
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2015

Mining patterns of unsatisfiable constraints to detect infeasible Mining patterns of unsatisfiable constraints to detect infeasible

paths paths

Sun DING

Hee Beng Kuan TAN

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation Citation
DING, Sun; TAN, Hee Beng Kuan; and SHAR, Lwin Khin. Mining patterns of unsatisfiable constraints to
detect infeasible paths. (2015). Proceedings of the 2015 IEEE/ACM 10th International Workshop on
Automation of Software Test, Florence, Italy, May 23-24. 65-69.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4779

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mining Patterns of Unsatisfiable Constraints to Detect
Infeasible Paths

Sun Ding, Hee Beng Kuan Tan
School of Electrical & Electronic Engineering
Nanyang Technological University, Singapore

{dingsun, ibktan}@e.ntu.edu.sg

Lwin Khin Shar
Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg
lwinkhin.shar@uni.lu

Abstract— Detection of infeasible paths is required in many

areas including test coverage analysis, test case generation,
security vulnerability analysis, etc. Existing approaches typically
use static analysis coupled with symbolic evaluation, heuristics,
or path-pattern analysis. This paper is related to these
approaches but with a different objective. It is to analyze code of
real systems to build patterns of unsatisfiable constraints in
infeasible paths. The resulting patterns can be used to detect
infeasible paths without the use of constraint solver and
evaluation of function calls involved, thus improving scalability.
The patterns can be built gradually. Evaluation of the proposed
approach shows promising results.

Keywords— Infeasible paths; pattern mining; symbolic
evaluation; static analysis; structural testing

I. INTRODUCTION
An infeasible path is a path in a control flow graph (CFG)

that cannot be exercised by any input values. The effectiveness
and precision of structured testing techniques could be greatly
improved if most of the infeasible paths are detected and
automatically excluded. It has been widely discussed the
importance of detecting infeasible paths when using structural
testing criteria and its acute impact on definition-use dataflow
testing [1]. A comprehensive survey of test coverage [2] also
pointed out the adverse impact of the inability to detect
infeasible statements, branches and paths on the precision of
structural testing criteria. In modern test case generators, which
generate test cases based on path-oriented criteria through
combining static and dynamic analysis [3, 4], the detection of
infeasible paths without extensive symbolic evaluation would
help avoid significant waste of time spent on such paths. The
detection of infeasible paths also plays an important role in
other applications of program analysis such as vulnerability
detection [5].

There are several ways to detect infeasible paths. Among
them, the approach based on constraint propagation offers high
precision and is commonly used [5]. This approach forms a
path constraint by joining predicates along a path, and uses a
constraint solver to validate the path constraint. A path’s
infeasibility is determined by the satisfiability of its path
constraint [3, 4]. However these approaches are expensive. And
due to widespread undecidable constraints [5], these
approaches cannot determine the infeasibility of all paths fully
automatically. There are also several approaches that apply
heuristics or pre-defined code patterns [6] to enhance the

efficiency of constraint propagation. But because their
heuristics or patterns are all fixed, these approaches would
bring in inaccuracy when dealing with complex programs.

In this paper, we propose an approach that analyzes code of
real systems to mine patterns of infeasible path constraints. Our
approach extracts minimal sets of unsatisfiable predicates from
each infeasible path, generalizes the predicates into patterns.
The resulting patterns are then used to detect infeasible paths
without the use of constraint solver and evaluation of function
calls involved. The major contributions in this paper include:

x A novel approach to mine patterns of infeasible paths
such that these patterns can detect infeasible paths
without the use of constraint solvers.

x The proposed approach mines patterns of infeasible
path constraints that have not been explored before.
As the mined patterns are not predefined, they can be
built gradually based on input paths. Different patterns
can be built for code developed using different
programming language, executable code and different
lifecycle maturity or different intention (e.g.: malware,
obfuscated code).

x A prototype tool that implements the above approach.
x A case study that shows promising preliminary results.

II. PATTERNS IN INFEASIBLE PATH CONSTRAINTS

A. Basic Terms
An infeasible path is a path in a CFG that cannot be

exercised by any external inputs. A path constraint refers to the
constraint of a path that is expressed as a conjunction of
predicates in which all the derived variables are substituted
with their transitive definitions. Additionally, in this paper,
predicates always refer to non-compounded predicates. Two
predicates are mutually dependent if they share common
variables. A set of predicates in a path is called a set of
dependent predicates if each predicate is dependent on
another predicate in the same set. If for a path, there is a set of
dependent predicates which recursively includes all the
dependent predicates, then we call this set as a maximal set of
dependent predicates. There could be several mutual-
exclusive maximal sets of dependent predicates along a path.

