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Abstract. Stackelberg Security Games (SSGs) have been adopted
widely for modeling adversarial interactions, wherein scalability of equi-
librium computation is an important research problem. While prior re-
search has made progress with regards to scalability, many real world
problems cannot be solved satisfactorily yet as per current requirements;
these include the deployed federal air marshals (FAMS) application and
the threat screening (TSG) problem at airports. We initiate a principled
study of approximations in zero-sum SSGs. Our contribution includes
the following: (1) a unified model of SSGs called adversarial randomized
allocation (ARA) games, (2) hardness of approximation for zero-sum
ARA, as well as for the FAMS and TSG sub-problems, (3) an approxi-
mation framework for zero-sum ARA with instantiations for FAMS and
TSG using intelligent heuristics, and (4) experiments demonstrating the
significant 1000x improvement in runtime with an acceptable loss.

1 Introduction

The Stackelberg Security Game (SSG) model has been widely adopted in lit-
erature and in practice to model the defender-adversary interaction in various
domains [20,11,6]. Over time SSGs have been used to model increasingly large
and complex real world problems, hence an important research area within SSG
research is the study of scalable Strong Stackelberg Equilibrium (SSE) compu-
tation algorithms, both theoretically and empirically. The scalability challenge
has led to the development of a number of novel algorithmic techniques that
compute the SSE of SSGs (see related work).

However, scalability continues to remain a pertinent challenge across many
SSG applications. There are real world problems that even the best known ap-
proaches fail to scale up to, such as threat screening games (TSGs) and the Fed-
eral Air Marshals (FAMS) domain. The TSG model is used to allocate screening
resources to passengers at airports and solves the problem for every hour (24
times a day). Yet, recent state-of-the-art approach for airport threat screen-
ing [4] scales only up to 110 flights per hour whereas 220 flights can depart per
hour from the Atlanta Airport [9]. The FAMS problem is to allocate federal
air marshals to US based flights in order to protect against hijacking attacks.
Again, the best optimal solver for FAMS in literature [13] solves problems up to
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200 flights (FAMS is a deployed application since 2011) and in our experiments
a modified baseline approach scales up to 900 flights, whereas on average 3500
international flights depart from USA daily [22]. Further, the prior approaches
are fundamentally limited by the hardness of computing the exact solution [23].

To overcome the computational hardness, and provide practical scalability we
investigate approximation techniques for zero-sum SSGs. Towards that end, our
first contribution is a unified model of SSGs that we name adversarial randomized
allocation (ARA) games. ARA captures a large class of SSGs which we call
linearizable SSGs (defined later) which includes TSGs and FAMS.

Our second contribution is a set of hardness of approximation results. For
zero-sum ARAs, we show that the ARA equilibrium computation problem and
the defender best response problem in the given ARA game have the same hard-
ness of approximation property and in the worst case ARA is not approximable.
Further, we show that subclasses of ARA problems given by FAMS and TSGs
are hard to approximate to any sub-linear factor.

Our third contribution is a general approximation framework for finding the
SSE of zero-sum ARAs. The approximation framework combines techniques from
dependent sampling [21] with randomized rounding. However, the framework is
not an out-of-the-box approach and requires specific insights for a successful
application. As concrete instances, we instantiate the framework’s for FAMS
and TSGs family of problems by providing intelligent heuristics. We provide
theoretical approximation bounds for both FAMS and TSGs.

Finally, as our fourth contribution, we demonstrate via experiments that we
can solve FAMS problem up to 3500 flights and TSG problems up to 280 flights
with runtime improvements up to 1000x over the current state of the art. More-
over, the loss for FAMS problems is less than 5% for 900 flights and the loss
decreases with increasing flights. For TSGs, the loss is less than 1.5% across all
cases upto the 110 flights that the state of the art could scale upto. Hence, our
approach enables solving the real world FAMS and airport screening problem
satisfactorily for a US wide deployment. All missing proofs are in the appendix.

2 Related Work

Two major approaches to scale up in SSGs include incremental strategy gen-
eration (ISG) and use of marginals. ISG uses a master slave decomposition,
with the slave providing a defender or attacker best response [13]. All these ap-
proaches are limited by the NP hardness of finding an exact solution [15,23].
Use of marginals and directly sampling from marginals while faster suffers from
the issue of non-implementable (invalid) marginal solutions [14,21]. Fixing the
non-implementability again runs into complexity barriers [4]. Combination of
marginals and ISG approaches has also been tried [3]. Our study stands in con-
trast to these approaches as we aim to approximate the SSE and not com-
pute it exactly, providing a viable alternative to ISG and bypassing the non-
implementability of marginals approach. Another line of work uses regret and
endgame solving techniques [17,5] to approximately solve large scale sequential
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zero sum games. Our game does not have a sequential structure to exploit and
the large action space precludes using a standard no-regret learning approach.

Our approximation is inspired by randomized rounding (RR) [18]. Previous
work on RR with equality constraints address only equality constraints [10]
or obtain an integral solution given an approximate fractional solution within a
polyhedron with integral vertices [8]. However, our initial fractional solution may
not lie within an integral polyhedron, and we have both equality and inequality
constraints. Thus, we provide an approach that exploits the disjoint structure
of equality constraints in TSGs and FAMS in order to use previous work on
comb sampling [21] and then alters the output [2] to handle both equality and
inequality constraints. Finally, our hardness of approximation results are the
first such results for the classic FAMS and recent TSG problem.

3 Model and Notation

We present a general abstract model of adversarial randomized allocation (ARA).
ARA captures all linearizable SSGs, which is defined as those in which the prob-
ability ct of defending a target t is linear in the defender mixed strategy; these
include TSGs and FAMS. The ARA game model is a Stackelberg game model
in which the defender moves first by committing to a randomized allocation and
the adversary best responds. We start by presenting the defender’s action space.
There are k defense assets that need to be allocated to n objects to be defended.
In this model, assets and objects are abstract entities and do not represent ac-
tual resources and targets in a security games. We will instantiate this abstract
model with concrete examples of FAMS and TSG in the following sub-sections.

