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Adversarial Contract Design for Private Data
Commercialization

PARINAZ NAGHIZADEH∗, Purdue University
ARUNESH SINHA∗, University of Michigan

The proliferation of data collection and machine learning techniques has created an opportunity for com-

mercialization of private data by data aggregators. In this paper, we study this data monetization problem

as a mechanism design problem, specifically using a contract-theoretic approach. Our proposed adversarial

contract design framework provides a fundamental extension to the classic contract theory set-up in order to

account for the heterogeneity in honest buyers’ demands for data, as well as the presence of adversarial buyers

who may purchase data to compromise its privacy. We propose the notion of Price of Adversary (PoAdv) to
quantify the effects of adversarial users on the data seller’s revenue, and provide bounds on the PoAdv for

various classes of adversary utility. We also provide a fast approximate technique to compute contracts in the

presence of adversaries.
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1 INTRODUCTION
The large-scale adoption of data-driven decision making by businesses has led to a boom in big

data collection and analysis techniques. With increasing amount and demand for data, companies

have found a business opportunity in offering data-based services to other companies, or selling

their data to interested parties [30, 32]. Interest in data monetization is evidenced by the rise of

data marketplaces, where firms and individuals can buy, sell, or trade, second or third party data.

Examples include Salesforce’s Data Studio, Oracle’s BlueKai, and Adobe’s Audience Marketplace.

Data commercialization faces many challenges, including IP protection, liability, pricing, and

preserving privacy [32]. In this paper, we focus on the latter two challenges of pricing and privacy.

The challenge of pricing refers to the fact that to accommodate diverse demands, data sellers

offer different plans and pricing to their buyers. Even with identical data, buyers may derive

different benefits from utilizing it, e.g., due to different expertise, or how this data complements the

buyer’s existing knowledge. Therefore, to maximize revenue, the data seller should account for

this demand diversity by packaging its data accordingly. Further, despite its revenue benefits, data

commercialization has to overcome the challenge of limiting privacy risks for the data subjects

in the database. Specifically, adversarial buyers can request access to the database, attempting to

∗
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compromise the privacy of the data subjects. Therefore, data sellers should account for this risk

when designing and pricing data plans.

Mechanism design is a natural approach for the design problem stated above. In this paper, we

take a contract theoretical approach [20], a well-known research area within mechanism design
1
,

to address both the aforementioned pricing and privacy challenges of data commercialization by

proposing the design of a set of contracts with varying privacy levels. In general, contracts are

designed in the presence of two types of informational asymmetry between the principal and

the agents: hidden action (unobservable actions of agents) and hidden information (unobservable

types of agents). We work in the hidden information setting here. Contract theory with hidden

information, in the classic context of pricing of goods [21], is the study of principal-agent problems,

in which the principal (here, the data seller) designs a set of contracts with varying consumption

level so as to extract maximum revenue from agents (buyers) with unknown types. We build on

this framework, and further extend it by introducing a mixture of honest and adversarial buyers.

We study the problem of pricing a bundle of queries at different privacy levels with the aim of (a)

maximizing revenue by offering different prices for varying privacy levels in order to accommodate

the diversity of demands for the query bundle, and (b) accounting for the risks from adversarial

users by modifying the contracts’ pricing accordingly. We use the well accepted ϵ-differential
privacy concept as the measure of privacy [9]. We make an effort to keep our design practical by

attempting to adhere to practices already in place in data marketplaces (see Sections 2 and 3).

Technical contributions: Our contributions can be summarized as follows:

(1) We provide a fundamental extension of the classical contract theory with hidden information

framework by introducing buyer types with misaligned incentives (honest and adversarial

buyer types). We cast the private data selling problem in this new contract theory framework.

We analyze the properties of this new kind of contract design problem.

(2) We compare the structural properties of the optimal contracts when the adversarial buyers are

present with those of the optimal contracts when all buyers are honest. In particular, existing

contract theory results suggest that given n + 1 types of agents (n types of honest buyers and

an adversarial type), the principal should design up to n + 1 contracts. We nonetheless show

that the data seller will offer at mostn contracts (Lemma 3.1) in the adversarial setting. In other

words, it is optimal for the data seller to avoid the impractical option of designing a contract

for the adversary. We further show that despite this difference, the optimal contracts for the

adversarial settings will continue to satisfy some structural conditions that are equivalent to

those of the classic, non-adversarial setting (Theorem 4.2).

(3) We further extend the contract-theory framework by incorporating post-hoc fines (to be

collected in case of a privacy breach) in the pricing of query bundles, and analyze their effect

on the contract design problem, showing that fines can be helpful in reducing loss due to the

adversarial buyers in many situations.

(4) We propose the notion of Price of Adversary (PoAdv) to quantify the loss incurred by the

data owner due to the presence of adversarial data buyers. We show that while PoAdv can be

unbounded in the worst case (Lemma 4.5), it is possible to bound the PoAdv for a large class

of problems (Theorem 5.4).

(5) We provide a fast approximate technique to compute the contracts in presence of adversaries

(Algorithm 1).

1
In micro-economics, contract design is studied as a mechanism design problem, however, that is typically not the case in

computer science. Mathematically, contracts design has the same optimization nature as other mechanism design problems.



The remainder of this paper is organized as follows. We present background information on data

marketplaces and differential privacy in §2. §3 introduces the buyers’ models and the data seller’s

contract design problem. We study the adversarial contract design problem in §4, and present a

fast approximation algorithm for solving this problem in §5. We present numerical simulations in

§6 and review related work and summarize our work in §7. All omitted and full version of proofs

are available in the appendix after the references.

2 BACKGROUND
Databasemarketing examples: Currently, the two industries leading databasemarketing are data

brokers (who mine and sell consumer data to businesses), and data marketplaces (which provide a

platform for buying, selling, and trading data). We elaborate upon typical privacy guarantees offered

by each with an example. Among data brokers, Acxiom, one of the largest brokers worldwide, states

that they maintain “privacy compliant data" through data encryption and secure data management

techniques [1]. On the other hand, Among data marketplaces, the user service agreement of

Salesforce Data Studio [29], provides more detailed information about their market structure. For

instance, Salesforce states that they use “unique user identifiers (user IDs) to help ensure that

activities can be attributed to the responsible individual”, and that security logs are kept “in order

to enable security reviews and analysis." Our model in Section 3 takes the availability of these

monitoring techniques into account. It is clear that following such safe practices is imperative when

dealing with private information, e.g., as evidenced by the recent Cambridge Analytica case [14].

Differential privacy: A popular formalism of privacy loss due to queries from statistical

databases is that of differential privacy (DP) [9, 10]. Formally, letK be a randomized algorithm used

to answer queries from a database, and consider two databases D1 and D2 that differ in exactly

one entry (row). Then, K is ϵ-DP for ϵ ≥ 0 if for any possible set of output O,

Pr (K(D1) ∈ O) ≤ exp(ϵ) · Pr (K(D2) ∈ O) . (1)

In words, ϵ-DP requires that the output of K remains sufficiently unaffected (as quantified by

ϵ), whether or not a single data subject’s data is included in the database. For continuous-valued

queries, a method for achieving differential privacy is the introduction of carefully selected random

noise in the responses. Specifically, let f be a query function, returning the true value f (D) on
database D. In order to guarantee ϵ-DP, an algorithm K can introduce additive Laplacian noise,

returning instead f (D) + Lap(∆f /ϵ), where ∆f is the sensitivity of the query function [10]. Note

that the density of the Laplace distribution Lap(b) is given by f (x) = 1

2b · exp(
−|x |
b ), which means

that decreasing ϵ will lead to larger expected noise magnitudes, which translates to better privacy.

3 MODEL
We study the problem of designing a set of contracts for buyers requesting access to a database

managed by a seller. We assume that the seller has already acquired data from subjects and compen-

sated them using a one-time monetary payment or a free service (like a phone app). Throughout,

we use he/his to refer to buyers and she/her to refer to the seller.

