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Abstract— Detection of infeasible paths is required in many 

areas including test coverage analysis, test case generation, 
security vulnerability analysis, etc. Existing approaches typically 
use static analysis coupled with symbolic evaluation, heuristics, 
or path-pattern analysis. This paper is related to these 
approaches but with a different objective. It is to analyze code of 
real systems to build patterns of unsatisfiable constraints in 
infeasible paths. The resulting patterns can be used to detect 
infeasible paths without the use of constraint solver and 
evaluation of function calls involved, thus improving scalability. 
The patterns can be built gradually. Evaluation of the proposed 
approach shows promising results. 

Keywords— Infeasible paths; pattern mining; symbolic 
evaluation; static analysis; structural testing 

I. INTRODUCTION 
An infeasible path is a path in a control flow graph (CFG) 

that cannot be exercised by any input values. The effectiveness 
and precision of structured testing techniques could be greatly 
improved if most of the infeasible paths are detected and 
automatically excluded. It has been widely discussed the 
importance of detecting infeasible paths when using structural 
testing criteria and its acute impact on definition-use dataflow 
testing [1]. A comprehensive survey of test coverage [2] also 
pointed out the adverse impact of the inability to detect 
infeasible statements, branches and paths on the precision of 
structural testing criteria. In modern test case generators, which 
generate test cases based on path-oriented criteria through 
combining static and dynamic analysis [3, 4], the detection of 
infeasible paths without extensive symbolic evaluation would 
help avoid significant waste of time spent on such paths. The 
detection of infeasible paths also plays an important role in 
other applications of program analysis such as vulnerability 
detection [5]. 

There are several ways to detect infeasible paths. Among 
them, the approach based on constraint propagation offers high 
precision and is commonly used [5].  This approach forms a 
path constraint by joining predicates along a path, and uses a 
constraint solver to validate the path constraint. A path’s 
infeasibility is determined by the satisfiability of its path 
constraint [3, 4]. However these approaches are expensive. And 
due to widespread undecidable constraints [5], these 
approaches cannot determine the infeasibility of all paths fully 
automatically. There are also several approaches that apply 
heuristics or pre-defined code patterns [6] to enhance the 

efficiency of constraint propagation. But because their 
heuristics or patterns are all fixed, these approaches would 
bring in inaccuracy when dealing with complex programs. 

In this paper, we propose an approach that analyzes code of 
real systems to mine patterns of infeasible path constraints. Our 
approach extracts minimal sets of unsatisfiable predicates from 
each infeasible path, generalizes the predicates into patterns. 
The resulting patterns are then used to detect infeasible paths 
without the use of constraint solver and evaluation of function 
calls involved.  The major contributions in this paper include: 

x A novel approach to mine patterns of infeasible paths 
such that these patterns can detect infeasible paths 
without the use of constraint solvers.  

x The proposed approach mines patterns of infeasible 
path constraints that have not been explored before. 
As the mined patterns are not predefined, they can be 
built gradually based on input paths. Different patterns 
can be built for code developed using different 
programming language, executable code and different 
lifecycle maturity or different intention (e.g.: malware, 
obfuscated code). 

x A prototype tool that implements the above approach. 
x A case study that shows promising preliminary results.     

II. PATTERNS IN INFEASIBLE PATH CONSTRAINTS 

A. Basic Terms 
An infeasible path is a path in a CFG that cannot be 

exercised by any external inputs. A path constraint refers to the 
constraint of a path that is expressed as a conjunction of 
predicates in which all the derived variables are substituted 
with their transitive definitions. Additionally, in this paper, 
predicates always refer to non-compounded predicates.  Two 
predicates are mutually dependent if they share common 
variables. A set of predicates in a path is called a set of 
dependent predicates if each predicate is dependent on 
another predicate in the same set. If for a path, there is a set of 
dependent predicates which recursively includes all the 
dependent predicates, then we call this set as a maximal set of 
dependent predicates. There could be several mutual-
exclusive maximal sets of dependent predicates along a path. 