Defender’s randomized allocation of resources: The allocation can be
represented as a k×n matrix with the (i, j)th entry xi,j denoting the allocation
of asset i to object j, and each xi,j ≥ 0. There is a set of assignment constraints
on the entries of the matrix. Each assignment constraint is characterized by a
set S ⊆ {1, . . . , k} × {1, . . . , n} of indexes of the matrix and the constraint is
given by ns ≤

∑
(i,j)∈S xi,j ≤ NS , where ns, NS are non-negative integers. We

will refer to each assignment constraint as S. Also for sake of brevity, we denote
the vector of all the entries in the matrix as x and

∑
(i,j)∈S xi,j as x[S].

Pure strategies of the defender are integral allocations that respect the as-
signment constraints, i.e., integral x’s such that nS ≤ x[S] ≤ NS for all assign-
ment constraints S. See Figure 1 for an illustrative example of the assignment
constraints and a valid pure strategy. Let the set of pure strategies be P and
we will refer to a single pure strategy as P. On the other hand, the space of
marginal strategies MgS are those x’s that satisfy the assignment constraints
nS ≤ x[S] ≤ NS for all S; note that marginal strategies need not be integral.

Mixed strategies are probability distributions over pure strategies, e.g., prob-
abilities a1, . . . , am (

∑
m am = 1) over pure strategies P1, . . . ,Pm. An expected

(marginal) representation of a mixed strategy is x =
∑
m amPm. Thus, the space

of mixed strategies is exactly the convex hull of P , denoted as conv(P ). Typically,
the space of marginal strategies is larger than conv(P ), i.e., conv(P ) ⊂ MgS,
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Fig. 1. Three illustrations: (a) ARA with assets A,B,C and objects O,P,Q with 3 exam-
ple assignment constraints (shown as dashed lines) with upper bound 1 on the columns.
Shown also is an assignment that satisfies these constraints. (b) FAMS problem with 2
flights, 3 schedules and 3 FAMS. S1 and S2 share one flight and so do S2 and S3. The
two assignment constraints (for the two flights) with upper bound 1 are represented
by the two dashed lines. Additional constraints are present on each row, shown on the
right of the matrix. The attacker chooses a flight to attack, hence the dashed lines also
show the index set T of targets. A sample pure strategy fills the matrix. (c) TSG with
the two assignment constraints (resource capacity) with upper bound 7 for XRay and
15 for Metal Detector (MD) represented by the two dashed lines. Additional equality
constraints denoting the number of passengers in each passenger category (R,F) are
present on each column, shown on the bottom of the matrix. A passenger category
(column) is made from risk and flight. An adversary of type R1 can only choose the
first column R1, F1 and R2 can choose from the other two columns. Thus, the index
set T for targets corresponds to columns. A sample pure strategy fills the matrix.

hence every marginal strategies is not implementable as a mixed strategy. The
conditions under which all marginal strategies are implementable (or not) has an
easy interpretation in our model (see the implementability results in appendix).

Adversary’s action: The presence of an adversary sets our model (and
SSGs) apart from a randomized allocation problem [7] and makes ARA a game
problem. The attacker’s action is to choose a target to attack. In our abstract
formulation a target t is given by a set T ⊂ {1, . . . , k} × {1, . . . , n} of indexes of
the allocation matrix. In order to capture linearizable SSGs, the probability of
successfully defending an attack on target t is ct =

∑
i,j∈T wi,jxi,j , which is linear

in xi,j ’s as the wi,j ’s are constants such that wi,j ≤ 1/maxx∈conv(P )

∑
i,j∈T xi,j .

The constraint on wi,j ensures that ct ≤ 1. We assume that the total number of
targets is polynomial in the size of the allocation matrix. Then, as is standard
for SSGs, the defender expected utility given x and t is

Ud(x, t) = ctU
t
s + (1− ct)U tu

where U ts (resp. U tu) is the defender’s utility when target t is successfully (resp.
unsuccessfully) defended. As we restrict ourselves to zero-sum games, the at-
tacker’s utility is negation of the above.3

3 We remark that modeling-wise the extension to general-sum case, non-linearity in
probabilities or exponentially many targets is straightforward; here we restrict the
model as it suffices for the domains we consider.
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The problem of Strong Stackelberg equilibrium computation can be stated
as: maxx,z,ai z subject to z ≤ Ud(x, t) ∀t and x =

∑
i:Pi∈P aiPi, where the last

constraint represents x ∈ conv(P ). Note that the inputs to the SSE problem are
the assignment constraints, and the number of pure strategies can be exponential
in this input. Thus, even though the above optimization is a LP, its size can be
exponential in the input to the SSE computation problem. However, using the
marginal strategies MgS instead of the mixed strategies conv(P ) results in a
polynomial sized marginalLP :

maxx,z,ct z
subject to z ≤ U(x, t) ∀t and ns ≤ x[S] ≤ NS ∀S and xi,j ≥ 0 ∀i, j

But, as stated earlier conv(P ) ⊂ MgS, and hence the solution to the opti-
mization above may not be implementable as a valid mixed strategy. In our
approximation approach we will solve the above marginalLP as the first step
obtaining marginal solution xm.

Bayesian Extension4: We also consider the following simple extension
where we consider types of adversary θ ∈ Θ and each adversary type θ at-
tacks a set of targets Tθ such that Tθ ∩ Tθ′ = φ for all θ, θ′ ∈ Θ. The adversary
is of type θ with probability pθ (

∑
θ pθ = 1). Then, the exact SSE optimiza-

tion can be written as: maxx,zθ,ai pθzθ subject to zθ ≤ Ud(x, t) ∀θ ∀t ∈ Tθ and
x =

∑
i:Pi∈P aiPi. A corresponding marginalLP can be defined in the same

way as for original ARA.
Implementability: Viewing the defender’s action space as a randomized

allocation provides an easy way to characterize non-implementability of mixed
strategies across a wide range of SSGs, in contrast to prior work that have
identified non-implementability for specific cases [15,16,4] . The details of this
interpretation can be found in the appendix.

