brookes University

Abstract

Detecting visually salient regions in images is one of the
fundamental problems in computer vision. We propose a
novel method to decompose an image into large scale per-
ceptually homogeneous elements for efficient salient region
detection, using a soft image abstraction representation.
By considering both appearance similarity and spatial dis-
tribution of image pixels, the proposed representation ab-
stracts out unnecessary image details, allowing the assign-
ment of comparable saliency values across similar regions,
and producing perceptually accurate salient region detec-
tion. We evaluate our salient region detection approach on
the largest publicly available dataset with pixel accurate
annotations. The experimental results show that the pro-
posed method outperforms 18 alternate methods, reducing
the mean absolute error by 25.2% compared to the previous
best result, while being computationally more efficient.

1. Introduction
The automatic detection of salient object regions in im-

ages involves a soft decomposition of foreground and back-
ground image elements [7]. This kind of decomposition is
a key component of many computer vision and graphics
tasks. Rather than focusing on predicting human fixation
points [6, 32] (another major research direction of visual
attention modeling), salient region detection methods aim
at uniformly highlighting entire salient object regions, thus
benefiting a large number of applications, including object-
of-interest image segmentation [19], adaptive compression
[17], object recognition [44], content aware image editing
[51], object level image manipulation [12, 15, 53], and in-
ternet visual media retrieval [10, 11, 13, 29, 24, 23].

In terms of improving salient region detection, there are
two emerging trends:

• Global cues: which enable the assignment of compa-
rable saliency values across similar image regions and
which are preferred to local cues [2, 14, 16, 26, 31, 42].
• Image abstraction: where an image is decomposed into

perceptually homogeneous element, a process which
abstracts out unnecessary detail and which is important
for high quality saliency detection [42].

(a) Source image (b) Our result (c) Ground truth

Figure 1. We use soft image abstraction to decompose an image
into large scale perceptually homogeneous elements (see Fig. 3),
which abstract unnecessary details, assign comparable saliency
values across similar image regions, and produce perceptually ac-
curate salient regions detection results (b).

In this paper, we propose a novel soft image abstrac-
tion approach that captures large scale perceptually ho-
mogeneous elements, thus enabling effective estimation of
global saliency cues. Unlike previous techniques that rely
on super-pixels for image abstraction [42], we use his-
togram quantization to collect appearance samples for a
global Gaussian Mixture Model (GMM) based decompo-
sition. Components sharing the same spatial support are
further grouped to provide a more compact and meaning-
ful presentation. This soft abstraction avoids the hard deci-
sion boundaries of super pixels, allowing abstraction com-
ponents with very large spatial support. This allows the sub-
sequent global saliency cues to uniformly highlight entire
salient object regions. Finally, we integrate the two global
saliency cues, Global Uniqueness (GU) and Color Spatial
Distribution (CSD), by automatically identifying which one
is more likely to provide the correct identification of the
salient region.

We extensively evaluate our salient object region detec-
tion method on the largest publicly available dataset with
1000 images containing pixel accurate salient region anno-
tations [2]. The evaluation results show that each of our
individual measures (GU and CSD) significantly outper-
forms existing 18 alternate approaches, and the final Global
Cues (GC) saliency map reduces the mean absolute error
by 25.2% compared to the previous best results (see Fig. 2
for visual comparisons) 1, while requiring substantially less
running times.

1Results for these methods on the entire dataset and our prototype soft-
ware can be found in our project page: http://mmcheng.net/effisalobj/.

1

http://mmcheng.net/effisalobj/


(a) original (b) IM[39] (c) SeR[45] (d) SUN[52] (e) SEG[43] (f) AIM[8] (g) SWD[20] (h) RC[16] (i) CA[25] (j) MZ[37]

(k) GB[27] (l) LC[50] (m) SR[28] (n) AC[1] (o) FT[2] (p) IT[30] (q) HC[16] (r) MSS[3] (s) SF[42] (t) Our GC

Figure 2. Saliency maps computed by different state-of-the-art methods (b-s), and with our proposed GC method. Most results highlight
edges, or are of low resolution. See also Fig. 4 and the supplementary.

