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The Challenge of Collaborative IoT-Based
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Abstract—In many practical environments, resource-
constrained IoT nodes are deployed with varying degrees of
redundancy/overlap–i.e., their data streams possess significant
spatiotemporal correlation. We posit that collaborative
inferencing, whereby individual nodes adjust their inferencing
pipelines to incorporate such correlated observations from other
nodes, can improve both inferencing accuracy and performance
metrics (such as latency and energy overheads). However, such
collaborative models are vulnerable to adversarial behavior by
one or more nodes, and thus require mechanisms that identify
and inoculate against such malicious behavior. We use a dataset
of 8 outdoor cameras to (a) demonstrate that such collaborative
inferencing can improve people counting accuracy by over 8%,
and (b) show how a dynamic reputation mechanism preserves
such gains even if some cameras behave maliciously.

I. INTRODUCTION

A variety of physical environments, including smart cities
and tactical battlefield networks are increasingly being instru-
mented with large numbers of resource-constrained sensors
and IoT devices (e.g., cameras, microphone arrays & envi-
ronmental sensors). A rising recent trend involves executing
inferencing pipelines (to perform increasingly complex tasks,
such as object recognition or target localization), in-situ and
in real time, at such edge nodes. There are two salient features
associated with these trends:

• Sensors are often deployed with varying degrees of
redundant coverage–e.g., cameras in buildings often have
partially overlapping fields of view, implying that their
sensed data are implicitly spatiotemporally correlated.

• Inferencing increasingly involves the execution of com-
putationally prohibitive machine learning (ML) pipelines
(e.g., CNNs for image-based object detection and RNNs
for speech recognition). Executing such deep neural
networks (DNNs) gives rise to well-known throughput
bottlenecks and prohibitive energy consumption.

At present, each such sensor/IoT node performs its inferenc-
ing in isolation, utilizing the sensory data that it captures. Any
fusion of such inferences is performed at a logically higher
layer–e.g., fusing such object detection events from multiple
sensors to perform tracking of a target of interest. We have
recently been advocating the vision of Collaborative IoT Infer-
encing, where the inferencing pipelines of multiple individual
devices do not operate independently, but collaboratively adapt
in real time, based on features and inferences shared by
other “correlated” IoT/sensing devices. For example, we shall

see (in Section III) how a video sensor node dynamically
modifies its people counting pipeline, which combines ML-
based people detection with color histogram-based filtering,
based on histogram & object coordinates shared by other
camera nodes. We strongly believe that such collaborative ML-
based inferencing will lead to radical improvements in both
the operational efficiency of the deployed IoT infrastructure
and the dependability/robustness of the associated inferencing
outcomes. On the operational side, such coordination in the
inferencing process can minimize unnecessary resource con-
sumption (for example, see [8, 10] for selective activation of
sensors in a video monitoring infrastructure). For the infer-
encing outcomes, such collaboration promotes dependability
by overcoming the failure vulnerabilities of individual sensors
(e.g., object detection failures due to occlusions in a single
camera’s FoV).

However, such collaboration has a serious potential pitfall:
it makes individual ML-based pipelines on one device suscep-
tible to inadvertent or malicious errors on other nodes. For
example, in the distributed camera-based sensing infrastructure
illustrated in Figure 1, a single camera can deliberately sup-
press information on detected objects from other collaborating
cameras, thereby compromising their ML-based pipelines as
well. The goal of this paper is thus two-fold:

• First, demonstrate, via an exemplar, that collaborative,
real-time modification of ML-based inferencing pipelines
can indeed lead to tangible performance improvement.

• Second, introduce a preliminary approach to tackle the
performance degradation that can result from operating
in such an adversarial operating environment.