3.1 FAMS

We model zero-sum FAMS in the ARA model. The FAMS problem is to allocate
federal air marshal (FAMS) to flights to and from US in order to prevent hijack-
ing attacks. The allocation is constrained by the number of FAMS available and
the fact that each FAMS must be scheduled on round trips that take them back
to their home airport. Thus, the main technical complication arises from the
presence of schedules. A schedule is a subset of flights that has to be defended
together, e.g., flight f1 and f2 should be defended together as they form a round
trip for the air marshal. Air marshals are allocated to schedules, no flight can
have more than one air marshal and some schedules cannot be defended by some
air marshals. The adversary attacks a flight.

Then, we capture the FAMS domain in the above model by mapping sched-
ules in FAMS to objects (on columns) and air marshal in FAMS to assets (on

4 Typically player types denotes different utilities but as Harsanyi [12] originally for-
mulated, types capture any incomplete information including, as for our case, lack
of information about adversary action space. The game is still zero-sum.
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rows). See Figure 1 for an illustrative example. The assignment constraints in-
clude the constraint for each resource i:

∑
j xi,j ≤ 1, which states that every

resource can be assigned at most once. If an air marshal i cannot be assigned
to schedule j then add the constraint xi,j = 0. A target t in the abstract model
maps to a flight f in FAMS, and the set T are all the indexes for all schedules
that include this flight: {(i, j) | flight f is in schedule j}. The constraint that a
flight cannot have more than one air marshal is captured by adding the target
allocation constraint x[T ] ≤ 1. The probability of defending a target (flight) is
ct = x[T ], hence the weights wi,j ’s in ARA are all ones.

3.2 TSG

We model TSGs using the Bayesian formulation of ARA. The TSG problem is
how to allocate screening resources to screenees in order to screen optimally,
which we elaborate in the context of airline passenger screening. In TSGs, differ-
ent TSG resources such as X-Rays and Metal Detector act in teams to inspect an
airline passenger. The possible teams are given. Passengers are further grouped
into passenger categories with a given Nc number of passengers in each cate-
gory c. The allocation is of resource teams to passenger categories. There are
resource capacity constraints for each resource usage (not on teams but on each
resource). Further, all passengers need to be screened. Each resource team i has
an effectiveness Ei < 1 of catching the adversary. Observe that, unlike SSGs, the
allocation in TSGs is not just binary {0, 1} but any positive integer within the
constraints. The passenger category c is a tuple of risk level and flight (r, f); the
adversary’s action is to choose the flight f but he is probabilistically assigned
his risk level.

Then, we capture the TSG domain in the above abstract model by mapping
passenger categories in TSGs to objects (on columns) and resource teams in
TSGs to assets (on rows). See Figure 1 for an illustrative example. The capacity
constraint for each resource r is captured by specifying the constraint x[S] ≤ NS
which contains all indexes of teams that are formed using the given resource r:
S = {(i, j) | team i is formed using resource r} with NS equal to the resource
capacity bound for resource r. For every passenger category j, the constraint∑
i xi,j = Nj enforces that all passengers are screened. A target t in TSG is

simply a passenger category j, thus, the set T is {(i, j) | j is given passenger
category}. The probability of detecting an adversary in category j is given by∑

(i,j)∈T Eixi,j/Nj , hence the weights wi,j are Ei/Nj ; since Ei < 1 it is easy to

check that
∑

(i,j)∈T wi,jxi,j ≤ 1 for any T . The adversary type is the risk level
r, and each type r of adversary can choose a flight f , thus, choosing a target
which is the passenger category (r, f). The probability of the adversary having
a particular risk level is given.

4 Computation Complexity

In this section, we explore the hardness of approximation for ARAs, FAMS
and TSGs. In prior work on computation complexity of SSGs, researchers [23]
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have focused on hardness of exact computation providing general results relat-
ing the hardness of defender best response (DBR) problem (defined below) to
the hardness of exact SSE computation. In contrast, we relate the hardness of
approximation of the DBR problem to hardness of approximation of ARAs. We
also prove that special cases of ARA such as FAMS and TSGs are also hard to
approximate.

First, we formally state the equilibrium computation problem in adversarial
randomized allocation: given the assets, objects and assignment constraints of an
adversarial randomized allocation problem as input, output the SSE utility and
a set of pure strategies P1, . . . , Pm and probabilities p1, . . . , pm that represents
the SSE mixed strategy. We restrict m to be polynomial in the input size. This is
natural, since a polynomial time algorithm cannot produce an exponential size
output. Also, it is well known [23] that the size of the support set of any mixed
strategy need not be more than kn+ 1.

Next, as defined in prior literature [23], we state the DBR problem which
aids in understanding the results. The DBR problem can be interpreted as the
defender’s best response to a given mixed strategy of the adversary. The DBR
problem also shows up naturally as the slave problem in column generation based
approaches to SSGs.

Definition 1. The DBR problem is maxx∈P d ·x where d is a vector of positive
constants. DBR is a combinatorial problem that takes the assignment constraints
as inputs, and not the set of pure strategies P .

Next, we state the standard definition of approximation

Definition 2. An algorithm for a maximization problem is r-approximate if
it provides a feasible solution with value at least OPT/r, where OPT is the
maximum.

Note that lower r means better approximation. Depending on the best r possi-
ble, optimization problems are classified into various approximation complexity
classes with increasing hardness of approximation in the following order PTAS,
APX, log-APX, and poly-APX. We extensively use the well-known approxima-
tion preserving AP reduction between optimization problems for our results. AP
reduction is analogous to reductions used for NP hardness but must also account
for mapping of approximation ratios (and thus preserve hardness of approxi-
mation). AP reduction is among the strongest of all approximation preserving
reductions as it preserves membership in most of the known approximation com-
plexity classes. We do not delve into the formal definition of complexity classes
or AP reduction here due to lack of space and these concepts being standard [1].
Our first result shows that the ARA’s approximation complexity is same as that
of the DBR problem and in the worst case cannot be approximated.