Recent studies [5, 6] discover that a path being infeasible is
usually because its path constraint contains one unsatisfiable
sub-constraint that is similar to an unsatisfiable real constraint
over boolean/integer/real domains. Based on this finding, we

propose a novel approach to model such unsatisfiable sub-
constraints. In the following, for convenience, we shall address
these sub-constraints as unsatisfiable constraints.

Let P be a set of predicates in a path. An expression e is a
basic expression if all the predicates in P contain e. A basic
expression e’ is the maximal basic expression (max-basic
expression) if e’ contains all of other basic expressions in P
and there is no other basic expression e’’ that contains e’. For
example: { p1 =(x1 + x2 > 0), p2 =(x1 + x2 < 0), p3 =(x1 + x2 + x3 >
0)} is a set of predicates; (x1 + x2) is an basic expression as p1,
p2 and p3 all contain it. But (x1 + x2 + x3) is not a basic
expression because p1 and p2 do not contain it.

B. Modelling
In order to model unsatisfiable constraints in infeasible

paths as similar unsatisfiable boolean/integer/real constraints,
we replace max-basic expressions that do not contain side-
effect function-calls (functions that modify its execution
context) depending on their types as follows:

1) Boolean types: by free Boolean variables
2) Integer types: by free integer variables
3) Other types: by free real variables.
We call the above replacement a maximal basic

expression to variable transformation (mBexpToVar
transformation). For example, applying mBexpToVar
transformation to the set of predicates:
{ p1=(objA.f(objB.g(objC.h(z))) ≡ 1) ,

p2=(objA.f(objB.g(objC.h(z)))!= 1) },
we replace objA.f(objB.g(objC.h(z)) by a real variable x and we
get { p1 =(x ≡ 1), p2=(x != 1)}.

We model patterns of unsatisfiable constraints in an
infeasible path constraint u as a set of jointly unsatisfiable
predicates (if exists) through two relations. The first relation is
called unsatisfiabilty-based abstraction relation, denoted by
). It maps a path constraint u to a maximal set of dependent
predicates or a singleton of constant predicate, more
specifically:

x u)v � u is a path constraint; v is a maximal set of
dependent predicates or a singleton of constant
predicate in u.

This abstraction relationship is defined to mine the potentiality
jointly unsatisfiable set of predicates or potentially
unstaisfiable predicate in path constraints. For example, if there
is a path constraint u = (n + m ≡1) � (n – m ≡12) � (7a + b≡0),
and a set of dependent predicates v = { p1=(n + m ≡1), p2=(n –
m ≡12)}, we shall have u)v.

The second relation is called unstaisfiabilty-based
similarity relation, denoted by 4. It maps v which is a
maximal set of dependent predicates or a singleton of constant
predicate to a set of jointly unsatisfiable boolean/integer/real
predicates (if exists) in two steps: (1) apply bMexpToVar
transformation to v; (2) extract the minimal set of unsatisfiable
predicates from the above result. More specifically:

x v4w � suppose s is a set of predicates returned from
applying bMexpToVar transformation to v; s should
be a set of jointly unsatisfiable boolean/integer/real

predicates; then w is the minimal set of unsatisfiable
predicates in s.

For example, { p1=(n + m > 1), p2=(n + m <1), p3=(z - y > 0)}
4{ pa=(x1>1), pb=(x1 < 1)}.

Finally, the composition : of) and 4, that is : =)q4,
represents the relation between path constraints and the
minimal sets of jointly unsatisfiable predicates. For example,
for path constraint u = (objA.f(objX.g(objY.h(z))) ≡ 1) �
((objA.f(objX.g(objY.h(z)))!= 1) � (n + m ≡ 1) with all variables
over real domains, and two sets of real predicates v and w,
where:

v={ p1=(objA.f(objX.g(objY.h(z))) ≡ 1,
 p2=(objA.f(objX.g(objY.h(z)))!=1)},
w={pa=(x≡ 1), pb=(x != 1)},

there are the relationships: u)v and v4w. Hence, we conclude
that u : w. Therefore, w={pa=(x≡ 1), pb=(x != 1)} is a set of
jointly unsatisfiable real predicates extracted from path
constraint u to model a pattern of unsatisfiable constraint in u.