2. Related work

While often treated as an image processing operation,
saliency has its roots within human perception. When ob-
serving a scene, it has been noticed that humans focus on
selected regions, for efficient recognition and scene under-
standing. A considerable amount of research in cognitive
psychology [48] and neurobiology [18] has been devoted to
discovering the mechanisms of visual attention in humans
[38]. These regions where attention is focused are termed
salient regions. Insights from psycho-visual research have
influenced computational saliency detection methods, re-
sulting in significant improvements in performance [5].

Our research is situated in the highly active field of visual
attention modelling. A comprehensive discussion of this
field is beyond the scope of this paper. We refer interested
readers to recent survey papers for a detailed discussion of
65 models [5], as well as quantitative analysis of different
methods in the two major research directions: salient object
region detection [7] and human fixation prediction [6, 32].
Here, we mainly focus on discussing bottom-up, low-level
salient object region detection methods.

Inspired by the early representation model of Koch and
Ullman [35], Itti et al. [30] proposed highly influential com-
putational methods, which use local centre-surrounded dif-
ferences across multi-scale image features to detect image
saliency. A large number of methods have been proposed
to extend this method, including the fuzzy growing method
by Ma and Zhang [37], and graph-based visual saliency de-
tection by Harel et al. [27]. Later, Hou and Zhang [28]
proposed an interesting spectral-based method, which finds
differential components in the spectral domain. Zhang et
al. [52] find salient image regions using information the-
ory. Extensive evaluation results in [16], however, show
that these methods tend to overemphasize small and local
features, making them less suitable for important applica-
tions such as image segmentation, object detection, etc.

Methods modeling global properties have become pop-
ular recently as they enable the assignment of comparable
saliency values across similar image regions, and thus can
uniformly highlight the entire object regions [16]. Gofer-

man et al. [25] use a patch based approach to incorporate
global properties. Wang et al. [47] estimate saliency over
the whole image relative to a large dictionary of images. Liu
et al. [36] measure center-surrounded histograms over win-
dows of various sizes and aspect ratios in a sliding window
manner, and learn the combination weights relative to other
saliency cues. While these algorithms are generally better at
preserving global image structures and are able to highlight
entire salient object regions, they suffer from high computa-
tional complexity. Finding efficient and compact represen-
tations has been shown to be a promising way of modeling
global considerations. Initial efforts tried to adopt only lu-
minance [50] or first-order average color [2] to effectively
estimate consistent results. However, they ignored com-
plex color variations in natural images and spatial relation-
ships across image parts. Recently, Cheng et al. [16] pro-
posed a region contrast-based method to model global con-
trast, showing significantly improved performance. How-
ever, due to the use of image segments, saliency cues like
spatial distribution cannot be easily formulated.

More recently, Perazzi et al. [42] made the important ob-
servation that decomposing an image into perceptually ho-
mogeneous elements, which abstract unnecessary details, is
important for high quality salient object detection. They
used superpixels to abstract the image into perceptually uni-
form regions and efficient N-D Gaussian filtering to esti-
mate global saliency cues. As detailed in §3, we propose a
GMM based abstract representation, to capture large scale
perceptually homogeneous elements, resulting in the effi-
cient evaluation of global cues and improved salient object
region detection accuracy.

3. Soft Image Abstraction via Global Compo-
nents Representation

3.1. Histogram based efficient GMM decomposition

In order to get an abstract global representation which ef-
fectively captures perceptually homogeneous elements, we
cluster image colors and represent them using Gaussian
Mixture Models (GMM). Each pixel color Ix is represented
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as a weighted combination of several GMM components,
with its probability of belonging to a component c given by:

p(c|Ix) =
ωcN (Ix|µc,Σc)∑
c ωcN (Ix|µc,Σc)

, (1)

where ωc, µc, and Σc represent respectively the weight,
mean color, and covariance matrix of the cth component.

We use the GMM to decompose an image in to percep-
tually homogenous elements. These elements are struc-
turally representative and abstract away unnecessary de-
tails. Fig. 3(a) shows an example of such a decomposi-
tion. Notice that our GMM-based representation better cap-
tures large scale perceptually homogeneous elements than
superpixel representations (as in Fig. 3(d)) which can only
capture local homogeneous elements. We will discuss how
our global homogeneous components representation bene-
fits global saliency cue estimation in §4.