Theorem 1. The following hardness of approximation hold for ARA problems:
(1) ARA problems cannot be approximated by any bounded factor in poly time,
unless P = NP ; (2) if the DBR problem for given ARA problem lies in some
given approximation class (APX, log-APX, etc.), then so does the ARA problem.
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Proof (Proof Sketch). The first result works by constructing a ARA from a NP
hard unweighted (d = 1) DBR problem such that the feasibility of the con-
structed ARA solves the DBR problem, thereby ruling out any approximation.
Such unweighted DBR problems exist (e.g., for FAMS). The second part of the
proof works by constructing an ARA problem with one target and showing that
the solution yields an approximate value for a relaxed DBR with x ∈ conv(P ).
Moreover, this solution is an expectation over integral points (pure strategies),
thus, at least one integral point in the support set output by ARA also provides
an approximation for the corresponding combinatorial DBR.

As the above complexity result is a worst case analysis, one may wonder
whether the above result holds for sub-classes of ARA problems. We show that
strong versions of inapproximatibility also holds for FAMS and TSGs.

Theorem 2. TSGs cannot be approximated to O(n1−ε) factor for any ε in poly
time, unless P=NP.

Proof (Proof Sketch). Using AP reduction from max independent set (MIS),
the proof for TSG follows from an observation that a special case of the TSG
problem is the MIS problem itself. MIS is known to be hard to approximate to
any factor better than n1−ε for any ε, unless P=NP.

Theorem 3. FAMS problems cannot be approximated to O(n1−ε) factor for any
ε in poly time, unless P=NP.

Proof. We provide an AP reduction from max independent set (MIS). Given
a MIS problem with vertices V and edges E construct the following FAMS
problems, one for each k. Use 2n − k resources. All resources can be assigned
to any schedule. Construct schedules s1, . . . , sn corresponding to the vertices
v1, . . . , vn. Construct target te corresponding to every edge e = (u, v) such that
te ∈ su and te ∈ sv. All te’s have the same value for being defended or undefended
and that value is n+2; thus, these targets do not need to covered but impose the
constraint that su and sv cannot be simultaneously defended. Thus, it is clear
that any allocation of resources to s1, . . . , sn corresponds to an independent set.
Next, consider additional 2n valuable targets and expand the set of targets of
the schedules such that ti, ti+1 ∈ si. Further, add 2n more singleton schedules
sn+1, . . . , s3n with ti ∈ sn+i. All additional targets t1, . . . , t2n provide value k
when defended and k − 2n otherwise. Thus, the expected utility of defending a
valuable target t given coverage ct is ct(k) + (1− ct)(k− 2n) = 2n ∗ ct + k− 2n.

For the given MIS problem, let the solution be k∗. Observe that for FAMS
problems with resources 2n−k where k ≤ k∗, all valuable (additional) targets can
be covered by covering k∗ schedules with 2k∗ targets in s1, . . . , sn and using the
remaining ≥ 2n−2k∗ resources to cover the remaining 2n−2k∗ valuable targets
(via singleton schedules). This provides utility of k for the SSE. In particular,
the utility with 2n− k∗ resources is k∗. Also note that for every problem, there
is always a trivial allocation of 2n − k resources to the 2n singleton schedules
such that coverage of each target is 1− k/2n. This is deducible as the allocation
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to singleton schedules is unconstrained and can be implemented in poly time by
Birkhoff-von Neumann result as provided in [15]. This trivial allocation provides
an utility of 0.

Next, assume we have a poly time algorithm to approximately compute the
SSE with approx factor r (r > 1). We will run this poly time algorithm with
resources 2 to 2n − 1 which is again a poly time overall, and also the overall
output size is poly. We construct an approximation for the MIS problem.

Our construction relies on the following claim (proved in the next paragraph):
given approximation factor r for the case with 2n− k∗ resources then one of the
pure strategy output for this case will have at least k∗ − lmin schedules among
s1, . . . , sn covered where lmin = bargminl

k∗

k∗−l ≥ rc. Note that by definition of

lmin, k∗

k∗−(lmin+1) > r and k∗

k∗−lmin
≤ r. As k∗ is the max size of independent sets

we obtain an approximation ratio r′ for the max independent set problem such
that r′ = k∗

k∗−lmin
≤ r. Thus, we obtain an approximation r′ for MIS as good as

r approximation for the SSE. Thus, we have an AP reduction.
To prove the claim in last paragraph consider the contra-positive: suppose

all pure strategies output cover at most k∗− lmin−1 schedules among s1, . . . , sn,
then in every pure strategy at least lmin+1 valuable targets are not covered (since
2 valuable targets are covered for the k∗− lmin−1 schedules and rest of resources
can cover only 1 valuable target). Then the coverage of the least covered target in
the mixed strategy formed using such pure strategies is ≤ 1− (lmin + 1)/2n (this
can be seen as sum of coverage of valuable targets must be at least 2n− lmin−1,
since that is true for every pure strategy). The utility for this least covered target
is ≤ k∗− lmin− 1. The overall utility has to be lower than utility for any target,
hence the utility is ≤ k∗− lmin−1. The optimal utility is k∗. Thus, by definition
of approximation ratio r we must have k∗ − lmin − 1 ≥ k∗/r or re-arranging

k∗

k∗−lmin−1 ≤ r but by definition of lmin we must have k∗

k∗−lmin−1 > r hence a
contradiction.

5 Approximation approach

Our approach to approximation first solves the marginalLP , which is quite fast
in practice (see experiments) and provides an upper bound to the true value
of the game. Then, we sample from the marginal solution, but unlike previous
work [21], we alter the sampled value to ensure that the final pure strategy
output is valid. We describe an abstract sampling and alteration approach for
ARA in this part, which we instantiate for FAMS and TSGs in the subsequent
sub-sections. Recall that a constraint is given by an index set S and the constraint
is an equality if nS = NS . For our abstract approach we restrict our attention to
ARAs with partitioned equality assignment constraints, which means the index
set S for all equality constraints partitions the index set {1, . . . , k} × {1, . . . , n}
of the allocation matrix. Further, for inequality constraints we assume nS = 0.
Call these problems as PE0-ARA; this class still includes FAMS and TSGs. For
FAMS, which does not have equality constraints, we use dummy schedules si
to get partitioned equalities

∑
j xi,j + si = 1; si = 1 denotes that resource i is
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unallocated. Our abstract approximation approach for PE0-ARA is presented in
Algorithm 1.