Recent studies [5, 6] discover that a path being infeasible is 
usually because its path constraint contains one unsatisfiable 
sub-constraint that is similar to an unsatisfiable real constraint 
over boolean/integer/real domains. Based on this finding, we 



propose a novel approach to model such unsatisfiable sub-
constraints. In the following, for convenience, we shall address 
these sub-constraints as unsatisfiable constraints. 

Let P be a set of predicates in a path. An expression e is a 
basic expression if all the predicates in P contain e. A basic 
expression e’ is the maximal basic expression (max-basic 
expression) if e’ contains all of other basic expressions in P 
and there is no other basic expression e’’ that contains e’. For 
example: { p1 =(x1 + x2 > 0), p2 =( x1 + x2  < 0), p3 =(x1 + x2 + x3 > 
0)} is a set of predicates; (x1 + x2) is an basic expression as p1, 
p2 and p3 all contain it. But (x1 + x2 + x3) is not a basic 
expression because p1 and p2 do not contain it.  

B. Modelling 
In order to model unsatisfiable constraints in infeasible 

paths as similar unsatisfiable boolean/integer/real constraints, 
we replace max-basic expressions that do not contain side-
effect function-calls (functions that modify its execution 
context) depending on their types as follows: 

1) Boolean types: by free Boolean variables 
2) Integer types: by free integer variables 
3) Other types: by free real variables. 
We call the above replacement a maximal basic 

expression to variable transformation (mBexpToVar 
transformation). For example, applying mBexpToVar 
transformation to the set of predicates:  
{    p1=(objA.f(objB.g(objC.h(z)))  ≡  1) ,  

p2=(objA.f( objB.g( objC.h(z)))!= 1) },  
we replace objA.f(objB.g(objC.h(z)) by a real variable x and we 
get  { p1 =(x ≡ 1), p2=(x != 1)}. 

We model patterns of unsatisfiable constraints in an 
infeasible path constraint u as a set of jointly unsatisfiable 
predicates (if exists) through two relations. The first relation is 
called unsatisfiabilty-based abstraction relation, denoted by 
). It maps a path constraint u to a maximal set of dependent 
predicates or a singleton of constant predicate, more 
specifically: 

x u)v � u is a path constraint; v is a maximal set of 
dependent predicates or a singleton of constant 
predicate in u. 

This abstraction relationship is defined to mine the potentiality 
jointly unsatisfiable set of predicates or potentially 
unstaisfiable predicate in path constraints. For example, if there 
is a path constraint u = (n + m ≡1) � (n – m ≡12) � (7a + b≡0), 
and a set of dependent predicates v = { p1=(n + m ≡1), p2=(n – 
m ≡12)}, we shall have u)v. 

The second relation is called unstaisfiabilty-based 
similarity relation, denoted by 4. It maps v which is a 
maximal set of dependent predicates or a singleton of constant 
predicate to a set of jointly unsatisfiable boolean/integer/real 
predicates (if exists) in two steps: (1) apply bMexpToVar 
transformation to v; (2) extract the minimal set of unsatisfiable 
predicates from the above result. More specifically: 

x v4w � suppose s is a set of predicates returned from 
applying bMexpToVar transformation to v; s should 
be a set of jointly unsatisfiable boolean/integer/real 

predicates; then w is the minimal set of unsatisfiable 
predicates in s. 

For example, { p1=(n + m > 1), p2=(n + m <1), p3=(z - y > 0)} 
4{ pa=(x1>1), pb=(x1 < 1)}. 

Finally, the composition : of ) and 4, that is : = )q4, 
represents the relation between path constraints and the 
minimal sets of jointly unsatisfiable predicates. For example, 
for path constraint u = (objA.f(objX.g(objY.h(z))) ≡ 1) � 
((objA.f(objX.g(objY.h(z)))!= 1) � (n + m ≡ 1) with all variables 
over real domains, and two sets of real predicates v and w, 
where:  

v={ p1=(objA.f(objX.g(objY.h(z))) ≡ 1,         
       p2=(objA.f(objX.g(objY.h(z)))!=1)},  
w={pa=( x≡ 1), pb=( x != 1)},  

there are the relationships: u)v and  v4w. Hence, we conclude 
that u : w. Therefore, w={pa=( x≡ 1), pb=( x != 1)} is a set of 
jointly unsatisfiable real predicates extracted from path 
constraint u to model a pattern of unsatisfiable constraint in u.  