A time consuming step of building the GMM-based rep-
resentation is clustering pixel colors and fitting them to each
GMM component. Such clustering can be achieved using
Orchard and Bouman’s algorithm [40], which starts with all
pixels in a single cluster and iteratively uses the eigenvalues
and eigenvector of the covariance matrix to decide which
cluster to split and the splitting point. Inspired by [16], we
first run color quantization in RGB color space with each
color channel divided in to 12 uniform parts and choose the
most frequently occurring colors which account for 95% of
the image pixels. This typically result in a histogram based
representation with N bins (on average N = 85 for 1000
images dataset [2] as reported by [16]). We take each his-
togram bin as a weighted color sample to build the color co-
variance matrix and learn the remaining parameters of the
GMM (the means and probabilities for belonging to each
component) from the weighted bins. We use the indexing
table (detailed in §3.3) to associate image pixels with his-
togram bins for computational efficiency.

3.2. Spatial overlap based components clustering

Direct GMM based color clustering ignores valuable
spatial correlations in images. As the example shown in
Fig. 3(a), the 0th and 6th GMM components have similar
spatial supports, and thus have high probability of belong-
ing to the same object, even when their colors (shown in
side of Fig. 3(b)) are quit dissimilar. We explore the poten-
tial of such spatial relations to build pairwise correlation be-
tween GMM components as illustrated in Fig. 3(b), where
the correlation of two GMM components ci and cj is de-
fined as their spatial agreement:

C(ci, cj) =

∑
Ix

min(P (ci|Ix), P (cj |Ix))

min
(∑

Ix
P (ci|Ix),

∑
Ix
P (cj |Ix)

) . (2)

In GMM representations, the probability vector of a pixel
Ix belonging to each GMM components is typically sparse

0 1 2 3

4 5 6

(a) Illustration of our soft image abstraction

(b) Correlation (c) Clustered GMM (d) Abstraction by [42]
Figure 3. Example of global components representation for the
source image shown in Fig. 1. Components in our GMM based
representation (a) are further clustered according to the their spa-
tial correlations (b) to get a more meaningful global representa-
tion (c), which better capture perceptually homogeneous regions.
In (a), the 0-6th sub-images represent the probabilities of image
pixels belonging to each GMM component, while the last sub-
image shows a reconstruction using these GMM components. An
abstract representation by [42] using superpixels is shown in (d).

(with a very high probability of belonging to one of the top
two components). This allows us to scan the image once
and find all the pairwise component correlations simultane-
ously. For every pixel, we only choose the top two compo-
nents with the highest probability and make this pixel only
contribute to these two components. In the implementation,
we blur the probability maps of the image pixels belong-
ing to each component by a 3 × 3 uniform kernel to allow
the correlation calculation to consider a small surrounding
neighborhood.

The correlation matrix of these GMM components is
taken as their similarity for message-passing based cluster-
ing [22]. We use message-passing based clustering as it
does not need a predefined cluster number, making it ap-
plicable to an unknown underlying distribution. After such
clustering, the probability of each pixel color Ix belonging
to each cluster C is the sum of its probabilities for belonging
to all GMM components c in the cluster:

p(C|Ix) = p(C|Ib) =
∑
c∈C

p(c|Ib), (3)

where Ib is the quantized histogram bin color of Ix.
In Fig. 3(c), we demonstrate an example of clustering a

GMM of 7 initial components to 3 clusters with more ho-
mogenous semantic relations. In this example, although the
red flower and its dark shadows have quite dissimilar col-
ors, they are successfully grouped together since they cover
approximately the same spatial region. Notice that Fig. 3
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is a toy example for easier illustration, and we use 15 ini-
tial GMM components in order to capture images with more
complicated structure in our final implementation.

3.3. Hierarchical representation and indexing

The proposed representation forms a 4-layer hierarchical
structure with an index table to associate cross-layer rela-
tions efficiently. The 0th layer contains all the image pixels,
thus allowing us to generate full resolution saliency maps.
During the construction of the subsequent layers, including
the histogram representation in the 1st layer, the GMM rep-
resentation in the 2nd layer, and the clustered representation
in the 3rd layer, we record the index table associating the
lower layer with higher layer so that the cross layer associ-
ations can be achieved highly efficiently. When estimating
global saliency cues in §4, we mainly work at the higher
layer when feasible in order to allow large scale perceptu-
ally homogenous elements to receive similar saliency val-
ues, and to speed up the computation time. In the hierarchi-
cal representation, only the 0th layer contains a large num-
ber of elements (the same as image pixels). The number of
elements in the subsequent layers are much smaller: ≈ 85,
15, and < 15 in our experiments. Since only a few analysis
or assignment steps in our global saliency cue estimation
algorithm will go to the bottom layer, finding full resolu-
tion saliency maps only requires a computational complex-
ity linear to the number of pixels.