Algorithm 1: Abstract Approximation

Input: xm: the marginal solution
1 forall S ∈ EqualityConstraints do
2 x← CombSample(xm, S)

3 x← FixV iolatedInequalityConstraints(x)
4 x← FixEqualityConstraints(x)

The Algorithm takes as
input the marginal solu-
tion xm from marginalLP
and produces a pure strat-
egy. The first for loop (line
1-2) performs comb sam-
pling for each equality con-
straint S to produce in-
tegral values for the vari-

ables involved in S. Comb sampling was introduced in an earlier paper [21]; it
provides the guarantee that xmi,j is rounded up or down for all (i, j) ∈ S, the
sample xi,j has expected value E(xi,j) = xmi,j for all (i, j) ∈ S and equality S is
still satisfied after the sampling. See Figure 2 for an example. Briefly, comb sam-
pling works by creating Z buckets of length one each, where Z =

∑
(i,j)∈S{xmi,j},

where {.} denotes fractional part. Each of the {xmi,j} length fraction is packed
into the bucket (in any order and some of the {xmi,j} fraction may have to be
split into two buckets), then a number between [0, 1] is sampled randomly, say
z, and for each bucket a mark is put at length z. Finally, the (i, j) whose {xmi,j}
fraction lies on the marker z for each bucket is chosen to be rounded up, and all
other xmi,j are rounded down.

Observe that in expectation the output of comb sampling matches the
marginal solution, thus, providing the same expected utility as the marginal
solution. Recall that this expected utility is an upper bound on the optimal util-
ity. However, the samples from comb sampling may not be valid pure strategies.
Thus, in case the output of comb sampling is not already valid, the two abstract
methods in line 3 and 4 modify the sample strategy by first decreasing the in-
tegral values to satisfy the violated inequalities and then increasing the integral
values to satisfy the equalities. Such modification of the sampled strategy to
obtain a valid strategy is guided by the principle that the change in defender
utility between the sampled and the resultant valid strategy should be small,
which ensures that change in expected utility from the marginal solution due
to the modification is small. As the expected utility of the marginal solution is
an upper bound on the optimal expected utility this marginal expected utility
guided modification leads the output expected utility to be close to the optimal
utility. Thus, the two methods on line 3 and 4 need to be instantiated with
carefully designed heuristics that aim to implement the principle of marginal
expected utility guided modification. Below, we show the instantiation for the
TSG and FAMS family of problems. A sample execution for TSGs is shown in
Figure 2.

5.1 TSG

The heuristics for TSG are guided by three observations: (1) more effective re-
sources are more constrained in their usage, (2) changing allocation for passenger
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Fig. 2. (Left to right) Sample execution for the TSG example from Figure 1. Recall
that the resource capacity is 7 for XRay and 15 for MD. The marginal solution is
the left matrix which after CombSampling on each column becomes integral, e.g., 0.5
in the left column is rounded down to 0 and 1.5 rounded up to 2. Note that the
CombSampling output satisfies all equalities, but exceeds the resource capacity 7 for
X-ray. Next, allocation values are lowered (shown as red circle) to satisfy the X-Ray
capacity but the equality constraint on third column is violated. Next, allocation values
are increased (again red circle) to fix the equality which produces a valid pure strategy.

categories with higher number of passengers changes the probability of detec-
tion of adversary by a smaller amount than changing allocation for category
with fewer passengers and (3) higher risk passenger categories typically have
lower number of passengers.

Algorithm 2 shows the heuristic for TSG. Recall that for TSGs the inequal-
ities are resource capacity constraints. Thus, for fixing violated inequalities we
need to decrease allocation which decreases utility; we wish to keep the utility
decrease small as that ensures that the expected utility does not move much
further away from the upper bound marginal expected utility. Our approach for
such decrease in allocation has the following steps: (a) [Line 1] prioritize fixing
inequality of most violated (negative slack) resources first and (b) [Lines 2-10]
for each such inequality we attempt to lower allocation for passenger category
with higher number of passengers. In light of the observations for TSG above
this approach aims to keep the change in expected utility small. Specifically,
observation 1 makes it likely that constraints for more effective resources are
fixed in step a above. Observation 3 suggests that the changes in step b happens
for lower risk passengers. Thus, step (a) aims to keep the allocation of effec-
tive resources for high risk passengers unchanged. This keeps the utility change
small as changing allocation for high risk passengers can change utility by a
large amount. Next, by observation 2, step (b) aims to minimize the change in
probability of detecting the adversary by a low amount so that expected utility
change in small. For example in Figure 2, the inequality fix reduces the allocation
for the third passenger category (column) which also has the highest number of
passengers (15). Also, observe that within each passenger category in step (b)
we reduce those variables that participate in most resource capacity inequality
constraints (Line 7) just to ensure that more constraints are fixed with fewer
changes.
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Algorithm 2: TSG Pure Strategy Generation

Input: x from Comb Sampling
1 OrderedInequalityConstraints = Sort(InequalityConstraints,x) ascending

by slack
2 forall R ∈ OrderedInequalityConstraints do
3 XR

j ← variables corresponding to passenger category j in R (thus, XR
j is a

set of variables)

4 XR ← Sort({XR
j }j=1,..) descending by no. of passengers in category j.

5 forall XR
j in XR do

6 while any variable in XR
j is > 0 AND R is violated do

7 xi,j = Positive variable participating in the most inequality

constraints among XR
j

8 xi,j = xi,j − 1

9 if R is satisfied then
10 break

11 OrderedEqualityConstraints = Sort(EqualityConstraints,x) ascending by
no. of passengers in the category corresponding to each equality constraint

12 forall C ∈ OrderedEqualityConstraints do
13 Xj ← variables in C (C corresponds to category j)

14 XC
j ← Sort(Xj) ascending by the min slack in the resource constraint of all

resources that can inspect xi,j ∈ Xj

15 forall component xi,j in XC
j do

16 while xi,j 6= 0 and C is violated do
17 xi,j = xi,j + 1

18 if C is satisfied then
19 break

Next, the equalities in TSGs are the constraints for every passenger category.
For fixing equalities we need to increase allocation which increases utility; we
wish to keep this utility increase high as it brings the expected utility closer to
the upper bound marginal expected utility. Here we aim to do so by (a) [Line
11] prioritizing increase of allocation for categories with fewer people and (b)
[Line 12-19] increasing allocation of those resources that have least slack in their
resource capacity constraint (low slack means more utilized which could mean
higher effectiveness). By Observation 1 low slack means that resource could be
more effective and by Observation 2 fewer people means higher risk passengers.
This ensures that higher risk passengers are screened more using more effective
resources thereby raising the utility maximally. For example in Figure 2, the
equality for the third column is fixed by using the only available resource MD.