We shall illustrate both of these concepts (the benefits of
collaborative ML-inferencing and its vulnerability in adversar-
ial environments) using traces obtained from a multi-camera
benchmark dataset [5]. Our aim is to mobilize the attention
of the larger IoT/ML community to the problem of making
collaborative inferencing dependable and robust in adversarial
environments. We emphasize that the video-based “people
counting” is used purely as an exemplar: our concepts gen-
eralize to different and mixed modalities of sensors, and both
deep and shallow ML pipelines.
Key Contributions: We make the following key contributions:

• Accuracy gains using collaborative multi-camera in-
ferencing: We describe a model of collaborative inferenc-



Fig. 1: An Illustrative IoT environment with collaborative
cameras.

ing for “people counting”, appropriate for a networked,
multi-camera system system with per-node local process-
ing capabilities. Using the PETS multi-camera benchmark
dataset, we show that collaborative inferencing can im-
prove the accuracy, to 75.5%, from a baseline of 68.03%
where each camera operates independently. Further, we
show that even in the presence of high noise in one
or more camera feeds (e.g. perturbing RGB values of
each image pixel independently), a collaborative system
achieves comparable performance gains.

• Detecting Adversarial/Malicious Nodes: The accuracy
of people counting inference can degrade sharply, if col-
laborating camera nodes maliciously injects errors–i.e., it
deliberately perturbs the histogram values or hides pres-
ence of bounding boxes that it shares with neighboring
nodes. We propose a measure to capture the reputation of
collaborators and using a simulated setting, we show that
the measure is able to capture such malicious behavior
fast – e.g., the reputation score of a malicious camera that
lies with 50% probability drops as much by 20% within
only ≈ 2 minutes of observation (i.e., ≈800 frames at 7
FPS), and by 70% when it perturbs reported detections
aggressively in addition to hiding detections.

• Adversary-resilient Collaborative Inferencing: In this
proposed approach, a node continuously updates a rep-
utation score for each neighboring camera based on the
observed mutual discrepancy between objects simultane-
ously identified within an overlapping FoV, and then uses
this score to modify its collaborative fusion logic. We
show that this approach is able to sustain high inferencing
accuracy under such adversarial conditions, achieving F1-
score of 73% even with high probability of lying and
aggressive perturbations (by a single malicious camera
in a 3-collaborator setting) – a 20% improvement over
the baseline of a single camera’s independent inference.

II. ILLUSTRATIVE IOT ENVIRONMENT

To motivate our work, we consider a multi-camera envi-
ronment illustrated in Figure 1. Each camera has a FoV that
has varying degrees of overlap with neighboring cameras–e.g.,
cameras B and C both observe two individuals and a tree

Fig. 2: Overview of the Collaborative (Section III), Adversary-
Resilient (Section IV) System Work Flow.

(from different perspectives) concurrently. Each camera also
runs an in-situ inferencing pipline–for example, performing
object detection using a DNN that may be executed on a
vision co-processor, such as an IntelTMMovidius device. In
addition, for each frame, each camera also shares appropriate
features or metadata with nearby/overlapping cameras. It is
this spatiotemporally correlated information that each camera
uses to execute a modified, collaborative inferencing pipeline.
Such collaboration is likely to offer improved inferencing in
various situations–e.g., if one or more objects are occluded in
one camera’s view (e.g., Camera A is occluded by the presence
of the tree and misses observing the “green” person) but visible
in the FoV of another camera (e.g., Camera B). The figure also
illustrates an adversarial camera, C, which shares misleading
or incorrect features/metadata–e.g., it informs cameras A, B,
D and E that it can only observe the “purple” individual,
deliberately omitting the other (“green”) person.

In an adversary-resilient collaborative setting, Camera A
who shares/receives inferences from its neighbors B and C,
learns from past observations that Camera C is adversarial
and that B is trust-worthy, and makes the correct inference
that there are in fact 2 persons in the current frame (although
its own view is occluded) by combining its own and B’s
inferences and disregarding C.