III. MINING PATTERNS
The input of the mining process is a set of paths extracted

from the control flow graphs of real systems, denoted as Setpath.
The output of the mining process is a set of patterns of
unsatisfiable constraints extracted from infeasible paths among
Setpath, denoted as Setpattern. For each path in Setpath, the path
constraint u is extracted and processed with three steps that
show in Figure 1. The resulting sets of predicates from the last
step are then stored in the set Setpattern.

Input: Setpath, a set of paths
Output: Setpattern, a set of patterns
Step (1) Compute the set s1={v °u)v}.
Step (2) Compute the set s2={w ° u)v and v4w}
Step (3) Generalize patterns from s2, and store in Setpattern

Fig. 1. Process of pattern mining

In Step 1, for each input path, its path constraint u is
extracted out first. Then we calculate the corresponding
unsatisfiabilty-based abstraction relation. More specifically, the
set s1 = {v| u)v} is constructed from the following two sub-
steps: (i) p: p u, if p is a constant predicate, include {p} in s1.
(ii) v: v u, v is a maximal set of dependent predicates in u, if
|v| >1 , then include {v} in s1.

In Step 2, v: v s1, if |v| ≡ 1, we evaluate the predicate in v,
if it is not satisfiable, we define w =v and include {w} in a set s2;
if |v| > 1, we apply bMexpToVar transformation to the
predicates in v. Then, we submit the resulting set of predicates
to a constraint solver (for example Microsoft Z3) that can find
the core set w of unsatisfiable predicates if these predicates are
jointly unsatisfiable. If |w|>1, we include {w} in s2.

In Step 3, w: w s2, we generalize v into a pattern with 3
sub-steps: (i) p: p w, we first transform p by expressing it as:
exp relop c, where relop is a relational operator, c is a constant
and exp is an expression that cannot be expressed as another
expression added with a nonzero constant; (ii) next, we replace
each real variable in the predicates in w by an ordered real
variable Ri (i ≥ 1), such that Ri+1 is only used for replacement

when Ri has been used. Likewise, we replace each
integer/Boolean variable in the predicates in w by
integer/Boolean variables in the same manner; (iii) at last, if w
is a set of predicates with real variables, for each nonzero
numerical constant in the predicates in w, we replace it with a
constant symbol selected from the sequence (….., d3 , d2 , d1, 0,
c1 , c2 , c3,….) such that:

1) Positive and negative constants are replaced by ci and
dj (i, j ≥ 1) respectively.

2) ci+1 is selected only if ci has been selected, likewise,
dj+1 is only selected only if dj has been selected used.

3) Among the constants in the predicates in w, the
symbols that replace the original constants preserve
the order of the original constants.

If w is a set of predicates with only integer variables, we
replace each real variable in the predicates in w by an ordered
real variable Ii (i ≥ 1), such that Ii+1 is only used for replacement
when Ii has been used. We replace the constants in the
predicates in w with constant symbols selected from the
sequence (….., n3 , n2 , n1, 0, m1 , m2 , m3,….) that stand for
ordered integer constants in the same manner. If there are two
original integer constants with the difference of one, the
smaller one is replaced by a constant symbol taken from the
above sequence, say n1, and the bigger one is expressed as n1+1.
This is to deal with the fact that there is no integer in between
of two integer constants with the difference of one. The latter
may affect the satisfiability of the predicates in w jointly.

After the above 3 steps, we have mapped an unsatisfiable
path constraint to a pattern. Finally, we include the resulting
pattern in Setpattern if it is not included yet.

IV. THE APPLICATION
The patterns of unsatisfiable constraints mined from the

proposed approach can be used to detect infeasible paths
efficiently. One needs to prepare patterns in advance and store
them in Setpattern. Then to identify whether a given path is
infeasible, we perform the following steps:

1) Extract the path constraint, denoted by u.
2) Apply the Step 1 of the pattern mining process on u

to have s1={v °u)v}
3) Skip the Step 2 of the pattern mining process.
4) Apply Step 3 of the pattern mining process to have a

set of generalized predicates ss1={v’°u)v’}.
5) If ss1 Setpattern, it is a successful. Then u is

concluded as unsatisfiable and the corresponding path
is concluded as infeasible.

It can be seen from the above steps, the use of expensive
constraint solving is avoided, hence, improving the scalability
in detecting infeasible paths.