Recall that, unlike FAMS, the allocation for TSGs are non-binary. This of-
fers an advantage for TSGs with respect to approximation, as small fractional
changes do not change the overall allocation by much (0.5 to 1 is a 50% change,
but 4.5 to 5 is less than 10%). Thus, we assume here that the changes due to
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Algorithm 3: FAMS Pure Strategy Generation

Input: x from Comb Sampling
1 Xj ← variables corresponding to schedule j
2 OrderedInequalityConstraints = Sort(InequalityConstraints) ascending by

slack
3 forall T ∈ OrderedInequalityConstraints do
4 J ← schedules that T belongs to
5 J ← Sort(J) descending by the number of violated target allocation

(inequality) constraints for schedule j
6 XJ ← ∪j∈JXj

7 while any variable in XJ is > 0 AND T is violated do
8 j ← 1stScheduleNoSatisifedTarget(J)
9 if j is -1 then

10 j ← choose j randomly from J

11 xi,j ← any variable from Xj

12 xi,j = xi,j − 1

Algorithm 1 do not reduce the probability of detecting an adversary in any pas-
senger category (from the marginal solution) by more than 1/c factor, where
c > 1 is a constant. This restriction is realistic as it is very unlikely that any
passenger category will have few passengers and we aim to change the allocation
for passenger categories with a higher number of passengers. Hence we prove

Theorem 4. Assume that Algorithm 2 successfully outputs a pure strategy and
the change in allocation from the marginal strategy does not change the probabil-
ity of detecting an adversary by more than 1/c factor. Then, the approximation
approach above with the heuristic provides a c-approximation for TSGs.

As a remark, the above result does not violate the inapproximatability of
TSGs since the above holds for a restricted set of TSG problems. Also, the
approximation for TSGs may sometimes fail to yield a valid pure strategy as
satisfying the equalities may become impossible after using certain sequences of
decreasing allocation. In our experiments we observe that the failure of obtaining
a pure strategy for TSG after Algorithm 2 is rare and easily handled by repeating
the Algorithm 1 (sampling and adjusting runs in milli-secs).

5.2 FAMS

Recall that for FAMS the inequalities are the target allocation constraints:
x[T ] ≤ 1 and fixing violations for these involves decreasing allocation. Algo-
rithm 3 shows the heuristic for TSG. Our heuristic is simple: we fix the most vi-
olated constraints first (Line 2), the variables xi,j are set to zero (i.e., decreased)
starting from those schedules j that contain the most number of targets for
which target allocation constraint is violated (Line 5) and do not contain any
target for which the target allocation constraint is satisfied (Line 8). We are



14 Arunesh Sinha, Aaron Schlenker, Donnabell Dmello, and Milind Tambe

1

10

100

1000

10000

300 500 700

Ru
nt

im
e 

(s
ec

on
ds

)

Number of Flights

CG RAND

(a) Runtime (log-scale time)

-9
-8
-7
-6
-5
-4
-3
-2
-1
0

300 500 700 900

D
ef

en
de

r U
til

ity

Number of Flights

CG

RAND

(b) Solution quality

Fig. 3. CG and RAND Comparison

guaranteed to find a decrease in allocation that satisfies the constraint for T
without changing the allocation for targets that already satisfy constraints in
the cases when the target T with violated constraint (1) belongs to a schedule
j that exclusively contains that target T (xi,j can be decreased without affect-
ing any other constraint) or (2) T belongs to only one schedule (other targets
in this schedule will violate their constraints). This approach ensures that we
only work to fix the violated constraints and cause a minimal change in utility
by leaving the satisfied constraints undisturbed. However, if in fixing a violated
target allocation constraint for T it becomes necessary to reduce allocation for
another already satisfied target constraint, then sample uniformly from the ≥ 2
schedules that T belongs to in order to choose the xi,j allocation to reduce (Line
10) till all inequality constraints are satisfied.

Then, we do nothing to fix equality constraints since we have only decreased
xi,j and if any equality

∑
j xi,j + si = 1 is not satisfied we can always set the

dummy si to be one. Also, observe that since we only always decrease allocations,
we always find a pure strategy for any sample from Algorithm 3 (unlike TSGs).
We prove:

Theorem 5. Let Ct be the number of targets that share a schedule with any
target t, and C = maxt Ct. The approximation approach above with the heuristic
provides a 2Ck-approximation for FAMS.

6 Experimental Results

Our experimental results reveal the average case loss of our approximation.
Baseline: Our set of experiments provide a comprehensive analysis of our ap-
proximation approach, which we name RAND. We compare RAND to the best
know solver for zero sum TSGs called MGA; MGA [4] has been previously shown
to outperform column generation based approaches by a large margin. A more
recent work [19], called GATE, approximates general sum TSGs using MGA in
a branch and bound tree. However, this work suffers from loss of more than
11% for problems that are zero-sum (Figure 7 in that paper) with runtime in
1000s of seconds compared to our loss of less than 1.5%. Moreover, the potential
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TSG application by Transport Security Administration (TSA) uses the zero-
sum game version with MGA as the solver, which we confirmed through private
communication with the authors of both these papers.

For the FAMS problem the best known solver in literature for the general sum
case is ASPEN [13], which is a column generation based branch and price ap-
proach. Through private communication with the company (Avata Intelligence)
managing the FAMS software, we know the FAMS problem is solved as a zero-
sum problem for scalability using column generation. Even then the approach
takes hours and is cut off without running to completion. On our end, for the
zero-sum case we implemented a column generation (CG) solver for FAMS, since
branch and price is an overkill for the zero sum case that we study.