Queries: There are multiple (and finite) types of statistical queries that can be made from the

database, denoted by the set Q. The seller offers bundles consisting of a subset of these query

types for purchase, with the restriction that any buyer can choose at most one bundle. A bundle is

identified by the set {Q1, . . . ,Qk | Qi ∈ Q}. The seller designs these bundles based on historical

or external information about the types of different buyers, so that every buyers’ requirement is

met by one of the bundles. Further, for any bundle, the seller limits the number of queries of each

type Qi in the bundle to one (i.e., each bundle is a subset of distinct query types). This follows

recommended practices in differential privacy, since allowing multiple queries inevitably degrade



privacy guarantees (see also Section 7). We also posit that the seller verifies the identity of buyers,

in order to keep track of the buyer’s query purchases, and to investigate a privacy attack if it occurs.

Further, we posit that the seller, via her service agreement, restricts buyers from faking identifies

by imposing substantial post-hoc fines.

Contracts: For each bundle {Q1, . . . ,Qk }, the set of possible contracts are determined by the

parameters (p, ϵ, s), with p ∈ R≥0 denoting the price to be paid by the buyer. The privacy levels

are assumed to be bounded and normalized such that ϵ ∈ [0, 1], with ϵ specifying the bound

ϵ ≥ ϵ1 + . . . + ϵk , where ϵi is used to determine the (Laplace) noise added to the answer of the

query of type Qi ; the buyer is free to request any ϵ1, . . . , ϵk within the ϵ bound, with higher ϵ
corresponding to less noisy responses. Lastly, s denotes the post-hoc fine to be paid if the buyer is

found misusing the query answer.

Buyers: We assume that buyers belong to one of two possible classes: honest or adversarial.
Honest buyers: Honest buyers do not misuse query answers, and hence generate revenue for

the operator when purchasing contracts. Each honest buyer for a given bundle has a type i ∈
Θ := {1, . . . ,n}, determining his benefit from the database. In particular, an honest buyer of type i
purchasing contract (p, ϵ, s) derives a benefit bi (ϵ) : [0, 1] → R≥0 from accessing the system. This

function includes direct gain from the data, as well as the cost of hedging against the risk of potential

direct attack on the buyer. We impose natural conditions on the benefit functions (as is standard for

demand functions) bi (·): that the overall benefit increases with larger ϵ (monotone non-decreasing)

and satisfies diminishing returns (concavity), with bi (0) = 0. Most large organizations estimate

demand functions and types of buyers from past buyers’ activity, and insurance premiums are

known; hence, we assume these functions are known. Further, bi (ϵ) ≤ bi+1(ϵ),∀ϵ,∀i; that is, higher
types derive further benefit from the same noise level, e.g., due to their expertise or the relevance

of the data to their tasks.

An honest buyer also has a γ probability of suffering an attack himself and causing inadvertent

misuse of the query answer, which results in an expected γs loss for him as per the contract

terms. Thus, an honest buyer’s overall expected utility in its interaction with the seller is given by

ui (p, ϵ, s) = bi (ϵ) − p − γs .
Adversarial buyers: An adversarial buyer seeks to access the database with the goal of misusing

the information gained. Formally, an adversarial buyer purchasing a bundle through a contract

(p, ϵ, s) derives a benefit C(ϵ) : [0, 1] → R≥0 from an attack on the system, with overall adversary

utility given by uA(p, ϵ, s) = C(ϵ) − p − s . This attack results in a cost C(ϵ) for the seller. Further,
we assume C(·) is monotone increasing and convex, with C(0) = 0; intuitively, higher ϵ (lower

noise) lead to costlier attacks for the seller, with the severity increasing as the noise decreases. Such

convexity has also been noted in literature, e.g., a recent work [16] proposes the cost for seller to

be proportional to exp(ϵ) − 1. Figure 1 shows an example of C and bi .
We assume that a privacy attack is ultimately discovered, and the seller can track the buyer

responsible for the attack. The seller may have to compensate data subjects after a privacy attack

(due to lawsuits), which can be partially recovered from the post-hoc fine for data misuse. Note that

we have assumed that the adversary cannot cause privacy loss beyond the given ϵ of the bundle
by combining the outputs of multiple queries of the same type, as the seller restricts the number

of queries per type to one. Further, large post-hoc fines for faking identities prevent the rational

adversary from faking identities and attempting to purchase two or more bundles. However, the

post-hoc fine for data misuse cannot be set too large as this fine affects the honest buyers, and

hence the seller’s revenue, due to potential attacks on honest buyers. Therefore, our goal is to study

the optimal choice of fines for data misuse so as to deter adversarial buyers while maintaining the

demand from honest buyers.



3.1 Seller’s revenue optimization problem
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Fig. 1. This figure shows three benefit functions
bi (ϵ) = i(1 − exp(− 10

i ϵ)) for i = 1, 2, 3, an adver-
sary cost function C(ϵ) = 6(exp(ϵ) − 1), and the
non-adversarial price-contract curve (defined in
Section 4), as a function of the privacy level ϵ .

We now analyze the seller’s contract design problem,

with one contract (p, ϵ, s) for each offered bundle. As
all rational buyers choose only one bundle due to

the marketplace design, these contracts are indepen-

dent. Therefore, for the rest of this paper, we restrict

attention to a given bundle.

Let ρ denote the fraction of adversarial buyers,

which is estimated by the seller (conservatively, the

seller can estimate ρ to be at most a maximum

value).
2
For the honest buyers, let {qi }i ∈Θ denote

the fraction of the honest buyers of type i . These
fractions can be estimated from historical data. The

seller aims to maximize her revenue. Nevertheless,

she can not observe individual buyers’ types when

selling a contract. Consequently, she has to design

contracts while balancing two goals: deriving the

maximum possible profit from honest types, while

limiting the adversarial type’s cost to the system.

In classic contract theory, following the revelation principle [20, Proposition 14.C.2], it is known

that it is enough to offer at most n+1 contracts when the number of buyer types is n+1. 3 Each agent
then selects his intended contract if it satisfies the agent’s individual rationality (IR) and incentive
compatibility (IC) constraints. The IR constraint requires that the agent attains higher utility from

purchasing the contract compared to opting out. The IC constraint imposes the condition that an

agent of type i prefers his intended contract over that of any type j , i .
Formally, for our contract design problem, consider the n+1 user types consisting of the n honest

buyers and the adversarial type. Let the contract of type i ∈ Θ be (pi , ϵi , si ) and that for the adversary
be (pA, ϵA, sA). Assume, wlog, that the utility of opting out of purchasing contracts is zero. Then,

the IR constraint of an honest buyer of type i , denoted by IRi , is given by ui (pi , ϵi , si ) ≥ 0. Similarly,

IRA is uA(pA, ϵA, sA) ≥ 0. Type i’s IC constraints are given by ui (pi , ϵi , si ) ≥ ui (pj , ϵj , sj ),∀j , i

where the jth constraint is denoted by ICi, j and ui (pi , ϵi , si ) ≥ ui (pA, ϵA, sA) which is denoted as

ICi,A. Similarly, the ICA,i constraints can be defined for the adversary.

The seller obtains an expected pi +γsi revenue from honest buyers and a revenue of K(pA + sA −
C(ϵA)) from the adversary for some K > 0. For ease of presentation, we will fix K = 1 but all our

results hold for any K > 0. The seller’s goal is to maximize her overall expected revenue

R
(
(pi , ϵi , si )i ∈Θ,pA, ϵA, sA

)
= (1 − ρ)

( n∑
i=1

qi (pi + γsi )
)
+ ρ(pA + sA −C(ϵA)).

However, the seller only has steady (deterministic) revenue over time from pi ; γsi provides
randomly varying revenue over time; in the short term, the realized revenue from fines could be

zero as the probability γ is small. Thus, we impose the practical constraint that pi ≥ (1−ϕ)(pi +γsi ),
which says that a large fraction 1 − ϕ of revenue arrive steadily over time. We name this the steady

2
In particular, we postulate that past data misuse and privacy breaches will become known to the seller, by, for instance,

directly through inspecting logs of data queries or indirectly through discovery of data misuse by the data subject.