Detection of infeasible paths is required in many areas and
tools. The proposed approach can be applied in most of them in
which perfect precision is not essential. These include test
cases generation to avoid the time and effort spending on
analyzing infeasible paths, coverage analysis to compute the
coverage for a test suite by excluding infeasible paths, and
software security vulnerability detection to exclude the
consideration of infeasible paths.

V. EVALUATION
We conducted a case study on a set of Java programs to

assess the performance of the proposed approach. We
implemented a prototype system called InfiPatternMinerJ and
randomly selected Java systems from Sourceforge [7] for this
case study.

A. Implementation
The prototype system InfiPatternMinerJ has two sub-

systems: (i) Pattern mining: mine patterns of unstaisfiable
constraints using the proposed approach. (ii) Infeasible path
detection: Detect infeasible paths through matching with
existing patterns. The second subsystem is to validate the
accuracy of applying the proposed approach to detect infeasible
paths.

Pattern mining: the prototype system implements the
proposed mining process and mines patterns from training
systems. More specifically, given a training system there are
two sub-steps: (a) Prepare training paths: For each root
procedure – methods without any caller, an inter-procedural
CFG will be generated. InfiPatternMinerJ then extracts paths
from each control flow graph. Based on recent studies [8, 9],
the basis path criteria [10] could generate a limited-sized set of
paths to exhibit a large portion of correlations among
predicates. Therefore, to mine patterns as many as possible, and
at the same time, to minimize the potential path explosion risk,
InfiPatternMineJ samples a basis path set over each inter-
procedural CFG for pattern mining. (b) Mining: The basis
inter-procedural paths are stored in a set Setpath.
InfiPatternMineJ performs the mining process to find out all
the patterns from the input paths. The output from
InfiPatternMineJ is a set of patterns stored in a set Setpattern.
Additionally, to minimize the inaccuracy due to the existence
of external dependency (e.g. third party library functions,
native functions), InfiPatternMineJ provides an interface for
users to document the semantics of these functions on the fly.

Infeasible path detection: the prototype system implements
the application in Section IV that uses patterns to detect
infeasible paths without using constraining solvers.
InfiPatternMinerJ later assesses the detection accuracy by
validating each detected infeasible paths against a constraint
solver—Z3.

In this case study, seven Java programs from different
application domains are randomly picked as independent test
cases: Dagger-0.9 (a dependency injection framework), Jgraph-
5.8.1 (a graph visualization component), Jsmooth-0.9 (a
executable wrapper), JasperReports-5.5 (a reporting engine),
Xerces-Java-1.4 (an XML parse), JCM-1.0 (a math library) and
JHotDraw-7.6 (a GUI framework). The first five systems are
used as the training set, that is, InfiPatternMinerJ mines
patterns from those systems. The remaining two systems are
used as the test set, that is, using the discovered patterns from
the training systems, InfiPatternMinerJ detects infeasible paths
in those two systems.

B. Experiment results
For the 5 systems used for mining patterns, after excluding

empty functions, there are 3317 inter-procedural CFGs and
27866 inter-procedural basis paths in total. InfiPatternMinerJ
applied the proposed mining procedure on the input paths and
gradually found 19 patterns: 4 patterns are cases that the
corresponding paths containing a singleton of unsatisfiable
constant predicate; 15 patterns are cases that the corresponding
paths contain a set of unsatisfiably joint predicates. These 19
patterns are displayed by the 2nd column and the first 19 rows
in Table IV. An example of pattern mining is given by Figure 2.
This piece of code is simplified from a function in JHotDraw.
We take a path as an example, that is path=(entry,
1,2,3,4,5,6,end). After applying the mining process, a pattern of
unsatisfiable constraints is found: { p1=(I1 > c2), p2=(I1 < c1),
p3=(c2-c1<1)}.

For the rest 2 systems used for infeasible path detection,
5000 paths are randomly selected from each. InfiPatternMinerJ
concludes each path’s infeasibility through pattern matching
against the existing 19 patterns. The identified infeasible paths
are re-evaluated with a full symbolic evaluation (assisted with
manual effort) to assess the detection accuracy.