All experimental results are averages over 30 randomly generated game in-
stances. All game instances fix U ts to −1 and randomly select integral U tu between
−2 and −10. The utility for RAND is computed by sampling 1000 pure strate-
gies and taking their average as an estimate of the defender mixed strategy. All
experiments were run with a Xeon 2.6 GHz processor and 4GB RAM.

For FAMS, we vary the number of flights, keeping the number of resources
fixed at 10 and number of schedules fixed at 1000 and 5 targets/schedule. The
runtime in log scale is shown in Figure 3. CG hits the 3600 seconds cut-off for
700 flights and the run time for RAND is much lower at only a few seconds. Next,
we report the solution quality for RAND by comparing with the solution using
CG. It can be seen that the solution gets better with increasing flights starting
from 19% loss at 300 flights to 5% loss at 900 flights. An important point to
note is that the approximation loss decreases with increasing number of flights,
Thus, at 3500 flights (the number desired) we expect the loss percentage to be
much lower, which we are unable to compare with CG as CG does not scale up.
The numbers show that we obtain large speed-ups up to factor of 1000x and are
still able to extract 95% utility for 900 flights beyond which CG does not scale.

For TSGs, we used six passenger risk levels, eight screening resource types
and 20 screening team types. We vary the number of fights and we also randomly
sample the team structure (how teams are formed from resources) for each of
the 30 runs. The results in Figure 4 show runtime (in log scale) and defender
utility values varying with number of flights (on x-axis). As can be seen, MGA
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only scales up to 110 flights before hitting the cut-off of 3600 seconds, while
RAND takes only 10 seconds for 110 flights. Also, the solution quality loss for
RAND has a maximum averaged loss of 1.49%. Thus, we obtain at-least 360X
speed-ups with very minor loss. We performed an additional experiment to show
that the choices made by our heuristics are important. We change the heuristics
in Algorithm 2 line 3 to sort ascending instead of descending and the modified
RAND suffered 35% more loss over RAND for 110 flights. A figure showing the
same with different number of flights is in the appendix.

Next, we test the scalability of RAND for FAMS and TSG, shown in Figure 5.
As can be seen, the runtime for RAND is low even with the highest number of
flights we tested: 280 for TSG and 3500 for FAMS. The maximum runtime for
FAMS was under 5 seconds; the maximum runtime for TSG was under 25 secs.

7 Conclusion

We studied approximations in zero-sum SSGs both theoretically and practically.
We provided approximation techniques to solve large scale zero-sum SSGs, which
enables the application of already deployed application (FAMS) or applications
under test (airport screening) at a national scale in USA. In fact, the number
of international flights from USA was 2000 in 2010 [13] which has increased to
3500 [22] revealing the ever increasing trend. Our approach not only provide an
avenue to solve the FAMS and airport screening problem for current problem
sizes but is capable of scaling up to larger numbers in future.
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Appendix

Implementability: Viewing SSGs as ARAs provides an easy way of deter-
mining implementability using results from randomized allocation [7]. First, we
define bi-hierarchical assignment constraints as those that can be partitioned
into two sets H1, H2 such that two constraints S, S′ in the same partition (H1 or
H2) it is the case that either S ⊆ S′ or S′ ⊆ S or S ∩S′ = φ. Further, as defined
in [7], canonical assignment constraints are those that impose constraints on all
rows and columns of the matrix. We obtain the following result

Proposition 1. All marginal strategies are implementable, or more formally
conv(P ) = MgS, if the assignment constraints are bi-hierarchical. Given canon-
ical assignment constraints, if all marginal strategies are implementable then the
assignment constraints are bi-hierarchical.

As Figure 1 reveals, both FAMS and TSG have non-implementable marginals
due to overlapping constraints. The proof of the proposition is straightforward
applications of Thm 1 and Thm 2 in Budish et al. [7].
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Modified Heuristic is Bad: The modified
RAND approach is compared to RAND in Fig-
ure 6. It can be seen that the loss increases a lot
with almost 35% loss over RAND for 110 flights.
Proof of Theorem 1: First we define some prob-
lems related to the DB problem.

– DBR is the problem maxx∈P d · x where d is
a vector of positive constants. DBR is a com-
binatorial problem.

– The continuous version of DBR is DBR-C:
maxx∈conv(P ) d · x.

– The unweighted version of the DBR is DBR-
U: maxx∈P 1 · x.

Proof. For the first part, given a NP hard DBR-U instance (for the decision
version of DBR-U), we construct an ARA instance such that the feasibility
problem for that ARA instance solves the hard DBR-U decision problem. Thus,
as the feasibility is NP Hard, there exists no approximation. First, since the
ARA problem is so general there exists DBR-U problems that are NP Hard. For
example, the DBR-U problem for FAMS has been shown to be NP Hard [23].
Given the hard DBR-U problem, form an ARA problem with by adding the
constraint 1 · x = k. Also, let there be only one target t in the problem, so that
the objective becomes U(x, t) instead of z and all constraints in the optimization
are just the marginal space constraints and 1 · x = k. Now, the existence of any
solution of the optimization gives a feasible point x =

∑
m amPm, where Pm ∈ P

is integral. Also, it must be that 1 · Pj ≥ 1 · x = k for some j. Then, Pj is a
solution to the decision version of the DBR-U problem, i.e., does there exist a
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solution of the DBR-U optimization problem with value ≥ k? Thus, since finding
the existence of any solution for ARA is NP Hard, thus, no approximation exists
in poly time.