III. MINING PATTERNS 
The input of the mining process is a set of paths extracted 

from the control flow graphs of real systems, denoted as Setpath. 
The output of the mining process is a set of patterns of 
unsatisfiable constraints extracted from infeasible paths among 
Setpath, denoted as Setpattern. For each path in Setpath, the path 
constraint u is extracted and processed with three steps that 
show in Figure 1. The resulting sets of predicates from the last 
step are then stored in the set Setpattern.   

 

Input:     Setpath,    a set of paths 
Output:   Setpattern, a set of patterns 
Step (1) Compute the set s1={v °u)v}.  
Step (2) Compute the set s2={w ° u)v and v4w} 
Step (3) Generalize patterns from s2, and store in Setpattern 

Fig. 1. Process of pattern mining 

In Step 1, for each input path, its path constraint u is 
extracted out first. Then we calculate the corresponding 
unsatisfiabilty-based abstraction relation. More specifically, the 
set s1 = {v| u)v} is constructed from the following two sub-
steps: (i) p: p  u, if p is a constant predicate, include {p} in s1. 
(ii)  v: v  u, v is a maximal set of dependent predicates in u, if 
|v| >1 , then include {v} in s1.   

In Step 2, v: v  s1, if |v| ≡ 1, we evaluate the predicate in v, 
if it is not satisfiable, we define w =v and include {w} in a set s2; 
if |v| > 1, we apply bMexpToVar transformation to the 
predicates in v. Then, we submit the resulting set of predicates 
to a constraint solver (for example Microsoft Z3) that can find 
the core set w of unsatisfiable predicates if these predicates are 
jointly unsatisfiable. If |w|>1, we include {w} in s2. 

In Step 3, w: w  s2, we generalize v into a pattern with 3 
sub-steps: (i) p: p  w, we first transform p by expressing it as: 
exp relop c, where relop is a relational operator, c is a constant 
and exp is an expression that cannot be expressed as another 
expression added with a nonzero constant; (ii) next, we replace 
each real variable in the predicates in w by an ordered real 
variable Ri (i ≥ 1), such that Ri+1 is only used for replacement 



when Ri has been used. Likewise, we replace each 
integer/Boolean variable in the predicates in w by 
integer/Boolean variables in the same manner; (iii) at last, if w 
is a set of predicates with real variables, for each nonzero 
numerical constant in the predicates in w, we replace it with a 
constant symbol selected from the sequence (….., d3 , d2 , d1, 0, 
c1 , c2 , c3,….) such that: 

1) Positive and negative constants are replaced by ci and 
dj (i, j  ≥ 1)  respectively. 

2) ci+1 is selected only if ci has been selected, likewise, 
dj+1 is only selected only if dj has been selected used. 

3) Among the constants in the predicates in w, the 
symbols that replace the original constants preserve 
the order of the original constants. 

If w is a set of predicates with only integer variables, we 
replace each real variable in the predicates in w by an ordered 
real variable Ii (i ≥ 1), such that Ii+1 is only used for replacement 
when Ii has been used. We replace the constants in the 
predicates in w with constant symbols selected from the 
sequence (….., n3 , n2 , n1, 0, m1 , m2 , m3,….) that stand for 
ordered integer constants in the same manner. If there are two 
original integer constants with the difference of one, the 
smaller one is replaced by a constant symbol taken from the 
above sequence, say n1, and the bigger one is expressed as n1+1. 
This is to deal with the fact that there is no integer in between 
of two integer constants with the difference of one. The latter 
may affect the satisfiability of the predicates in w jointly.  

After the above 3 steps, we have mapped an unsatisfiable 
path constraint to a pattern. Finally, we include the resulting 
pattern in Setpattern if it is not included yet. 