4. Efficient Global Saliency Cues Estimation
4.1. Global uniqueness (GU)

Visual uniqueness in terms of high contrast to other im-
age regions is believed to be the most important indicator
of low-level visual saliency [21, 41]. The uniqueness of a
global component ci is defined as its weighted color con-
trast to all other components:

U(ci) =
∑
cj 6=ci

exp

(
D(ci, cj)

−σ2

)
· ωcj · ‖µci − µcj‖, (4)

where D(ci, cj) is the spatial distance between centroid of
the two GMM components ci and cj , and we use σ2 = 0.4
as in [16] to allow distant regions to also contribute to the
global uniqueness.

Notice that the global uniqueness in §4.1 is defined for
GMM components in layer 2, thus we only need to con-
sider relations between this very small number of elements,
making the estimation very efficient. The mean colors of the
abstracted components are needed when estimating the GU
saliency. We do not directly work at layer 3 here as the mean
color of this top layer cannot capture its potentially compli-
cated color distribution accurately enough. To further incor-
porate the important spatial overlap correlation, the unique-
ness based saliency of GMM components belonging to the

same cluster are finally averaged, to encourage semantically
correlated regions to receive similar saliency.

4.2. Color spatial distribution (CSD)

While saliency implies uniqueness, the opposite might
not always be true [33, 42]. A spatially compact distribution
is another important saliency indicator which is an impor-
tant complementary cue to contrast [25, 36]. Our semanti-
cally consistent representation in layer 3 naturally supports
the color spatial distribution suggested in [36], while the
efficient representation here significantly improves its run
time performance and better capture the true spatial distri-
bution of objects.

Referring to [36], we define the horizontal spatial vari-
ance of our clustered component C as:

Vh(C) =
1

|X|C

∑
x

p(C|Ix) · |xh −Mh(C)|2, (5)

Mh(C) =
1

|X|C

∑
x

p(C|Ix) · xh, (6)

where xh is the x-coordinate of the pixel x, and |X|C =∑
x p(C|Ix). The spatial variance of a clustered component

C is
V (C) = Vh(C) + Vv(C), (7)

where the vertical variance Vv(C) is defined similarly to the
horizontal variance. We finally define the CSD of C as:

S(C) = (1− V (C)) · (1−D(C)), (8)

where D(C) =
∑

x p(C|Ix)dx is a center-weighted nor-
malization term [36] to balance the border cropping effect,
and dx is the distance from pixel x to the image center.
Both V (C) and D(C) are normalized to [0, 1] for all C be-
fore combining them as in Equ. (8). In the implementa-
tion, we set the saliency value for each histogram color as
S(Ib) =

∑
C p(C|Ib)S(C). The saliency of each pixel is ef-

ficiently assigned using the indexing scheme between pixels
and histogram bins as discussed above.

Since we further consider spatial overlapping relations,
the clustered representation (as demonstrated in Fig. 3(c))
better captures semantically homogenous regions as a
whole. Due to the nature of the CSD definition, improperly
separating a semantically homogenous component will sig-
nificantly change the spatial variance value of the regions,
producing suboptimal results. For instance, the spatial vari-
ance of the flower region in Fig. 3(c) increases to about
two times of its actual values, if divided to two parts by the
GMM based representation as demonstrated in Fig. 3(a).