For the second part, we present a AP approximation preserving reduction
(with problem mapping that does not depend on approximation ratio); such a
reduction preserves membership in PTAS, APX, log-APX, Poly-APX (see [1]).
Given any DBR problem, we construct the ARA problem with one target such
that T = {1, . . . , k}× {1, . . . , n}. Choose the weights wi,j ’s such that wi,j ∝ di,j
and wi,j ≤ 1/maxx∈MgS

∑
i,j xi,j . Observe that maxx∈MgS

∑
i,j xi,j is com-

putable efficiently and maxx∈MgS

∑
i,j xi,j ≥ maxx∈conv(P )

∑
i,j xi,j , thus, the

ARA is well-defined. Thus, due to just one target, the ARA optimization is same
as maxx∈conv(P ) w · x. Suppose we can solve this problem with r approximation
with the solution mixed strategy being xε =

∑m
i=1 aiPi for some pure strategies

Pi. Now, since wi,j ∝ di,j we also know that this solution also provides r approxi-
mation for DBR-C. Let the optimal solution for DBR-C be OPT ; note that OPT
is also the optimal solution for DBR. xε provides a solution value w·xε ≥ OPT/r.
Further, as the objective is linear in x and xε =

∑m
i=1 aiPi, it must be the case

that there exists a j ∈ {1, . . . ,m} such that w · Pj ≥ w · xε ≥ OPT/r. Thus,
since Pj ∈ P , Pj provides r approximation for DBR. Since, m the number of the
pure strategies in support of xε is polynomial, Pj can be found in polynomial
time by a linear search.

Proof of Theorem 2:

Proof. Given an independent set problem with V vertices, we construct a TSG
with {1, . . . , V + 1} team types, where each team type in 1, . . . , V corresponds
to a vertex. The V + 1 team is special in the sense that it does not correspond
to any vertex and it is made up of just one resource with a very large resource
capacity 2V . Construct just one passenger category with passengers N = V + 1.
Since, there is just one passenger category (and target) we will use xi as the
matrix entries instead of xi,j . Choose U ts = V + 1 and U tu = 0 and efficiencies
Ei = 1 for all teams, except EV+1 = 0. Then, the objective of the integer LP

is
∑V
i=1 xi = 1V · x where 1V is a vector with first V components as 1 and last

component as 0.
Next, have resources for every edge (i, k) ∈ E with resource capacity 1. This

provides the inequality
∑

(i,k)∈E xi + xj ≤ 1. Also, we have xV+1 ≤ 2V . Inspec-

tion of every passengers provides the constraints
∑V+1
i=1 xi = V+1. Treating xV+1

as a slack, we can see that the constraint xV+1 ≤ 2V and
∑V+1
i=1 xi = V + 1 are

redundant. For the left over constraints
∑

(i,k)∈E xi+xj ≤ 1, we can easily check

that any valid integral assignment (pure strategy) is an independent set. More-

over, the objective
∑V
i=1 xi tries to maximize the independent set. The optimal

value of this optimization over conv(P ) is an extreme point which is integral and
equal to the maximum independent set OPT. Thus, suppose a solution xε to the
SSE problem with value ≥ OPT/r. Further, as the objective is linear in x and
xε =

∑m
i=1 aiPi, it must be the case that there exists a j ∈ {1, . . . ,m} such that

1V · Pj ≥ 1V · xε ≥ OPT/r. Thus, since Pj ∈ P , Pj provides r approximation
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for maximum independent set. Since, m the number of the pure strategies in
support of xε is polynomial, Pj can be found in poly time by a linear search.

Proof of Theorem 5:

Proof. Consider the event of a target t having an infeasible assignment after the
comb sampling. Call this event Et. Let Ct,i be the event that resource i covers
this target t. Then, P (Et) =

∑
i P (Et|Ct,i)P (Ct,i). From the guarantees of comb

sampling we know that P (Ct,i) =
∑
j:(i,j)∈T x

m
i,j ≤ 1 and P (xi,j = 1) = xmi,j .

Also, by comb sampling if xi,j = 1 then xi,j′ = 0 for any j′ 6= j. Next, we know
that P (Et|Ct,i) is the probability that the any of the other xi′,j is assigned a
one, which is 1− the probability that all other xi′,j are assigned 0. Thus,

P (Et|Ct,i) = 1−
∏
i′ 6=i

(1− P (Ct,i))

Let pt,i = P (Ct,i). Considering the fact that
∏
i(1− pt,i) > 1−

∑
i pt,i, we get

1−
∏
i′ 6=i

(1− P (Ct,i)) ≤
∑

(i′,j):i′ 6=i∧(i′,j)∈T

xmi′,j ≤ 1−
∑
j

xmi,j

where the last inequality is due to the fact that
∑

(i,j)∈T x
m
i,j ≤ 1.

Thus, P (Et) ≤
∑
i(1 − pt,i)pt,i ≤

∑
i pt,i −

∑
i(pt,i)

2. Next, we know from
standard sum of squares inequality that

∑
i(pi)

2 ≥ (
∑
i pi)

2/k. Thus, we get
P (Et) ≤ (

∑
i pi)(1 −

∑
i pi/k) The RHS is maximized when

∑
i pi = 1, thus,

P (Et) ≤ 1− 1/k. Also, then P (¬Et) ≥ 1/k
Now consider the coverage of target t: xmt =

∑
(i,j)∈T x

m
i,j . According to

our algorithm the allocation for target t continues to remain 1 with probability
(1/2)C if its allocation is already feasible after comb sampling (and we always
obtain a pure strategy). This is because this target shares schedules with C other
targets and thus in the worst case may be reduced with 1/2 probability for each
of the C targets. We do a worst case analysis and assume that no resource is
allocated to a target when the sampled allocation is infeasible for that target.
Thus, let yt denote the random variable denoting that target t is covered. Thus,
E(yt) = P (yt = 1) = P (yt = 1|Et)P (Et) + P (yt = 1|¬Et)P (¬Et). Now, P (yt =
1|¬Et) is same as xmt /2

C and we assumed the worst case of P (yt = 1|Et) = 0.
Thus, we have E(yt) ≥ xmt /2

Ck. As the utilities are linear in yt, we have the
utility for t as Ut ≥ Umt /2

Ck, where Umt is the utility under the marginal xm.
Thus, if t∗ is the choice of adversary under the marginal xm we know that Umt∗
is the lowest utility for the defender over all targets t. Hence, we can conclude
that the utility with the approximation is at least Umt∗ /2

Ck

Proof of Theorem 4:

Proof. The main assumption in the proof is that the steps after after comb
sampling changes the probability of detecting an adversary in passenger category
j by at most 1/c. Also, by assumption of the theorem since Algorithm 1 does
not fail ever, the change in utility for any passenger category j is at most a
factor of 1/c. By similar reasoning as for FAMS, we conclude that this provides
a c-approximation.
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