IV. THE APPLICATION 
The patterns of unsatisfiable constraints mined from the 

proposed approach can be used to detect infeasible paths 
efficiently. One needs to prepare patterns in advance and store 
them in Setpattern. Then to identify whether a given path is 
infeasible, we perform the following steps: 

1) Extract the path constraint, denoted by u. 
2) Apply the Step 1 of the pattern mining process on u 

to have s1={v °u)v} 
3) Skip the Step 2 of the pattern mining process. 
4) Apply Step 3 of the pattern mining process to have a 

set of generalized predicates ss1={v’°u)v’}. 
5) If ss1  Setpattern, it is a successful. Then u is 

concluded as unsatisfiable and the corresponding path 
is concluded as infeasible. 

It can be seen from the above steps, the use of expensive 
constraint solving is avoided, hence, improving the scalability 
in detecting infeasible paths. 

Detection of infeasible paths is required in many areas and 
tools. The proposed approach can be applied in most of them in 
which perfect precision is not essential. These include test 
cases generation to avoid the time and effort spending on 
analyzing infeasible paths, coverage analysis to compute the 
coverage for a test suite by excluding infeasible paths, and 
software security vulnerability detection to exclude the 
consideration of infeasible paths.  

V. EVALUATION 
We conducted a case study on a set of Java programs to 

assess the performance of the proposed approach. We 
implemented a prototype system called InfiPatternMinerJ and 
randomly selected Java systems from Sourceforge [7] for this 
case study. 

A. Implementation 
The prototype system InfiPatternMinerJ has two sub-

systems: (i) Pattern mining: mine patterns of unstaisfiable 
constraints using the proposed approach. (ii) Infeasible path 
detection: Detect infeasible paths through matching with 
existing patterns. The second subsystem is to validate the 
accuracy of applying the proposed approach to detect infeasible 
paths. 

Pattern mining: the prototype system implements the 
proposed mining process and mines patterns from training 
systems. More specifically, given a training system there are 
two sub-steps: (a) Prepare training paths: For each root 
procedure – methods without any caller, an inter-procedural 
CFG will be generated. InfiPatternMinerJ then extracts paths 
from each control flow graph. Based on recent studies [8, 9], 
the basis path criteria [10] could generate a limited-sized set of 
paths to exhibit a large portion of correlations among 
predicates. Therefore, to mine patterns as many as possible, and 
at the same time, to minimize the potential path explosion risk, 
InfiPatternMineJ samples a basis path set over each inter-
procedural CFG for pattern mining.  (b) Mining: The basis 
inter-procedural paths are stored in a set Setpath. 
InfiPatternMineJ performs the mining process to find out all 
the patterns from the input paths. The output from 
InfiPatternMineJ is a set of patterns stored in a set Setpattern. 
Additionally, to minimize the inaccuracy due to the existence 
of external dependency (e.g. third party library functions, 
native functions), InfiPatternMineJ provides an interface for 
users to document the semantics of these functions on the fly. 

Infeasible path detection: the prototype system implements 
the application in Section IV that uses patterns to detect 
infeasible paths without using constraining solvers. 
InfiPatternMinerJ later assesses the detection accuracy by 
validating each detected infeasible paths against a constraint 
solver—Z3. 

In this case study, seven Java programs from different 
application domains are randomly picked as independent test 
cases: Dagger-0.9 (a dependency injection framework), Jgraph-
5.8.1 (a graph visualization component), Jsmooth-0.9 (a 
executable wrapper), JasperReports-5.5 (a reporting engine), 
Xerces-Java-1.4 (an XML parse), JCM-1.0 (a math library) and 
JHotDraw-7.6 (a GUI framework). The first five systems are 
used as the training set, that is, InfiPatternMinerJ mines 
patterns from those systems. The remaining two systems are 
used as the test set, that is, using the discovered patterns from 
the training systems, InfiPatternMinerJ detects infeasible paths 
in those two systems.  