3
Depending on the type distribution, it may be optimal to offer the same contract to adjacent types (pooling contracts).



revenue SRi constraint. Therefore, the seller’s contract design problem can be formally stated as:

max

(pi ,ϵi ,si )i∈Θ,pA,ϵA,sA
R
(
(pi , ϵi , si )i ∈Θ,pA, ϵA, sA

)
subject to IRi , SRi ∀i and ICi, j ∀i, j and

IRA and ICi,A, ICA,i ∀i and
pi , ϵi , si ≥ 0 ∀i and pA, ϵA, sA ≥ 0

3.2 No need for an adversary-specific contract
The contract design problem above includes a contract (pA, ϵA, sA) for the adversary. While the

formulation is mathematically sound and consistent with the revelation principle, this seems an

odd design choice as the adversary reveals his type just by choosing this contract. We show that, as

intuitively expected, it is in fact not required for the seller to design an adversary-specific contract.

That is, despite the fact that the seller faces n + 1 types, it is optimal to offer at most n contracts.

Lemma 3.1. The seller should offer at most n contracts/bundles. In particular, it is never optimal to
offer an adversary-specific contract/bundle.

Proof. We show this by contradiction. Assume the seller treats the adversarial buyer as the

(n + 1)-th type, and offers a contract (pA, ϵA, sA) satisfying all (honest and adversarial) buyers’ IR

and IC constraints. By IRA, this contract satisfies C(ϵA) − pA − sA ≥ 0; that is, it will impose a loss

pA + sA −C(lϵA) ≤ 0 on the seller’s revenue. Further, by the ICA,i constraints, C(ϵA) − pA − sA ≥
C(ϵi ) − pi − si ; that is, had the adversary purchased any of the legitimate buyers’ contracts, he

would have imposed a smaller cost on the seller’s revenue. As the seller is a profit-maximizer, we

conclude that such contract (pA, ϵA, sA) should not be part of an optimal collection of contracts. □

Given the above lemma, the contract design problem in the adversarial setting is to design

contracts (pi , ϵi , si )i ∈Θ in order to maximize the revenue of the operator:

(1 − ρ)
( n∑
i=1

qi (pi + γsi )
)
+ ρ(pZ + sZ −C(ϵZ )) ,

where Z ∈ {0, 1, . . . ,n} is the contract chosen by the adversary, subject to IR and IC constraints for

all honest buyers in choosing their contract i and the adversary in choosing Z . For the special case
of the adversary not choosing any contract, we designate Z = 0 with p0 = s0 = ϵ0 = 0. Observe

that Z is a variable, and thus, the revenue maximizing problem is a bi-level optimization problem.

However, following the standard technique of introducing an additional variable to formulate a

zero-sum problem as a linear program, we formulate the revenue maximization problem in the

adversarial setting using variable rA as follows:

max

(pi ,ϵi ,si )i∈Θ,rA
(1 − ρ)

( ∑n
i=1 qi (pi + γsi )

)
+ ρ(−rA)

subject to IRi , SRi ∀i and ICi, j ∀i, j and
rA ≥ C(ϵi ) − pi − si ∀i and

pi , ϵi , si ≥ 0 ∀i and rA ≥ 0

For our described marketplace, one can further consider the corresponding non-adversarial set-

ting, in which the seller solves the contract design problem in the absence of any adversarial

considerations. This non-adversarial contract design problem is given by:

max

(pi ,ϵi ,si )i∈Θ

∑n
i=1 qi (pi + γsi )

subject to IRi , SRi ∀i, ICi, j ∀i, j, and, pi , ϵi , si ≥ 0 ∀i



We next study these two contract design problems to characterize the effects of the presence of

adversarial types on the optimal contracts’ properties and the seller’s revenue.

4 ANALYSIS OF ADVERSARIAL CONTRACTING
In classic contract theory, when solving for the optimal contracts, the functions bi are often assumed

to satisfy a condition known as the single crossing property (SCP), which in turn implies the strict

increasing differences (ID) property. Throughout our analysis, we will only require the (weaker)

condition of (non-strict) ID property on the benefit functions bi , as defined below:

Definition 4.1 (Increasing Differences). The functions bi satisfy the (strict) increasing differences

property if for any ϵ ′ > ϵ , bi (ϵ
′) − bi (ϵ) is (strictly) increasing in the type i .

The above condition is a natural assumption on demand functions, and has been used extensively

in the contract theory literature starting from the seminal work by [21]. The bi functions shown in

Figure 1 satisfy ID. This condition also allows for significant simplification of the classical contract

theory optimization problem. Our first, somewhat surprising result is that, even in the adversarial

contract regime with post-hoc fines, the contracts will satisfy a set of constraints akin to those of

non-adversarial settings.

Theorem 4.2. Assuming that the functions bi satisfy ID, the optimal contracts (in the presence of
adversarial types) (p∗

1
, ϵ∗

1
, s∗

1
), . . ., (p∗n , ϵ

∗
n , s
∗
n) satisfy the following:

(1) Monotonicity: ϵ∗i+1 ≥ ϵ∗i ,∀i .
(2) Constraint set reduction: IRi for i > 1 and ICi, j for j , i − 1 are redundant at the optimal

contracts.
(3) IR1 is tight: as a result, p∗1 + γs

∗
1
= b1(ϵ

∗
1
).

(4) ICi+1,i is tight for all i : as a result for i > 1,

p∗i + γs
∗
i = bi (ϵ

∗
i ) −

i−1∑
j=1

(
bj+1(ϵ

∗
j ) − bj (ϵ

∗
j )
)
.

Proof Sketch. As the full proof is rather long we provide a summary here. We first establish

the monotonicity of noise levels at the optimal contracts using the (non-strict) ID condition of the

benefit functions. Next, we show how to considerably refine the constraint set (point 2) and derive

the price-benefit relations (points 3-4). These arguments are based on contradiction: had any of

these constraints not been redundant/tight, the operator would have had room to improve her profit

by modifying the contracts without violating the remaining IR and IC constraints of honest buyers.

For the contradiction argument to carry through, we show that under appropriate modifications,

the effect of changes in the adversarial types’ behavior on the revenue is non-decreasing. □

Non-adversarial case: We note that for the non-adversarial case, the same results of the above

theorem holds; this follows from prior work in contract theory [21] (using a straightforward

mapping that we present in the appendix). Formally:

Proposition 4.3. Assuming that the functions bi satisfy ID, the optimal contracts in the non-
adversarial setting have s∗i = 0 and satisfy all conditions of Theorem 4.2 (with s∗i = 0).

In particular, the relation between prices, fines, and benefit functions (points 3-4), provides an

easy visual representation of the contracts as shown in Figure 1 for the non-adversarial setting

(that is, with si = 0). We call this curve the price-contract curve P(ϵ), which is a curve plotting

the contract prices p (on the y-axis) relative to the privacy levels ϵ (on the x-axis). Specifically, the

curve connects the non-adversarial contract points (ϵ∗i ,p
∗
i ) for all i . From Proposition 4.3, we know



that the optimal prices in the non-adversarial setting are such that p∗i − p
∗
i−1 = bi (ϵ

∗
i ) − bi (ϵ

∗
i−1);

thus, the segment of the curve P that is between ϵ∗i−1 and ϵ∗i is parallel to bi (·). Therefore, P is

continuous and piece-wise concave. We use P later in setting up our approximation approach.