III. MULTI-CAMERA COLLABORATIVE INFERENCING

We illustrate the work flow of a trust-aware collaborative
camera system in Figure 2, which consists of the following
two key steps (we defer the discussion of adversary-resiliency
to the next section).

Step 1: Mapping between camera views. In the calibration
stage, the coordinate mappings between a reference camera’s
view and its collaborators’ views are generated via homog-
raphy transformation [7]. Such a mapping requires matched
points, i.e., points in the real world that are present in both
images, as input to homography matrix; these can be extracted
either manually or automatically, using a feature matching
algorithm such as SIFT [13].

Step 2: People detection. In a non-collaborative, base-
line method, each camera runs a people detection algorithm



independently. We use a state-of-the-art deep learning-based
detector (SSD) [12] for this. An intermediate output of this
stage results in a number of “detections” represented by
bounding boxes, each with an associated confidence level. In
the final step of the deep network, which is non-maximum
suppression (NMS), bounding boxes closely located with
significant overlap (computed as the Intersection over Union
or IoU ≥0.2) are suppressed into a single bounding box,
or detection. This output is equivalent to that of a non-
collaborative system.

Step 3: Collaborative People Detection The collaborating
cameras then send their respective inferences (both before and
after the NMS step) to their peer cameras. In this enhanced
mode, each camera first established correspondence between
its own and each of its collaborators’ inferences – the collab-
orator bounding boxes are transformed to the same coordinate
system as the reference camera’s using the homographic
matrix learned and pairs of bounding boxes are matched. To
operationalize this, we pose the matching between the two
sets of bounding boxes (per frame) as an assignment problem
and solve it using the Hungarian algorithm [9] with the cost
taken as the distance between the bottom-center coordinates of
the bounding boxes. Next, bounding boxes (across cameras)
falling close within the same areas are weighed higher in
confidence as they are detected by multiple, trusted cameras.

IV. REPUTATION-BASED ADVERSARY-RESILIENT
COLLABORATION

The mechanism described above exploits collaboration
across the different cameras, but implicitly assumes that the
information shared by each camera (the bounding box coor-
dinates and the associated histogram values) are correct. We
now extend this collaborative workflow to include a reputation-
based mechanism that is resilient to adversarial or malicious
behavior.

Step 4: Reputation update. Each camera now maintains a
pairwise score of its collaborators’ reputation which is based
on both (a) whether there exists correspondence between the
camera and a collaborator’s detections (i.e., whether pairs of
matched bounding boxes exist – see Step 3 in Section III)
and (b) the content within the matched bounding boxes are
similar. If a match is found in (a), then the similarity in
content within the boxes (i.e., criteria (b)) is measured as
the correlation between their color histograms. The reputation
score is updated per frame as: Rnew = Rold + I × C, where
I = 1 if a match is found, and is 0 otherwise, and C ∈ [−1, 1]
represents the correlation value.

If the normalized Rnew exceeds a specific threshold (TR),
then the reference camera considers this peer camera as
a valid, trustworthy collaborator for the current frame. If
Rnew < TR, the camera ignores the inputs from this suspi-
cious neighbor. As before, the reference camera combines its
own inferences, along with the bounding boxes from its set of
trustworthy collaborators, before executing the NMS step.

V. EVALUATION

A. Experiment Setting

We use the PETS 2009 dataset [5] which consists of video
feeds of 8 synchronous cameras in the outdoors, under varying
crowd flow and density settings. The individual cameras record
video at an approximate frame rate of 7 FPS and we consider
4 views (views 5-8) with considerable overlap (shown in
Figure 3) in our evaluations. The resolution was fixed at
720 × 576. We processed a total of 3180 frames (i.e., 795
per camera) and consider the camera pertaining to View 005
as the reference camera with respect to which we report
all our performance results. In this initial effort, we report
results for the people detection task. As such, we use the
manually annotated ground truth from [18] which provides 2D
annotations of 10 persons entering, passing through, staying
and exiting the pictured area. The annotations provide 2D
bounding boxes for each view and the IDs of persons are
consistent across the different views.