We applied a set of common measurement for the
assessment: true positive (tp), false positive(fp), false negative
(fn), true negative (tn), probability of detection (pd), probability
of false alarm (pf), and precision (pr) [9]. Table III shows the
result of this assessment. For the two systems,
InfiPatternMinerJ has no false positives generated, but causes
76 false negatives. The corresponding value of pr, pf, pd is 1, 0,
94.99% respectively. This result shows our approach has a high
accuracy in practice. Table 5 further shows the distribution of
each pattern over the two test systems. We also investigate the
76 false negative cases, and found that these cases would form
two new patterns: (a) {p1=(x1=0), p2=(x1<0)} ; (b) {p1=(x1=c1),
{p2=(x1≥c2)}.

Interestingly, we also found that the training systems and
the testing systems are from different application a domain,
which helps prove that the proposed approach is a general
reusable solution to detect infeasible paths with high coverage.

Figure 3 shows an example that uses the extracted patterns
to detect an infeasible path. The target path is
path=(a1,a2,a3,b1,b3,b4,b5,b8), which is extracted from a
function in JCM. Based on the procedure in Section IV,
InfiPatternMinerJ generalizes a set of predicates from the path.
By comparing this set of predicates with all the existing 19
patterns, a successful match is found. Therefore,
InfiPatternMinerJ concludes the target path as infeasible. Use
our approach to detect infeasible path does not require using
constraint solvers at all. This helps enhance the detection
efficiency when comparing with other common approaches.
For the same, if we use the Marple [5] to test the infeasibility of
the target path, it will timeout because its constraint solver
cannot handle the function Math.log() well.

C. Threats to validity
Firstly, in the implementation, we did not interpret the

semantics of Java string functions. Therefore,

InfiPatternMinerJ is not able to fully support systems with
many string functions currently. Meanwhile, InfiPatternMinerJ
provides an interface for users to define behaviors for native
functions. The user definition may bring in inaccuracy.
Secondly, in the experiment, we do not consider the inaccuracy
caused by potential floating-point rounding errors. Therefore,
InfiPatternMinerJ currently also cannot precisely handle
systems with many floating-point computations. Thirdly, all
infeasible paths detected in this paper refer to cases from
single-threaded programs. We have not extended
InfiPatternMinerJ to support programs with many multi-
threading behaviors.

Fig. 2. An example of pattern mining

TABLE I. ACCURACY ASSESSMENT OF INFIPATTERNMINERJ

System tp fp fn tn Pd Pf Pr
JCM 717 0 45 4238 94.10% 0 1

JHotdraw 814 0 31 4155 96.33% 0 1
total 1531 0 76 8393 95.27% 0 1

Fig. 3. An example of using patterns to detect infeasible path

TABLE II. DISTRIBUTION OF PATTERNS OVER THE 2 TEST SYSTEMS

Pattern ID Patterns of unsatisfiable constraints JCM JHotDraw
1 {c1 ≠c2} 150 211
2 {c1 > c2} 0 3
3 {TRUE ≠ TRUE} 0 0
4 {FALSE =TRUE} 51 47
5 {R1≥R2} 0 14
6 {R1≥c1 , R1 < c1} 1 0
7 { R1= c1, R1> c1} 1 1
8 { R1≥ c1, R1< c1} 23 0
9 { R1≥ c1, R1≤ c1, R1≠0} 0 0

10 { R1≥ c2, R1≤ c1} 0 0
11 { R1 > c1, R1< c1} 0 103
12 { R1 = c1, R1 ≠ c1} 182 0
13 { R1 > c2, R1≤ c1} 7 0
14 { R1 = c2, R1≤ c1} 0 0
15 { I1 ≥ c2, I1≤ c1} 0 69
16 { I1= c2, I1=c1} 51 1
17 { I1 > c1, I1< c2, c2 - c1<1} 4 175
18 { I1 = c1, I1 ≠ c1} 247 190
19 { R1= R2, R1= R3, R2 ≠ R3} 0 0
20 (new) { R1 = c1, R1 < c1} 0 31
21 (new) { R1 = c1, R1 > c2} 45 0

VI. RELATED WORK
There are several ways to detect infeasible paths. But the

most two common approaches are data flow analysis and
constraint propagation. The first common approach applies
data flow analysis [11]. These approaches are often useful for
finding a wide variety of infeasible paths. However, due its
path-insensitiveness, these approaches do not have high
accuracy. The second common type of approaches is based on
constraint propagation. This type of approaches usually detects
infeasible paths through constraint propagation along paths via
symbolic evaluation [1, 3, 4]. These approaches often extract
and propagate the constraint that an input must satisfy for
exercising a path as a symbolic expression. The path is
infeasible if the constraint is unsatisfiable. This typically
requires the help of constraint solvers. However, in general, it
is intractable to solve a constraint. The advantage of such an
approach is its higher precision. However, due to the large
search space in both path exploration and constraint solving, it
tends not to scale to large systems. This type of approaches is
commonly used to generate path-based test cases [3, 4].