Comparison with classic (non-adversarial) contract theory results: Our analysis thus far

shows that the design of the optimal contracts in the adversarial and non-adversarial settings

carry several similarities. First, it is easy to check that both the adversarial and non-adversarial

optimizations are non-convex problems which, despite the difference in the number of buyer types,

aim to find n optimal contracts. Theorem 4.2’s characterization further shows that we can use

simplifications similar to those of the non-adversarial contract setting by removing several of

the constraints (points 1-2). The result also shows that the optimization problem for computing

optimal contracts in the presence of adversaries has only additional adversarial constraints and the

same price-benefit relations (points 3-4) as that without adversaries. In particular, the information

rent conditions for honest buyers (i.e., the choice of prices that make the honest buyers reveal

their types through their contract choice) is the same in both the mixed population and the

classic (non-adversarial) setting. Despite these similarities, the presence of adversaries changes the

seller’s objective function, leading to a different set of contracts than the non-adversarial setting.

Proposition 4.3 further implies that the variables si can be dropped in the optimization problem for

the non-adversarial case, yet these variable remain a key design choice in the adversarial setting.

4.1 Price of Adversary
In order to quantify the effects of the adversary’s presence on the seller’s revenue, we introduce

the following notion:

Definition 4.4 (Price of Adversary). Let R∗ and R∗A denote the seller’s maximum revenue in non-

adversarial and adversarial settings, respectively. Then, the price of adversary (PoAdv) is:

PoAdv = (1 − ρ)
R∗

R∗A

First, note that PoAdv ≥ 1. This is because the objective of the adversarial optimization problem

(i.e. the seller’s revenue RA) is given by (1 − ρ)(
∑n

i=1 qi (pi + γsi )) + ρ(−rA), where rA ≥ 0 by the

problem’s constraint set, and the expression in the parenthesis is the revenue attained from honest

buyers; therefore, R∗A ≤ (1 − ρ)R
∗
. In addition, note that (1 − ρ) is included as a normalizing factor

in the above definition. This is needed as the measure of honest buyers in the adversarial and

non-adversarial cases is different; specifically, it is (1 − ρ) and 1, respectively. With the inclusion of

this normalizing factor, the smallest value of PoAdv will be 1, which is attained when the adversary

does not choose any contract, so that R∗A = (1 − ρ)R
∗
. Lastly, if all buyers are adversarial (ρ = 1),

the revenue attainable by the seller is R∗A = 0, making the PoAdv undefined. For this special case,

similar to other cases with R∗A = 0, we define PoAdv = ∞.
We next analyze the PoAdv attainable in the presence of adversaries. Our first finding is that

PoAdv is unbounded in the worst case (proof is by construction and is presented in the appendix).

Lemma 4.5. PoAdv is unbounded in the worst case.

5 APPROXIMATION ALGORITHM
In this section, we present an approach that solves for the adversarial contracting problem approxi-

mately, given a solution for the non-adversarial case. We do so since solving the non-adversarial

scenario is simpler: by Proposition 4.3, the non-adversarial case has both fewer variables (si = 0,∀i)
and fewer constraints (no adversary contract choice constraint). Our proposed algorithm also

reveals a subtle relation between the adversarial and non-adversarial settings.
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Since by Lemma 4.5 we know that PoAdv is unbounded in the worst case, we limit our analysis

to a large class of adversary’s benefit functions C(·) which imposes mild and natural restriction

on these functions. We call these the well-behaved C’s, and define them as follows. Recall that P

denotes the non-adversarial price-contract curve.

• (Low C) C intersects P once at the origin and then lies below P for ϵ > 0; see Figure 2.

• (High C) C intersects P once at the origin and then lies above P for ϵ > 0; see Figure 3.

• (Intermediate C) C intersects P multiple times; see Figure 1. Let ϵM ∈ (0, 1) be the access
level at the last intersection point. We denote ∆ := maxϵ<ϵM {C(ϵ) − P(ϵ)}.

Recall that, by definition, P connects the optimal non-adversarial contract points (ϵ∗i ,p
∗
i ). The

placement of C(·) relative to these points determines which contracts, if any, yield a positive

utility to, and hence would be purchased by, a given adversarial buyer. The above classes therefore

comprise several types of adversaries. Low Cs represent weak adversaries who do not find it

individually rational to purchase any of the contracts offered to the honest buyers, including the

one offered to the lowest type i = 1 of honest buyers; this class includes functions C(ϵ) ≤ b1(ϵ).
In face of such adversaries, no modification to the non-adversarial contracts is needed, hence the

term weak adversary. High Cs on the other hand represent powerful adversaries, who can afford

to impose a high cost on the revenue if the contracts from the non-adversarial setting are offered

by the seller, as they would benefit from purchasing any of the contracts, including the one with

highest ϵ ; this class includes functions C(ϵ) ≥ bn(ϵ) as a subset. Finally, intermediate Cs represent
adversaries who can purchase (some of) the contracts offered through non-adversarial contract
design. Within this class, ∆ is an upper bound on the adversary’s payoff from purchasing contracts

with ϵ∗i < ϵM . As C lies above P after ϵM , we have C(ϵ∗i ) ≥ p∗i for all ϵ
∗
i ≥ ϵM , which means that

the adversary can afford all contracts with ϵ∗i ≥ ϵM . Figure 1 illustrates an intermediate C . Next,
we present our approximation technique. We start with a definition.

Definition 5.1. We call the non-adversarial contract (p, l , 0) a δ -slack λ-priced contract, (δ , λ ≥ 0),

if there exists s ≥ 0 such that the contract (p − γs, ϵ, s) satisfies:

• C(ϵ) − p − s ≤ δ , i.e., adversary’s gain is bounded by δ .
• p − γs ≥ λ > 0, i.e., the contract’s price is at least λ.
• p − γs ≥ (1 − ϕ)p, SR constraint is satisfied

Constructively, s whenever it exists, should be chosen to have the least possible value.



ALGORITHM 1: Approx. Algorithm

Input: Non-adv. contracts (p∗
1
, ϵ∗

1
, 0), . . . , (p∗n , ϵ

∗
n , 0)

Output: An array of contracts or solve adv. case
1 contracts ← (p∗

1
, ϵ∗

1
, 0), . . . , (p∗n , ϵ

∗
n , 0)

2 switch C do

3 case High C do

4 M = {i | (p∗i , ϵ
∗
i , 0) is 0-slack λ-priced for some λ ≥ 0}

5 if M is empty then

6 return solve adv. case
7 j = argmaxk ∈M p∗k
8 s∗j ← s that makes (p∗j , ϵ

∗
j , 0) 0-slack λ-priced

9 for i ← 1 to n do

10 contracts(i) = (p∗j − γs
∗
j , ϵ
∗
j , s
∗
j )

11 return contracts

12 case Low C do

13 return contracts

14 case Intermediate C do

15 return InterCApp((p∗
1
, ϵ∗

1
, 0), . . . , (p∗n , ϵ

∗
n , 0))

16 return solve adv. case

Using the above definition, our approximation technique is tailored towards the three categories

of functionsC as shown in Algorithm 1. This algorithm takes the set of non-adversarial contracts as

input, and either successfully returns a new set of contracts by modifying this input, or prescribes

solving the adversarial contract design problem from scratch. For the High C case, the algorithm

finds 0-slack contracts with a positive price (line 4, 0-slack ensures the adversary will not choose the

new contract). If one is found, the contract generating the highest revenue among such contracts

is offered to all users (line 10). For Low C , the adversary does not choose any contract, hence it

is optimal to retain the non-adversarial contracts as is (line 13). For Intermediate C , the function
InterCApp presented in Algorithm 2 is invoked (line 15).

In Algorithm 2, first a set of ∆-slack p∗K -priced contracts is found among contracts above and

including that of type K (line 2). The best contract with index safe(i) among these is found for each

user i > K (line 4). New contracts (p∗safe(i) − γssafe(i), l
∗
safe(i), ssafe(i)) are constructed for types i > K

(line 6), and all the non-adversarial contracts for types K and below are retained as is (line 8). The

revenue from honest buyers for the new contracts is found on line 9, and for the non-adversarial

contracts on line 10. β is the utility for the adversarial type in choosing the best new contract (line

11) and α is the same adversary utility in choosing from the non-adversarial contract set (line 12).