We build on the Single Shot Detector (SSD)1, proposed by
[12] for object detection with model trained on the PASCAL
VOC dataset [4] and focus only on the “person” object
detections. Unless otherwise stated, we run our evaluations
at input resolutions of 300 × 300 (full model) and 100 × 100
(compressed model).

B. Performance Metrics

We consider two accuracy metrics, Multiple Objects De-
tection Accuracy (MODA) [1] and F−score (in its usual
meaning). For a single camera, given N frames, we denote
the set of ground truth bounding boxes by G where Gi

n

represents the bounding box of the ith object in the nth

frame. Similarly, Di
n represents the matched bounding box

(see Section III) of the ith detection of the system in the
nth frame. We compute the overlap between every i as the
intersection over union (IoU) of the pixels of the two bounding
boxes Gi

n and Di
n . Any IoU less than 0.2 is considered a

poor match and is discarded, and the resulting set of matches
is denoted by Mmatched

n . Comparing Mmatched
n and Gn, the

MODA accounts for the missed detections and false alarms –
for a given frame n, if the number of missed detections (false
negatives) are fnn and the number of false alarms are fpn,
then MODA = 1− (α× fnn + β× fpn)/|Gn|. α and β are
weights to balance the importance between false negatives and
false positives. In this work, we set them to 0.5. We report the
average MODA and F−score over all N frames, in the next
subsection.

C. Preliminary Findings

Accuracy Improvement with Multiple Collaborating Cam-
eras: In Figure 4, we plot the MODA and F − score on the
y−axis for (1) a Baseline setting (no. of cameras=1), based
solely on the self-inference of the reference camera vs. (2) our
proposed collaborative system, combining inferences from 1,
2, and 3 more cooperating cameras (x−axis). As anticipated,

1Implementation available from https://github.com/weiliu89/caffe/tree/ssd



(a) Reference camera view (b) Collaborative camera 1 (c) Collaborative camera 2 (d) Collaborative camera 3

Fig. 3: Illustrative images from the PETS 2009 benchmarking dataset used in this work.

(a) Full model (b) Compressed model

Fig. 4: Accuracy of people detection with independent vs.
various collaborative camera settings.

we note that the addition of more cameras improves the
overall performance (F-Score increasing by 8%, to 75.5%
from a baseline of ∼ 68%) with the marginal improvement
diminishing with each additional increment (F-Score for 4
cameras is only 0.4% than that for 3 cameras), for both the
full (Figure 4a) and compressed (Figure 4b) models.

In most practical situations, video feeds are susceptible to
noise (e.g., low light conditions depending on the time of
the day, occlusion, etc.). To further understand the utility
of collaborative inferencing, we simulate noisy conditions
by systematically injecting estimation noise to one or more
collaborators. Specifically, we perturb the detected bound-
ing boxes of each collaborator, with progressively increasing
Gaussian noise (with zero mean and variance varied from 4 to
100). In Figure 5, we plot the performance variation against
noise (expressed in SNR, on the decreasing x−axis) for the
compressed model with and without a single collaborator. We
observe that the performance gains sustain and even at high
levels of perturbations (e.g., 9 db SNR ≈ 100 variance), the
combined inference with even a single collaborator performs
better (4% gain in F-score).

Detection of adversarial cameras: Next, we investigate
the ability of our reputation score in detecting adversarial
cameras in the presence of noise. We simulate an adversarial
camera which randomly chooses to hide a detection (or the
corresponding bounding box of a person detected) with a
probability, p, and perturbs the content of the detected box
with varying intensities (which is operationalized similar to
the simulation of noisy conditions in the previous analysis). In
Figure 6, we plot the variation of the reputation score (y−axis,

Fig. 5: Impact of noise on people counting accuracy for
(a) independent vs. (b) collaborative inference with a single
collaborator, with the compressed model.