B. Experiment results  
For the 5 systems used for mining patterns, after excluding 

empty functions, there are 3317 inter-procedural CFGs and 
27866 inter-procedural basis paths in total. InfiPatternMinerJ 
applied the proposed mining procedure on the input paths and 
gradually found 19 patterns: 4 patterns are cases that the 
corresponding paths containing a singleton of unsatisfiable 
constant predicate; 15 patterns are cases that the corresponding 
paths contain a set of unsatisfiably joint predicates. These 19 
patterns are displayed by the 2nd column and the first 19 rows 
in Table IV. An example of pattern mining is given by Figure 2. 
This piece of code is simplified from a function in JHotDraw. 
We take a path as an example, that is path=(entry, 
1,2,3,4,5,6,end). After applying the mining process, a pattern of 
unsatisfiable constraints is found: { p1=(I1 > c2), p2=(I1  < c1), 
p3=(c2-c1<1)}. 

For the rest 2 systems used for infeasible path detection, 
5000 paths are randomly selected from each. InfiPatternMinerJ 
concludes each path’s infeasibility through pattern matching 
against the existing 19 patterns. The identified infeasible paths 
are re-evaluated with a full symbolic evaluation (assisted with 
manual effort) to assess the detection accuracy.  

We applied a set of common measurement for the 
assessment: true positive (tp), false positive(fp), false negative 
(fn), true negative (tn), probability of detection (pd), probability 
of false alarm (pf), and precision (pr) [9]. Table III shows the 
result of this assessment. For the two systems, 
InfiPatternMinerJ has no false positives generated, but causes 
76 false negatives. The corresponding value of pr, pf, pd is 1, 0, 
94.99% respectively. This result shows our approach has a high 
accuracy in practice. Table 5 further shows the distribution of 
each pattern over the two test systems. We also investigate the 
76 false negative cases, and found that these cases would form 
two new patterns: (a) {p1=(x1=0), p2=( x1<0)} ; (b) {p1=(x1=c1  ), 
{p2=( x1≥c2)}. 

Interestingly, we also found that the training systems and 
the testing systems are from different application a domain, 
which helps prove that the proposed approach is a general 
reusable solution to detect infeasible paths with high coverage. 

Figure 3 shows an example that uses the extracted patterns 
to detect an infeasible path. The target path is 
path=(a1,a2,a3,b1,b3,b4,b5,b8), which is extracted from a 
function in JCM. Based on the procedure in Section IV, 
InfiPatternMinerJ generalizes a set of predicates from the path.  
By comparing this set of predicates with all the existing 19 
patterns, a successful match is found. Therefore, 
InfiPatternMinerJ concludes the target path as infeasible. Use 
our approach to detect infeasible path does not require using 
constraint solvers at all. This helps enhance the detection 
efficiency when comparing with other common approaches.  
For the same, if we use the Marple [5] to test the infeasibility of 
the target path, it will timeout because its constraint solver 
cannot handle the function Math.log() well. 

C. Threats to validity 
Firstly, in the implementation, we did not interpret the 

semantics of Java string functions. Therefore, 

InfiPatternMinerJ is not able to fully support systems with 
many string functions currently. Meanwhile, InfiPatternMinerJ 
provides an interface for users to define behaviors for native 
functions. The user definition may bring in inaccuracy. 
Secondly, in the experiment, we do not consider the inaccuracy 
caused by potential floating-point rounding errors. Therefore, 
InfiPatternMinerJ currently also cannot precisely handle 
systems with many floating-point computations. Thirdly, all 
infeasible paths detected in this paper refer to cases from 
single-threaded programs. We have not extended 
InfiPatternMinerJ to support programs with many multi-
threading behaviors. 

 
Fig. 2. An example of pattern mining  

TABLE I.  ACCURACY ASSESSMENT OF INFIPATTERNMINERJ 

System tp fp fn tn Pd Pf Pr 
JCM 717 0 45 4238 94.10% 0 1 

JHotdraw 814 0 31 4155 96.33% 0 1 
total 1531 0 76 8393 95.27% 0 1 

 