Line 13-15 compares the revenue in the adversarial setting from the non-adversarial contracts and

the new contract set, and returns the contract set that leads to better revenue for the seller.

We next prove that the contracts output by Algorithm 1 are valid. First, we present a lemma

on the ordering of honest buyers’ preferences over the contracts, which will later be used for the

validity proof.

Lemma 5.2. Given optimal non-adversarial contracts (p∗
1
, ϵ∗

1
, 0), . . ., (p∗n , ϵ

∗
n , 0), a type i user with

i > j prefers contract (p∗j , ϵ
∗
j , 0) over (p

∗
k , ϵ
∗
k , 0) for j > k .

The validity of the Algorithm 1’s output is as follows:



ALGORITHM 2: InterCApp

Input: Non-adv. contracts (p∗
1
, ϵ∗

1
, 0), . . . , (p∗n , ϵ

∗
n , 0)

Output: An array of contracts
1 K ← highest i such that ϵ∗i ≤ ϵM ▷ ϵM as defined in Intermediate C

2 E≥K = {k | k ≥ K and (p∗k , ϵ
∗
k , 0) is ∆-slack p

∗
K -priced} ▷ E≥K not empty as K ∈ E≥K

3 for i ← K + 1 to n do

4 safe(i) ← argmaxk ∈E≥K {bi (ϵ
∗
k ) − p

∗
k }

5 s∗safe(i) ← s that makes (p∗safe(i), ϵ
∗
safe(i), 0) ∆-slack p

∗
K -priced

6 contracts(i) = (p∗safe(i) − γs
∗
safe(i), ϵ

∗
safe(i), s

∗
safe(i))

7 for i ← 1 to K do

8 contracts(i) = (p∗i , ϵ
∗
i , 0)

9 R̂∗K =
∑K
i=1 qip

∗
i +

∑n
i=K+1 qip

∗
safe(i)

10 R∗ =
∑n
i=1 qip

∗
i

11 β = max

(
maxi≤K {C(ϵ

∗
i ) − p

∗
i },maxi>K {C(ϵ

∗
safe(i)) − p

∗
safe(i) − s

∗
safe(i)}

)
12 α = maxi {C(ϵ

∗
i ) − p

∗
i }

13 if (1 − ρ)R∗ − ρα > (1 − ρ)R̂∗K − ρβ then

14 return (p∗
1
, ϵ∗

1
, 0), . . . , (p∗n , ϵ

∗
n , 0)

15 return contracts

Lemma 5.3. For Low or Intermediate Cs, Algorithm 1’s output contracts satisfy the IR and IC
conditions for all honest buyers. If Algorithm 1 outputs a set of contracts for a High C adversary, then
at least one honest buyer buys the contract.

Proof. For High C , there is one contract offered to all buyers, so the IC constraints are trivially

satisfied. Also, for user j the contract offered satisfies IR, since from optimality of the non-adversarial

contracts we get bj (ϵ
∗
j ) − p

∗
j ≥ 0. For Low C , the set of non-adversarial contracts are returned by

the algorithm, and so the proof is immediate from optimality of the non-adversarial contracts.

For Intermediate C , if the set of non-adversarial contracts are returned by Algorithm 2, then

the claim again holds trivially. Otherwise, assume new contracts are returned. Observe that the

contract (p∗K , ϵ
∗
K , 0) is ∆-slack p

∗
K -priced (follows from Def. 5.1 and def. of K , ∆). Thus, E≥K is not

empty as K ∈ E≥K . Also, note that for users i > K , the offered modified contracts (line 6) have the

effective price p∗safe(i) − γs
∗
safe(i) + γs

∗
safe(i) = p

∗
safe(i), same as the non-adversarial contract.

We first start by analyzing users i > K . Fix i to be any index > K . All users j > K (including

i) are offered modified contracts (line 6) from among those indexed by E≥K (loop on line 3). By

definition of safe(i), bi (ϵ∗safe(i)) − p
∗
safe(i) ≥ bi (ϵ

∗
k ) − p

∗
k for all k ∈ E≥K . Thus, i prefers his contract

over any other offered to any j > K . Next, by definition of safe(i), bi (ϵ∗safe(i)) −p
∗
safe(i) ≥ bi (ϵ

∗
K ) −p

∗
K ,

and then by Lemma 5.2 and our case of i > K , bi (ϵ
∗
K ) − p

∗
K ≥ bi (ϵ

∗
j ) − p

∗
j for all j ≤ K . Thus,

bi (ϵ
∗
safe(i)) − p

∗
safe(i) ≥ bi (ϵ

∗
j ) − p

∗
j for all j ≤ K and hence all the IC constraints for i are satisfied.

For IR, first by the ID property we have bi (ϵ
∗
K ) ≥ bK (ϵ

∗
K ), hence bi (ϵ

∗
K ) − p

∗
K ≥ bK (ϵ

∗
K ) − p

∗
K ≥ 0,

where the ≥ 0 is due to optimality of the non-adversarial contracts. Finally, we just proved that

bi (ϵ
∗
safe(i)) − p

∗
safe(i) ≥ bi (ϵ

∗
K ) − p

∗
K , thus, bi (ϵ

∗
safe(i)) − p

∗
safe(i) ≥ 0.

Next, the users i ≤ K are offered the non-adversarial contracts, thus, bi (ϵ
∗
i ) −p

∗
i ≥ bi (ϵ

∗
j ) −p

∗
j for

all j , i . Since the modified contracts (line 6) still have an effective price same as the non-adversarial

contract, any user i ≤ K still prefers his contract to the modified ones. The IR constraint is also

satisfied as the non-adversarial contracts were optimal. □
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Next, the following result establishes the quality of the contracts returned by Algorithm 1 by

bounding the PoAdv . Recall that we have already shown in Lemma 4.5 that PoAdv is unbounded

in the worst case.

Theorem 5.4. Let the optimal non-adversarial contract (p∗
1
, ϵ∗i ), . . . , (p

∗
n , ϵ
∗
n) revenue be R

∗. For the
class of well-behaved C’s, we have,
• (High C) PoAdv is unbounded in general. If Algorithm 1 outputs a contract, then PoAdv ≤

R∗
λmini {qi }

.
• (Low C) Algorithm 1 always outputs the same contracts as the non-adversarial case, and hence
PoAdv = 1.
• (Intermediate C) Alg. 1 always outputs contracts. Then,

PoAdv ≤
R∗

max

(
R̂∗K − ∆

ρ
1−ρ ,R

∗ − α
ρ

1−ρ

) .
Proof. For High C , if a contract is offered, the adversary will not choose this contract due to

0-slack, but at least one honest buyer i will choose it. Thus, the revenue is at least (1 − ρ)λmini qi .
For low C , clearly the adversary does not choose any contract, and R∗A = (1 − ρ)R

∗
.

For intermediate C , the revenue from the contracts output by Algorithm 1 is R̂∗K . The adversary
may choose any of the contracts. If the choice is Z ≤ K (all of which have fine 0), then by definition

of intermediate functions and K , we will have C(ϵ∗Z ) − p
∗
Z ≤ ∆ for all such Z . If Z > K , then since



the offered contracts > K are all ∆-slack, we again haveC(ϵ∗Z ) −p
∗
Z − s

∗
Z ≤ ∆. Thus, β ≤ ∆, and the

revenue is lower bounded by (1 − ρ)R̂∗K − ρ∆. Finally, by not changing the original non-adversarial

contracts, the operator obtains a revenue (1 − ρ)R∗ − ρα . Thus, the revenue in the presence of

adversaries is bounded by the maximum of either of these two lower bounds. □

The following corollary bounds the approximation performance in terms of approximation ratio.

Corollary 5.5 (Approximation Ratio). Let B denote the bound on PoAdv on Theorem 5.4 and
let U denote the revenue provided by the approximation algorithm. Then, U satisfies U > (1/B)R∗A,
that is,U is at least 1/B of the optimal adversarial revenue.