(a) Original detections (b) Perturbed detections

Fig. 6: Variation of the reputation score of a single collaborator
with adversarial behavior for (a) randomly hiding detections
and (b) hiding detections and perturbing reported detections.

computed at the end of a 2 minute video trace) with increasing
value of p, for a single collaborator setting. We repeat the
analysis for both cases where the adversary (a) only hides
detections but does not perturb the content (Figure 6a) and (b)
hides as well as perturbs reported detections (Figure 6b) and
observe that: (a) the reputation score of a malicious camera
shows a sharper decrease with an increased likelihood of lying-
e.g., it drops over 20% when p = 0.5, and (b) the drop in
reputation is significantly larger (e.g., 70% drop for p = 0.5)
when the adversary perturbs the content with medium–to–high
intensity (i.e., 25-100 variance). Our results thus demonstrate
our ability to rapidly isolate and identify a malicious or
adversarial camera.

Resiliency to adversarial cameras: Finally, we evaluate
the enhanced reputation-based mechanism (detailed in Sec-
tion IV), whereby the reference camera ignores metadata from
collaborators with reputation scores below a specified TR
threshold. Figure 7 plots the resulting F-Score, as a function of
increasing probability of adversarial behavior p, for TR = 0.5
and different levels of perturbation intensity. The baseline
accuracy where the reference camera runs its own inference is
marked by the solid grey line (as previously seen in Figure 5).



(a) Original detections (b) Low Intensity Perturbations

(c) Medium Intensity Perturba-
tions

(d) High Intensity Perturbations,
Baseline F−score 52%

Fig. 7: Performance of independent vs. collaborative inference
under differing adversarial conditions.

We make the following key observations:
1) The counting accuracy remains high (F-Score ≈ 75%)

when an individual camera behaves outright maliciously
(p → 1) in the 4-camera collaboration setting con-
sidered, even when the reported detections are highly
perturbed (Figure 7d) – the performance gain in this case
is ≥ 20% (over a baseline of 52% F−score observed in
Figure 5).

2) As expected, the accuracy drops with an increasing
number of adversarial collaborators. Interestingly, even
if 2 of the 3 collaborating cameras are adversarial with
p = 0.5, the accuracy is still quite high (i.e., ≈75%, a
4-5% improvement over the independent inference base-
line). Of course, when all 3 collaborators are adversarial
with p = 0.5, the performance is worse by 2% than a
non-collaborative baseline (F-Score= 68%).

VI. RELATED WORK

Edge computing technologies are pushing frontiers in en-
abling real-time analytics systems for situation awareness.
Early examples of such systems have been described for
various video-based applications and services [15, 16, 17].
Very recently, multi-device cooperation, at the edge, has
piqued the interest of the research community (e.g., multi-
camera systems [8, 10, 14], cooperative UAV swarms [2, 3],
occupant authentication [6]) owing to its advantage of im-
proving accuracy and reducing overheads in dealing with
communication with a centralized cloud. As video processing
using deep learning pipelines is considered resource-intensive,
early efforts in enabling collaboration/cooperation between
multi-camera systems explore cost-efficiency without sacrifice
in accuracy. Qiu et al.[14] demonstrate the ability to track
vehicles across a heterogeneous camera networks consisting
of both fixed (e.g., surveillance) and mobile camera. By
selectively activating the mobile cameras only to resolve

ambiguities whilst much of the heavy-lifting of the video
analytics pipeline is performed on the cloud, they achieve
high accuracy without overly draining the resource-constrained
mobile devices. Further, Lee et al. [10] show that by estab-
lishing space-time relationships between views of co-located
cameras apriori, significant savings in bandwidth needs can be
achieved. They show that by selectively turning off (and on)
downstream cameras in the network depending on the mov-
ing targets detected by upstream cameras and the respective
likelihood of them appearing downstream, the amount of raw
footage collected and uploaded to the cloud (for processing)
can be reduced as much as by 238 times with a nominal miss
rate of 15%. More recently, Jain et al [8] discuss alternative
configurations of video analytics pipelines that are triggered by
peer cameras that share spatio-temporal correlations between
co-located cameras. The authors provide recommendations
for cost efficiency (e.g., by reducing redundant processing
by cameras sharing overlappnig views) and higher inference
accuracy (e.g., cross-camera model refinement).