4.3. Saliency cues integration

The global saliency cues estimation efficiently produces
two different saliency maps, where each is a complementary

4



(a) Source (b) IT[30] (c) MZ[37] (d) SR[28] (e) GB[27] (f) CA[25] (g) RC[16] (h) SF[42] (i) Our CSD (j) Our GU (k) Our GC (l) G-Truth

Figure 4. Visual comparison of previous approaches to our two saliency cues (GU and CSD), final results (GC), and ground truth (GT). Here
we compare with visual attention measure (IT), fuzzy growing (MZ), spectral residual saliency (SR), graph based saliency (GB), context
aware saliency (CA), region contrast saliency (RC), and saliency filters (SF). See supplementary for results of the entire benchmark.

to the other. As also discussed in [26], combining individ-
ual saliency maps using weights may not be a good choice,
since better individual saliency maps may become worse
after they are combined with others. We automatically se-
lect between the two saliency maps as a whole to integrate
the two cues and generate a final saliency map according to
the compactness measure in [26], which uses the compact
assumption to select the saliency map with smaller spatial
variance. This is achieved by considering the saliency maps
as a probability distribution function and evaluating their
spatial variance using Equ. (7).

5. Experiments
We exhaustively compare our algorithms’ global unique-

ness (GU), color spatial distribution (CSD), and global cues
(GC) on the largest public available dataset with pixel ac-
curate ground truth annotations [2], and compare with 18

alternate methods. Results of the alternative methods are
obtained by one of the following ways: i) results for this
famous dataset provided by the original authors (FT[2],
SF[42], AC[1], HC[16], RC[16]), ii) running the authors’
publicly available source code (GB[27], SR[28], CA[25],
AIM[8], IM[39], MSS[3], SEG[43], SeR[45], SUN[52],
SWD[20]), and iii) from saliency maps provided by [16]
(IT[30], MZ[37], LC[50]). Comparisons with other meth-
ods [34, 9, 31, 46] on the same benchmark could be found
in the survey paper [7]. Fig. 4 gives a visual comparison of
different methods. For objective evaluation, we first use a
precision recall analysis, and then discuss the limitations of
such measure. Mean absolute errors, as suggested in [42],
are further used for objective comparison.

5.1. Precision and recall
Following [2, 16, 42], we first evaluate our methods us-

ing precision recall analysis. Precision measures the per-
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(c) Mean absolute error (MAE)

Figure 5. Statistical comparison with 18 alternative saliency detection methods using all the 1000 images from the largest public available
benchmark [2] with pixel accuracy saliency region annotation: (a) average precision recall curve by segmenting saliency maps using fixed
thresholds, (b) average precision recall by adaptive thresholding (using the same method as in FT[2], SF[42], etc), (c) average MAE. Notice
that while our algorithm significantly outperforms other methods, it only achieve similar performance as SF[42] in terms of the precision-
recall curve. However, our method achieved 25% improvement over the best previous method in terms of MAE, and the SF paper itself
suggested that MAE is a better metric then precision recall analysis for this problem. Results for all methods on the full benchmark as
well as our prototype software can be found in the supplementary materials. We highly recommend the readers to see the results in the
supplementary as the visual advantages of our results is much more significant than the statistic numbers shows here. Note that other than
quantitative accuracy, our results are also perceptually accurate, an important consideration for image processing tasks.

centage of salient pixels correctly assigned, while recall
measures the percentage of salient pixel detected. Binary
saliency maps are generated from each method using a num-
ber of fixed thresholds in [0, 1, · · · , 255], each resulting in
a precision and recall value. The resulting precision recall
curves is shown in Fig. 5(a).

While our algorithm significantly outperforms other
methods, it only achieved similar performance as SF[42] in
terms of the precision-recall curve. However, as discussed
in the SF[42] paper itself, neither the precision nor recall
measure considers the true negative counts. These measures
favors methods which successfully assign saliency to salient
pixels but fail to detect non-salient regions over methods
that successfully do the opposite. Fig. 6 demonstrates an
example which shows the limitation of precision recall anal-
ysis. The GC saliency map is better at uniformly highlight-
ing the entire salient object region but its precision recall
values are worse. One may argue that a simple boosting of
saliency values for SF[42] results would improve it. How-
ever, a boosting of saliency values could easily result in the
boosting of low saliency values related to background (see
the small middle left regions in Fig. 6(c) and more exam-
ples in Fig. 4). To further clarify this concern quantitatively,
we tried using gamma correlation to refine SF maps for the
entire dataset. For gamma values [0.1, 0.2, · · · , 0.9], we
consistently observed worse average MAE (see §5.2) val-
ues [0.46, 0.34, · · · , 0.14].