Proof. By definition of PoAdv and the bound B in Theorem 5.4, we get (1 − ρ)R∗/U < B and

also R∗A ≤ (1 − ρ)R
∗
. Hence using these two we getU > (1/B)R∗A. □

6 NUMERICAL EXAMPLE
While our theory results provide a broad characterization of the problem for a large space of

utility functions, in this section we illustrate specific points related to the problem parameters,

with a numerical example. We use n = 10 types of honest buyers (except when varying n), with
bi (ϵ) = i(1 − exp(−

10ϵ
i )), C(ϵ) = 6(exp(ϵ) − 1), and ϕ = 0.95.

Runtime comparison: Fig. 4 illustrates runtimes for computing the optimal adversarial and

optimal non-adversarial contracts. The optimal adversarial contracts take much more time to

compute than the non-adversarial contracts and the difference increases exponentially with increase

in the size of problem n. This shows why approximation is useful; our approach takes almost the

same time as the non-adversarial problem (thus, not shown in Fig. 4), as the approximation steps

after solving the non-adversarial problem have (comparatively) negligible runtime.

PoAdv with non-adversarial contracts: Fig. 5 shows the PoAdv for varying γ and ρ when

non-adversarial contracts are offered in an adversarial setting. The PoAdv rises sharply with ρ.
Intuitively, the non-adversarial contracts suffer great loss if adversarial buyers dominate the market.

PoAdv with optimal adversarial contracts: Fig. 6 shows the PoAdv for varying γ and ρ when

the optimal adversarial contracts are computed exactly. The PoAdv rises with both increasing γ
and ρ. Intuitively, higher ρ represents adversaries’ market domination, and higher γ is weaker

honest users (i.e., more attack-prone). Thus, higher values for both of these parameters cause more

loss, leading to higher PoAdv .
Performance of approximation: Lastly, Fig. 7 shows the PoAdv computed using our approxi-

mation approach for varying γ and ρ. The C that we chose corresponds to an Intermediate C . The
PoAdv varies mostly with γ and is almost constant throughout at 2.77, except for very small values

of γ when it is 1.43. For small values of γ , the approximation algorithm sends back the original

contracts as is (line 14 in Algorithm 2).

7 RELATEDWORK AND SUMMARY
Our work is within the emerging literature of data commercialization and its challenges [32]. Both

[18] and [32] discuss the profit opportunities from packaging data based on the users’ needs and

willingness to pay; we formalize these notions through the framework of contract design, with a

focus on data privacy preservation.

A number of recent papers have studied the design of optimal pricing mechanisms for data

sellers. Specifically, the works of [12, 13, 19] study the problem of pricing personal data, where a

data seller designs a pricing mechanism which incentivizes data subjects to reveal their private

information. The work of [4] compares the two pricing mechanisms of upfront payments and

pay-per-use from the viewpoint of data sellers. The authors of [27] design a pricing scheme for



selling data to users with differing willingness to pay. Our approach differs from these works in

that we propose a contract-theoretical framework to accommodate heterogeneous honest buyers

as well as adversarial types. More specifically, in contrast to existing work, we posit that honest

buyers do not attempt to misuse the information gained from the database, hence every sale of data

is not a privacy attack. Further, by far the practice in real world is for the data seller to obtain data

by compensating people in form of a one-shot monetary payment or free service [28], which is

part of our model. This avoids practically unrealizable mechanisms in which data subjects are paid

every time their data is sold to a buyer [19]. Recent approaches have also looked at enforcing rules

and regulations (such as what we propose) using blockchains [24], including in marketplaces [5].

These approaches complement our economic driven approach by providing a technical rather than

legal means of enforcing fines, etc. Other works model problems where the buyer directly buys

data from data subjects [11], which is not the problem setting in data marketplaces.

Adam and Worthmann [2] classified privacy-preserving query approaches into query restriction,

data perturbation, and output perturbation. Query auditing (a form of query restriction) aims to

determine whether, given the query history, a new query will compromise the database privacy;

however, this problem is NP-hard [17]. In addition, output perturbation mechanisms (including

differential privacy) must limit the number of queries in order to maintain any reasonable privacy

guarantee [8]. Our proposed approach, which is a combination of query restriction with output

perturbation, restricts the type and number of queries in light of these impossibility results.

Contract-theoretical frameworks have been receiving attention as a method for optimal pricing

in other application areas, including the design of demand-response programs [22], energy pro-

curement methods [31], and incentive mechanisms in crowdsourcing markets [15]. In contrast, we

consider the optimal pricing problem in the presence of both honest and adversarial buyers.

Another line of work studies the effects of malicious or spiteful agents in game-theoretical

settings including auctions such as network inoculation games [25], sealed-bid auctions and

colluding bidders [6, 23], and resource allocation games [7]. These works assume that malicious

agents aim to minimize the utility of all other users, and analyzes their effect on the Nash equilibria.

In contrast, we consider the effects of an adversarial user on the principal’s revenue. Other work

consider privacy concerns in revealing agent’s types [26] or complexity of contracts in the hidden

action setting [3], which are quite distinct from our focus in this paper.

Summary: We proposed a novel and practical adversarial contract design framework in which a

data seller designs a collection of contracts to optimize her revenue in the presence of honest and

adversarial buyers. We proposed that the seller add noise to data query answers, charge more for

lower noise, and thwart rational adversaries by levying fines. We quantified the effect of adversaries

by proposing the price of adversary, and characterized the effect of fines on optimal revenue. Finally,

we presented a fast approximate technique to compute contracts in the adversarial setting.
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A APPENDIX: OMITTED PROOFS
Proof of Theorem 4.2. As a shorthand, we will write p ′i = pi + γsi throughout.
Monotonicity: First, we claim that for every optimal fixed cost contract we must have ϵi ≥ ϵj

whenever i > j. Let i > j. The IC constraints include

bi (ϵi ) − p
′
i ≥ bi (ϵj ) − p

′
j and bj (ϵj ) − p

′
j ≥ bj (ϵi ) − p

′
i

Adding these, we get

bi (ϵi ) − bi (ϵj ) ≥ bj (ϵi ) − bj (ϵj )

There are two cases (1) bi (ϵi ) − bi (ϵj ) > bj (ϵi ) − bj (ϵj ) or (2) bi (ϵi ) − bi (ϵj ) = bj (ϵi ) − bj (ϵj ). For
case (1), we can claim that ϵi ≥ ϵj using non-strict ID of the benefits functions. The proof is by

contradiction. Assume ϵi < ϵj ; then, by non-strict ID we must have bi (ϵi ) − bi (ϵj ) ≤ bj (ϵi ) − bj (ϵj )
which violates case (1). Hence under case (1) ϵi ≥ ϵj . As the reasoning here is not based on the

seller’s objective value or the adversarial type’s constraints, we do not need to consider adversarial

aspects here.

Next, under case (2), let K = bi (ϵi ) − bi (ϵj ) = bj (ϵi ) − bj (ϵj ). First, if K is ≥ 0 then ϵi ≥ ϵj when
bi and bj are both strictly monotone increasing. As the reasoning here is not based on the objective

value or the adversarial constraints, we do not need to consider adversarial aspects here. The case

when bi and bj are both monotone non-decreasing has to be dealt in a special way (see after the

K < 0 case below).