 
Fig. 3. An example of using patterns to detect infeasible path   



TABLE II.  DISTRIBUTION OF PATTERNS OVER THE 2 TEST SYSTEMS 

Pattern ID Patterns of unsatisfiable constraints JCM JHotDraw 
1 {c1 ≠c2} 150 211 
2 {c1 > c2} 0 3 
3 {TRUE  ≠  TRUE} 0 0 
4 {FALSE =TRUE} 51 47 
5 {R1≥R2} 0 14 
6 {R1≥c1 ,  R1 < c1} 1 0 
7 { R1= c1, R1> c1} 1 1 
8 { R1≥ c1, R1< c1} 23 0 
9 { R1≥ c1, R1≤ c1, R1≠0} 0 0 

10 { R1≥ c2, R1≤ c1} 0 0 
11 { R1 > c1, R1< c1} 0 103 
12 { R1 = c1, R1 ≠ c1} 182 0 
13 { R1 > c2, R1≤ c1} 7 0 
14 { R1 = c2, R1≤ c1} 0 0 
15 { I1 ≥ c2, I1≤ c1} 0 69 
16 { I1= c2, I1=c1} 51 1 
17 { I1 > c1, I1< c2, c2 - c1<1} 4 175 
18 { I1 = c1, I1 ≠ c1} 247 190 
19 { R1= R2, R1= R3, R2 ≠ R3} 0 0 
20 (new) { R1 = c1, R1 < c1}  0 31 
21   (new) { R1 = c1, R1 > c2} 45 0 

VI. RELATED WORK 
There are several ways to detect infeasible paths. But the 

most two common approaches are data flow analysis and 
constraint propagation. The first common approach applies 
data flow analysis [11]. These approaches are often useful for 
finding a wide variety of infeasible paths. However, due its 
path-insensitiveness, these approaches do not have high 
accuracy. The second common type of approaches is based on 
constraint propagation. This type of approaches usually detects 
infeasible paths through constraint propagation along paths via 
symbolic evaluation [1, 3, 4]. These approaches often extract 
and propagate the constraint that an input must satisfy for 
exercising a path as a symbolic expression. The path is 
infeasible if the constraint is unsatisfiable. This typically 
requires the help of constraint solvers. However, in general, it 
is intractable to solve a constraint. The advantage of such an 
approach is its higher precision. However, due to the large 
search space in both path exploration and constraint solving, it 
tends not to scale to large systems. This type of approaches is 
commonly used to generate path-based test cases [3, 4].  

Other than above, one could also use light-weighted 
heuristics to identify infeasible paths among correlated 
branches [6, 8, 9]. However the heuristics or patterns in these 
works are all fixed. It easily yields many false-positive cases 
when applying these approaches on complex real systems. 

The proposed approach in this paper has a different 
objective. It proposes an approach for mining patterns of 
infeasible path constraints from code such that these patterns 
can be used to detect infeasible paths without calling constraint 
solvers. Comparing with existing works, the novelties of the 
proposed approach are: (1) Applying the proposed patterns, 
infeasible paths are detected neither using constraint solvers 
nor evaluating function calls totally. Hence, detecting 
infeasible paths is scalable; (2) Existing heuristics and patterns 
used to detect infeasible paths are pre-defined through 
observation. This paper proposes a systematic approach for 

mining patterns of infeasible path constraints dynamically that 
has not been explored before; (3) the patterns for infeasible 
path constraint can vary but they can be collected gradually, 
and as the more patterns are collected, the accuracy is 
improved. Further, patterns can be collected from code 
developed using different programming language, executable 
code and different lifecycle maturity or different intention (e.g., 
malware, obfuscated code). 

VII. CONCLUSION 
In this paper, we propose a novel approach that mines 

patterns of infeasible paths. Each pattern is either a singleton of 
an unsatisfiable predicate or a set of unsatisfiably joint 
predicates. Based on the given paths, the proposed approach is 
able to find patterns gradually and automatically. The mined 
patterns can be used to detect infeasible paths without using 
any constraint solvers. Since the execution of constraint solvers 
is computationally expensive, the proposed mining procedure 
improves the scalability of infeasible paths detection and 
related applications. A case study is carried out to evaluate the 
proposed approach. With 5 training systems, the proposed 
approach found 19 patterns of infeasible paths. When using 
these patterns to detect infeasible paths on another two systems, 
the experiment results prove the accuracy and scalability of the 
proposed approach.  
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