5.2. Mean absolute error
For a more balanced comparison, we follow Perazzi et al.

[42] to evaluate the mean absolute error (MAE) between a

(a) original (b) GT (c) SF[42] (d) Our GC

Figure 6. Example saliency detection results to demonstrate the
limitation of precision recall analysis. When using precision recall
analysis, the saliency map in (c) continually achieves near 100%
precision for a wide range of recall values, while the saliency map
in (d) performs worse because of the small number of false alarm
foreground pixels in the upper left corner. However, the saliency
map in (d) is closer to the ground truth (b) and better reflects the
true salient region in the original image (a).

continuous saliency map S and the binary ground truth G
for all image pixels Ix, defined as:

MAE =
1

|I|
∑
x

|S(Ix)−G(Ix)|, (9)

where |I| is the number of image pixels.
Fig. 5(c) shows that our individual global saliency cues

(GU and CSD) already outperform existing methods in
terms of MAE, which provides a better estimate of dissimi-
larity between the saliency map and ground truth. Our final
GC saliency maps successfully reduces the MAE by 25%
compared to the previous best reported result (SF[42]).

We note that MAE does not measure discrete classifi-
cation errors, which is better represented by segmentation
performance. When using fixed thresholding, our segmen-
tation performance (see Fig. 5(a)) is not significant better
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Method HC[16] RC[16] SF[42] Our GC
Time (s) 0.01 0.14 0.15 0.09

Table 1. Average time taken to compute a saliency map for images
in the benchmark [2] (most images have resolution 300× 400).

then the state-of-the-art method [42]. However, when us-
ing smarter adaptive thresholding for segmentation [2, 42],
the segmentation performance of our method is significantly
better than all other methods as evaluated in Fig. 5(b).
Moreover, in some application scenarios the quality of the
weighted, continuous saliency maps may be of higher im-
portance than the binary masks [42].

5.3. Computational Efficiency

We compare the performance of our method in terms
of speed with methods with most competitive accuracy
(SF[42]) or similarity to ours (RC[16], HC[16], SF[42]).
Tab. 1 compares the average time taken by each method on
a laptop with Intel i7 2.6 GHz CUP and 4GB RAM. Perfor-
mance of all the methods compared in this table are based
on implementations in C++. Our method runs in linear com-
plexity with small constant. The two saliency cues based
on our abstract global representation already significantly
outperform existing methods, while still maintaining faster
running times. Our method spends most of the computation
time on generating the abstract global representation and
indexing tables (about 45%) and finding the CSD saliency
(about 51%). Note that our method is more time efficient
than concurrent alternatives [49].

6. Limitations
Saliency cues integration based on the compactness mea-

sure may not always be effective. e.g., the third example
in Fig. 4. Currently we only use this simple measure for
convenience, leaving this largely unexplored area as future
research. We believe that investigating more sophisticated
methods to integrate these complementary saliency cues
would be beneficial. Our proposed representation is gen-
erally composed of semantically meaningful components
from images. It would be also interesting to investigate
other saliency cues using this representation, e.g. [4].

As correctly pointed out by recent survey papers, there
are two major branches of visual attention modeling:
saliency region detection [7] and human fixation predic-
tion [6, 32]. Our method aims at the first problem: finding
the most salient and attention-grabbing object in a scene.
Our design concept of uniformly highlighting perceptually
homogeneous elements might not be suitable for predic-
tion human fixation points, which frequently correspond to
sharp local features. We currently only test our algorithm on
the most widely used benchmark [2] for saliency region de-
tection so that comparison with other methods are straight

forward. Although this dataset only contains images with
non-ambiguous salient objects, we argue that efficiently and
effectively finding saliency object region for such images is
already very important for many important computer graph-
ics and computer vision applications, especially for auto-
matically processing large amount of internet images.

7. Conclusion and Future Work
We have presented a global components representation

which decomposes the image into large scale perceptually
homogeneous elements. Our representation considers both
appearance similarity and spatial overlap, leading to a de-
composition that better approximates the semantic regions
in images and that can be used for reliable global saliency
cues estimation. The nature of the hierarchical indexing
mechanism of our representations allows efficient global
saliency cue estimation, with complexity linear in the num-
ber of image pixels, resulting in high quality full resolution
saliency maps. Experimental results on the largest public
available dataset show that our salient object region detec-
tion results are 25% better than the previous best results
(compared against 18 alternate methods), in terms of mean
absolute error while also being faster.
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