Thus, the only scenario left to analyze is K < 0. Then the two IC inequalities stated at the start

can be re-written as K ≥ p ′i − p
′
j and −K ≥ −(p

′
i − p

′
j ) which implies p ′i − p

′
j = K , or p ′i < p ′j . Also,

bi (ϵi ) − p
′
i = bi (ϵj ) + K − p

′
j − K = bi (ϵj ) − p

′
j , so that contract i and j are both equally and most

preferred by i (and similarly by j). Then offer another set of contracts in which i is offered (pj , ϵj , sj ),
and others are offered their earlier contract. In this new contract, all of the IC constraints are still

satisfied as type i preferred (pj , ϵj , sj ) the most and equally preferred the now unavailable (pi , ϵi , si ).
For any other type they prefer their allocation and price to (pj , ϵj , sj ) as was the case for the earlier
set of contracts. Also, since bi (ϵi ) −p

′
i = bi (ϵj ) −p

′
j and earlier contract’s IR provided bj (ϵi ) −p

′
i ≥ 0,

we have the new contract’s IR is also satisfied bi (ϵj ) −p
′
j ≥ 0. The SRi is also trivially satisfied since

SR j was satisfied. In this new set of contracts, as p ′j > p ′i the revenue from i increases and all other

honest users provide same revenue as earlier, thus, the operator’s revenue from the honest users

strictly increases. Finally, we need to analyze the adversaries incentives in this new collection of

contracts. For the adversary, the new set of contracts provides fewer options to choose from; thus,

for any choice made by the adversary in the new contract regime, he obtains less or equal utility to

that from the original contract set. As the operator’s utility is zero-sum with the adversary’s utility,

the contribution from the adversarial part of the operator’s revenue either increases or stays the

same in the new set of contracts. Thus, putting these together, we have found a new, feasible set of

contracts, that strictly outperforms the original set of contracts, contradicting the optimality of the

original set. Hence, we cannot have K < 0.

Special case (non-decreasingbi andbj ): The case whenbi andbj are bothmonotone non-decreasing

requires to treat the special case of K = 0 separately. Thus, reasoning exactly like the K < 0 case

we get that p ′i = p
′
j and bi (ϵi ) = bi (ϵj ) and (pi , ϵi , si ) and (pj , ϵj , sj ) are both equally preferred by i .

Now, if ϵi ≥ ϵj we are done, but if not we can offer (pj , ϵj , sj ) to i . Following an argument similar

to the case of K < 0, the new set of contracts would satisfy all IR, SR, and IC constraints of the

honest types. From the seller’s viewpoint, the overall revenue from legitimate users remains the

same as the original set of contracts. Further, following an argument similar to case K < 0, the

contribution from the adversarial part of the revenue either increases or stays the same with the

new set of contracts. Therefore, for this special case, we can claim that if ϵi < ϵj , the set of contracts



is revenue equivalent (or even suboptimal to) a collection of contracts with ϵi = ϵj . We conclude

that at the optimal contract, ϵi ≥ ϵj for this case as well.
Constraint-set reduction: Next, we move on to the IC and IR constraints’ properties. We start

with the IR constraints. Starting from IRi , we have,

bi (ϵi ) − p
′
i ≥ bi (ϵi−1) − p

′
i−1 ≥ bi−1(ϵi−1) − p

′
i−1 ,

where the first line follows from ICi,i−1, and the second line by the assumption on ordering of the

benefit functions, i.e., bi (l) ≥ bj (l),∀i > j,∀l . Thus, if IRi−1 is satisfied so is IRi . Hence, given IR1 is

satisfied, all other IR constraints are redundant. As the reasoning here is not based on objective

value or adversary constraints, this assertion holds both with and without adversarial types.

Next, we consider the (IC) constraints. By ICi−1,i−2 we have bi−1(ϵi−1) − p
′
i−1 ≥ bi−1(ϵi−2) − p

′
i−2,

which can be rearranged as bi−1(ϵi−1) − bi−1(ϵi−2) ≥ p ′i−1 − p
′
i−2. By non-strict increasing difference

and, as shown earlier, the monotonicity of access levels, ϵi−1 ≥ ϵi−2, we get,

bi (ϵi−1) − bi (ϵi−2) ≥ bi−1(ϵi−1) − bi−1(ϵi−2) ≥ p ′i−1 − p
′
i−2.

Thus, bi (ϵi−1) −p
′
i−1 ≥ bi (ϵi−2) −p

′
i−2. By ICi,i−1, we have bi (ϵi ) −p

′
i ≥ bi (ϵi−1) −p

′
1−i , and hence we

can infer that bi (ϵi ) − p
′
i ≥ bi (ϵi−2) − p

′
i−2. Thus, given the local downward IC constraints ICi−1,i−2

and ICi,i−1, the ICi,i−2 constraint is redundant; similarly, all ICi,i−k constraints are redundant for

k ≥ 2. Next, for the local upward IC constraints, starting from ICi+1,i+2, we have bi+1(ϵi+1) −p
′
i+1 ≥

bi+1(li+2)−p
′
i+2, which can be rearranged as p ′i+2−p

′
i+1 ≥ bi+1(li+2)−bi+1(ϵi+1). Again, by non-strict

increasing difference and monotonicity ϵi+1 ≥ li , we’ll get bi (ϵi+1) − p
′
i+1 ≥ bi (li+2) − p

′
i+2. Thus,

we conclude that given the local upward IC constraints, all other upward constraints ICi,i+k for

k ≥ 2 are redundant. Hence, only the local ICi,i+1 and ICi,i−1 constraints are non-redundant. As

the reasoning here is not based on objective value or adversary constraints, the arguments remain

valid in the presence of adversaries.

Next, we show that the local upward IC constraints ICi,i+1 is also redundant. For contradiction,

suppose we solve the optimization problem without the ICi,i+1 constraint, and get the set of

contracts {pj , ϵj , sj } that maximize the operator’s revenue. This solution should strictly violate

ICi,i+1 (since we are assuming ICi,i+i is not redundant). Therefore, type i will strictly prefer the

contract {pi+1, ϵi+1, si+1}, that is, bi (ϵi+1) − bi (ϵi ) > p ′i+1 − p
′
i . We now modify the contracts by

increasing pj ,∀j ≥ i + 1 by a small amount ϵ > 0, i.e., we offer the contract {pi+1 + ϵ, ϵi+1, si+1}
to type i + 1, as well as contracts {pj + ϵ, ϵj , sj } for all j > i + 1. We chose ϵ small enough so that

ICi,i+1 remains strictly violated.

We know from the violation of ICi,i+1 that bi (ϵi+1) − bi (ϵi ) > p ′i+1 − p
′
i , and also, by non-strict

increasing differences, that bi+1(ϵi+1) − bi+1(ϵi ) > p ′i+1 − p
′
i , or rearranging bi+1(ϵi+1) − p

′
i+1 >

bi+1(ϵi ) −p
′
i ; thus, ICi+1,i is satisfied with {pi+1 + ϵ, ϵi , si }. For all other local upward IC constraints

of types i + 1 and higher (i.e, ICi+1,i+2, ICi+2,i+1, ICi+2,i+3 and so on), the prices on both sides of the

constraint change by an equal amount in the modified contract set. Therefore, these constraints

continue to hold. For all other IC constraints there is no change in variable values and they continue

to hold. The IR1 constraint is also unaffected as the contract does not change for type 1. All SR

constraints still hold as only prices increased. For the adversary, the contracts in the new collection

are either the same (if he was purchasing one of the unaltered contracts) or become less attractive

(if he was purchasing the altered contract). Thus, for any choice made by the adversary in the new

contract regime, he obtains either less or the same utility as the original contract set. As the seller’s

and adversary’s utilities are zero-sum, the contribution from the adversarial part of the revenue

either increases or stays the same following the change in the contracts. Thus, this new set of

contracts provides higher revenue to the operator, contradicting the optimality of the original set

of contracts. We conclude that all local upward IC constraints should be redundant.