VII. DISCUSSION

This work, introducing the benefits and challenges of ro-
bust collaboration in adversarial environments, needs to be
extended to tackle a variety of open issues.

A. Current Limitations
Homography-induced Errors: Our current scheme relies on
homographic matching, performed on the 2-D image frames
across cameras. In our current evaluation, we ignore estimation
errors that arise from such 2-D matching of real-world 3-D
coordinates. We will have to enhance the inferencing model, as
well as the reputation update mechanism, to explicitly account
for such location-dependent homographic matching errors.
Adaptive Reputation Threshold: Our current results are
based on a fixed reputation threshold: a camera incorporates
the object detection estimates from a peer camera only if
its reputation is ≥ TR(= 0.5). In practical deployments, we
anticipate the use of a more dynamic threshold, where the right
choice of TR might depend on a variety of deployment factors
(e.g., differences in camera fps rates, differences in fraction of
overlapping views) as well as contextual conditions (varying
crowd density patterns).
Additional Testbeds & Features: Our proposed framework
needs to be evaluated and refined under additional settings.
We are currently in the process of setting up a 20-30 node
distributed camera deployment across 2 buildings on our cam-
pus, to help establish performance benchmarks under more-
crowded, indoor settings. In addition, our current approach
of using histograms may be inadequate in school campuses,
where everyone is wearing similar uniforms, and we may need
additional features (e.g., observed motion vectors [11]) for
more accurate cross-camera matching.

B. Broader Future Work
Our work also needs to explore additional open issues

related to the broader problem of multi-device collaborative
IoT inferencing.



Autonomic Identification of Collaborative Devices: The
experiments presented here involved a small set of IoT devices
(cameras) that were set up a priori to perform collaborative
inferencing. In real-world environments, the set of IoT devices
may change dynamically, and the ideal set of collaborating
partners may change as well.Accordingly, we will need to
develop frameworks that allow one or more IoT devices to
first identify the set of devices that can benefit from such
collaborative inferencing.
Scalability and Performance Efficiency: We currently evalu-
ated collaboration among a maximum of 4 cameras. However,
significant innovations are needed to develop a framework
that both scales as the number of individual nodes increases
(e.g., when hundreds of cameras are deployed on a university
campus) and that is able to perform such adversary identifica-
tion and inferencing adaptation with low processing overhead.
In particular, to enable the adoption of a distributed reputa-
tion framework, we are contemplating the use of lightweight
cryptographic techniques that allow an individual camera’s
operational features (e.g., the histograms of the objects that it
detects) to be shared in a tamper-proof fashion across multiple
nodes without compromising real time processing of video
streams.

VIII. CONCLUSION

In this work, using multiple cameras as an exemplar, we
have introduced the notion of real-time collaboration for
ML-based inferencing among resource-limited IoT devices.
Such collaboration provides several benefits, such as improved
accuracy and greater tolerance of noise on individual devices.
However, the drawback of such collaboration is greater suscep-
tibility to inadvertent or deliberate failures or false information
injected by erroneous or malicious nodes. Through empirical
results on the PETS dataset, we show that such adversarial
operation can cause the accuracy of camera-based people
counting to degrade appreciably (by more than 20%), and then
demonstrate that a feature-based dynamic reputation mech-
anism is resilient to such adversarial attacks. We anticipate
that our work will seed greater interest in the community on
developing ML-based mechanisms, for both training and infer-
encing, that take advantage of the spatiotemporal correlations
among different nodes of uncertain fidelity.
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