Other than above, one could also use light-weighted
heuristics to identify infeasible paths among correlated
branches [6, 8, 9]. However the heuristics or patterns in these
works are all fixed. It easily yields many false-positive cases
when applying these approaches on complex real systems.

The proposed approach in this paper has a different
objective. It proposes an approach for mining patterns of
infeasible path constraints from code such that these patterns
can be used to detect infeasible paths without calling constraint
solvers. Comparing with existing works, the novelties of the
proposed approach are: (1) Applying the proposed patterns,
infeasible paths are detected neither using constraint solvers
nor evaluating function calls totally. Hence, detecting
infeasible paths is scalable; (2) Existing heuristics and patterns
used to detect infeasible paths are pre-defined through
observation. This paper proposes a systematic approach for

mining patterns of infeasible path constraints dynamically that
has not been explored before; (3) the patterns for infeasible
path constraint can vary but they can be collected gradually,
and as the more patterns are collected, the accuracy is
improved. Further, patterns can be collected from code
developed using different programming language, executable
code and different lifecycle maturity or different intention (e.g.,
malware, obfuscated code).

VII. CONCLUSION
In this paper, we propose a novel approach that mines

patterns of infeasible paths. Each pattern is either a singleton of
an unsatisfiable predicate or a set of unsatisfiably joint
predicates. Based on the given paths, the proposed approach is
able to find patterns gradually and automatically. The mined
patterns can be used to detect infeasible paths without using
any constraint solvers. Since the execution of constraint solvers
is computationally expensive, the proposed mining procedure
improves the scalability of infeasible paths detection and
related applications. A case study is carried out to evaluate the
proposed approach. With 5 training systems, the proposed
approach found 19 patterns of infeasible paths. When using
these patterns to detect infeasible paths on another two systems,
the experiment results prove the accuracy and scalability of the
proposed approach.

REFERENCE

[1] R. Bodic, R. Gupta, and M. L. Soffa, "Refining data flow
information using infeasible paths," SIGSOFT Softw. Eng. Notes,
vol. 22, pp. 361-377, 1997.

[2] H. Zhu, P. A. V. Hall, and J. H. R. May, "Software unit test
coverage and adequacy," ACM Comput. Surv., vol. 29, pp. 366-
427, 1997.

[3] K. Sen, D. Marinov, and G. Agha, "CUTE: a concolic unit
testing engine for C," SIGSOFT Softw. Eng. Notes, vol. 30, pp.
263-272, 2005.

[4] N. Tillmann and J. D. Halleux, "Pex: white box test generation
for .NET," presented at the Proceedings of the 2nd international
conference on Tests and proofs, Prato, Italy, 2008.

[5] W. Le and M. L. Soffa, "Marple: Detecting faults in path
segments using automatically generated analyses," ACM
Transactions on Software Engineering and Methodology
(TOSEM), vol. 22, p. 18, 2013.

[6] S. Ding and H. B. K. Tan, "Detection of Infeasible Paths:
Approaches and Challenges," in Evaluation of Novel Approaches
to Software Engineering, ed: Springer, 2013, pp. 64-78.

[7] (2015). Sourceforge. Available: http://sourceforge.net/
[8] M. N. Ngo and H. B. K. Tan, "Heuristics-based infeasible path

detection for dynamic test data generation," Inf. Softw. Technol.,
vol. 50, pp. 641-655, 2008.

[9] S. Ding, H. Zhang, and H. Beng Kuan Tan, "Detecting infeasible
branches based on code patterns," in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week-IEEE Conference on, 2014, pp. 74-83.

[10] J. Poole. (1995, A Method to Determine a Basis Set of Paths to
Perform Program Testing. Available:
http://hissa.nist.gov/publications/nistir5737/

[11] J. Gustafsson, "Eliminating annotations by automatic flow
analysis of real-time programs," presented at the Proceedings of
the Seventh International Conference on Real-Time Systems and
Applications, 2000.

	Mining patterns of unsatisfiable constraints to detect infeasible paths
	Citation

	Mining Patterns of Unsatisfiable Constraints to Detect Infeasible Paths.pdf