IR1 is redundant: we prove this by contradiction. Suppose IR1 is not binding; then, the operator

can increase p1 slightly without violating IR1 (and trivially not violating SR1). The only other

constraint in which in which p1 appears is the LHS of the downward IC constraint IC21. An increase

in p1 will lower the LHS, and hence this constraint will not be violated either. Therefore, the

operator’s portion of the revenue from legitimate users is strictly increasing with this increase in

p1. From the adversary’s viewpoint, the new set of contracts (with an increased p1 in the lowest

type’s contract) will either stay the same or becomes less attractive. Thus, for any choice made

by the adversary in the new contract regime, he obtains less or equal utility to his utility in the

original contract set. As the seller’s revenue portion from the adversarial type’s participation is the

negative of the adversary’s utility, the contribution from the adversarial part of the revenue will

either increase or stay the same given the increase in p1. Thus, the modification of the price p1 will
lead to a feasible set of contracts that strictly increases the operator’s revenue, contradicting the

optimality of the original contract set. We thus conclude that IR1 should be binding in the optimal

contract set, so that p∗
1
+ γs∗

1
= b1(ϵ

∗
1
).

(ICi,i−1) is binding: finally, we show that all the ICi,i−1,∀i ≥ 2 constraints are binding. For

contradiction, suppose ICi,i−1 is not binding. Then we can increase pi by ϵ without violating this
constraint. In all remaining local downward IC constraint, pi only appears on the LHS of ICi+1,i ;

the increase in pi will therefore not violate this constraint. In addition, IR1 will not be affected and

also SRi constraint will not be violated as pi only appears on the LHS of SRi , and the revenue of the
operator from legitimate users will strictly increase following this change. For the adversary, for all

contracts in the new set of contract, the contract either stays the same or becomes less attractive for

the adversary (due to higher price). Thus, for any choice made by the adversary in the new contract

regime, he obtains less or equal utility to that from the original contract set. As the seller receives

the negative of the adversary’s utility, the contribution from the adversarial part of the objective

either increases or stays the same, and hence the overall revenue of the operator increases with

the modified contract set. This provides a contradiction to the optimality of the initial contracts.

Therefore, the local downward IC constraints should be binding, leading to,

p∗i+1 + γs
∗
i+1 = bi+1(l

∗
i+1) −

i∑
j=1

(
bj+1(ϵ

∗
j ) − bj (ϵ

∗
j )
)
.

□

Proof of Proposition 4.3. First, we will prove that for any optimal solution with non-zero

si ’s there is a revenue (objective) equivalent solution with all si zero. The transformation is simple:

given any solution (pi , ϵi , si ), the contract (pi +γs, ϵi , 0) is feasible and revenue optimal. The revenue

stays the same, which trivially follows from the objective function. All constraints, except SR, have

the term pi + γs , and hence they are satisfied. The SR constraints are trivially satisfied as si is zero
in the new contract. Next, with contracts for which si is 0, the optimization reduces to

max

(pi ,ϵi )i∈Θ

∑n
i=1 qipi

subject to IRi ∀i and ICi, j ∀i, j and pi , ϵi ≥ 0 ∀i
This is exactly same as the classic contract theory problem, and the conditions of Theorem 4.2

(with s∗i = 0) follow from the seminal work by Maskin and Riley [21] □

Proof of Lemma 4.5. Consider a problem with two types of honest buyers H and L. Let the
benefit function be log(1+ ϵ) for the lower type L and 2 log(1+ ϵ) for the higher type H . The buyer

is type L with probability q and H type with probability 1 − q. The function C for adversary is

K(exp(ϵ) − 1), where K will be chosen below. For now, let K ≥ 2 + 2(1 − γ )/γ .



For the adversarial revenue maximization case we will show the revenue is 0. Let the contract

with the adversary with (pL, ϵL, sL) and (pH , ϵH , sH ). To show 0 revenue we will show that ϵH = 0

(and since ϵL ≤ ϵH , ϵL = 0). We do so by contradiction, whereby assume ϵH > 0. First, it directly

follows from Theorem 4.2 that pL +γsL = log(1+ϵL) and pH +γsH ≤ 2 log(1+ϵH ). Next, as ϵH ≥ ϵL ,
we have pL + γsL ≤ log(1 + ϵH ).

The adversary never rejects the higher contract, since for any ϵH ∈ (0, 1],

K(exp(ϵH ) − 1) ≥ (2 + 2(1 − γ )/γ )(exp(ϵH ) − 1)

≥ (2 + 2(1 − γ )/γ ) log(1 + ϵH )

≥ 2

1 − γ

γ
log(1 + ϵH ) + pH + γsH

Now, as 2 log(1 + ϵH ) ≥ γsH (since 2 log(1 + ϵH ) ≥ pH + γsH and pH ≥ 0), then the adversary does

not reject the higher contract as 2
1−γ
γ log(1 + ϵH ) + pH + γsH ≥ pH + sH . This also implies

(2 + 2(1 − γ )/γ ) log(1 + ϵH ) ≥ pH + sH (2)

Then, the adversary either chooses the lower or higher contract. Then, the seller’s utility is

(1 − ρ)(q ∗ (pL + γsL) + (1 − q) ∗ (pH + γsH )) + ρ[pZ + sZ − K(exp(ϵZ ) − 1)], where Z is either L
or H . If Z = H , then the revenue is (1 − ρ)(q ∗ (pL + γsL) + (1 − q) ∗ (pH + γsH )) + ρ[pH + sH −
K(exp(ϵH ) − 1)]. Then, observe that if Z = L, it means the adversary found L more attractive,

that is, −[pL + sL − K(exp(ϵL) − 1)] ≥ −[pH + sH − K(exp(ϵH ) − 1)]. Thus, it can be said that

(1 − ρ)(q ∗ (pL + γsL) + (1 − q) ∗ (pH + γsH )) + ρ[pH + sH − K(exp(ϵH ) − 1)] is an upper bound on

the revenue.

Next, (1−ρ)(q ∗ (pL +γsL)+ (1−q) ∗ (pH +γsH ))+ρ(pH +sH )must be less than pL +γsL +pH +sH ,
which by previous inequality number 2 and pL + γsL ≤ log(1 + ϵH ) is

≤ log(1 + ϵH ) + (2 + 2(1 − γ )/γ ) log(1 + ϵH ) = 3 log(1 + ϵH ) + 2
1 − γ

γ
log(1 + ϵH )

Now, choose K = 10/ρ + 2
1−γ
ργ which is clearly ≥ 2 + 2(1 − γ )/γ also. Then,

ρK[exp(ϵH ) − 1] = (10 + 2(1 − γ )/γ ) ∗ (exp(ϵH ) − 1) ≥ 10 log(1 + ϵH ) + 2
1 − γ

γ
log(1 + ϵH )

Hence, the upper bound on revenue (1 − ρ)(q ∗ (pL + γsL) + (1 − q) ∗ (pH + γsH )) + ρ[pH +
sH ] − ρK(exp(ϵH ) − 1)] is less than −7 log(1 + ϵH ) which is strictly negative for positive ϵH , and
thus, the revenue is negative. This contradicts the optimality of ϵH as 0 revenue is obtained with

pH , ϵH , sH = 0. We conclude that ϵH = ϵL = 0, so that R∗A = 0.

On the other hand, without adversarial types, the operator can attain positive revenue. This is

because the seller’s problem (using Theorem 4.2) will be to maximize

qbL(ϵL) + (1 − q)[bH (ϵH ) − bH (ϵL) + bL(ϵL)] = bL(ϵL) − (1 − q)bH (ϵL) + (1 − q)bH (ϵH )

Hence, it is optimal to choose ϵH = 1, leading to a lower bound of R∗ ≥ (1 − q)2 log 2 on the

non-adversarial revenue. □

Proof of Lemma 5.2. From Theorem 4.2, we know that bj (ϵj ) − pj = bj (ϵj−1) − pj−1, or equiv-
alently, bj (ϵj ) − bj (ϵj−1) = pj − pj−1. Using the ID property of the benefit functions, for i > j we get
bi (ϵj ) − bi (ϵj−1) ≥ bj (ϵj ) − bj (ϵj−1) = pj − pj−1, hence bi (ϵj ) − pj ≥ bi (ϵj−1) − pj−1. Thus, i prefers
contract j to j − 1. Arguing inductively, we have the required result. □
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