
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2015

Security slicing for auditing XML, XPath, and SQL injection Security slicing for auditing XML, XPath, and SQL injection

vulnerabilities vulnerabilities

Julian THOME

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Lionel BRIAND

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
THOME, Julian; SHAR, Lwin Khin; and BRIAND, Lionel. Security slicing for auditing XML, XPath, and SQL
injection vulnerabilities. (2015). Proceedings of the 26th International Symposium on Software Reliability
Engineering (ISSRE), Gaithersbury, USA, 2015 November 2-5. 553-564.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4778

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4778&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Security Slicing for Auditing XML, XPath, and SQL

Injection Vulnerabilities

Julian Thomé∗, Lwin Khin Shar†, Lionel Briand‡

SnT Centre for Security, Reliability and Trust

University of Luxembourg, Luxembourg

Email: ∗julian.thome@uni.lu, †lwinkhin.shar@uni.lu, ‡lionel.briand@uni.lu

Abstract—XML, XPath, and SQL injection vulnerabilities are
among the most common and serious security issues for Web
applications and Web services. Thus, it is important for security
auditors to ensure that the implemented code is, to the extent pos-
sible, free from these vulnerabilities before deployment. Although
existing taint analysis approaches could automatically detect
potential vulnerabilities in source code, they tend to generate
many false warnings. Furthermore, the produced traces, i.e. data-
flow paths from input sources to security-sensitive operations,
tend to be incomplete or to contain a great deal of irrelevant infor-
mation. Therefore, it is difficult to identify real vulnerabilities and
determine their causes. One suitable approach to support security
auditing is to compute a program slice for each security-sensitive
operation, since it would contain all the information required for
performing security audits (Soundness). A limitation, however, is
that such slices may also contain information that is irrelevant
to security (Precision), thus raising scalability issues for security
audits. In this paper, we propose an approach to assist security
auditors by defining and experimenting with pruning techniques
to reduce original program slices to what we refer to as security
slices, which contain sound and precise information. To evaluate
the proposed pruning mechanism by using a number of open
source benchmarks, we compared our security slices with the
slices generated by a state-of-the-art program slicing tool. On
average, our security slices are 80% smaller than the original
slices, thus suggesting significant reduction in auditing costs.

Keywords—Security auditing, static analysis, vulnerability

I. INTRODUCTION

Vulnerabilities in Web systems pose serious security and
privacy threats such as the exposure of confidential data, loss
of customer trust, and denial of service. According to OWASP
[1], injection vulnerabilities are the most serious vulnerabilities
for Web systems. Among the injection vulnerabilities, XML
injection (XMLi), XPath injection (XPathi), and SQL injection
(SQLi) vulnerabilities are commonly found in Web applica-
tions and Web services that use relational or XML databases.
These vulnerabilities are usually caused by the use of user
inputs in security-sensitive program statements (sinks) without
proper sanitization or validation.

The majority of the approaches that deal with XMLi,
XPathi and SQLi issues are security testing approaches [2], [3],
[4], [5], and dynamic analysis approaches that detect attacks
at runtime based on known attack signatures [6], [7], [8] or
legitimate queries [9], [10], [11], [12]. However, a security
auditor is typically required to locate vulnerabilities in source
code, identify their causes and fix them. Analysis reports from
the above-mentioned approaches, though useful, would not
be sufficient to support code auditing as they would only

contain information derived from observed program behaviors
or execution traces.

Approaches based on taint analysis [13], [14], [15], [16],
[17], [18] and symbolic execution [19], [20] help identify
and locate potential vulnerabilities in program code, and thus,
could help with the auditor’s tasks. Though none of these
approaches, except for the work reported in [16], seems to
explicitly address XMLi and XPathi, they could be adapted to
detect these vulnerabilities.

However, reports from taint analysis-based approaches typ-
ically contain only data-flow analysis traces without control-
dependency information, which may be essential for security
auditing. Indeed, if-constructs or condition checks can be
used to perform input validation or sanitization tasks and,
without analyzing such conditions, feasible and infeasible data-
flows cannot be determined, thus causing many false warnings.
Symbolic execution-based security analysis approaches have
yet to address scalability issues due to the path explosion prob-
lem [21]. Other approaches [22] report analysis results without
any form of pruning (e.g. the whole program dependency
graphs), thus containing a significant amount of information
not useful to security auditing. As a result, an auditor might
end up checking large chunks of code, which is not practical.

Program slicing [23] is one suitable technique that could
help security auditors verify and fix potential vulnerabilities
in source code. Like taint analysis, program slicing is also a
static analysis technique, but it extracts all the statements that
affect a given criterion including control-flow and data-flow
information, whereas taint analysis techniques only consider
data-dependencies. However, this also causes a precision prob-
lem since a large chunk of a program slice may not be relevant
to security auditing. Thus, without dedicated support, security
auditing can be expected to be labor-intensive, error-prone, and
not scalable.

In this paper, our goal is to help security auditors, in a
scalable way, to audit source code for identifying and fixing
deficiencies in implemented security features. Our approach
aims to systematically extract relevant security features imple-
mented in source code. More precisely, to facilitate security
auditing of XMLi, XPathi, and SQLi vulnerabilities in program
source code, we apply static analysis to first identify the
sinks and sources, and then apply specific program slicing
techniques to extract minimal and relevant source code that
only contains statements required for auditing potential vul-
nerabilities related to each sink.

The specific contributions of this paper include:

553978-1-5090-0406-5/15/$31.00 ©2015 IEEE

- Sound and Scalable security auditing. We define a spe-
cific security slicing approach for the auditing of security
vulnerabilities in program source code. Like taint analysis,
our approach also uses static program analysis techniques,
which are known to be scalable [17]. However, our analysis
additionally extracts control-dependency information, which
is often important for security auditing of input validation
and sanitization procedures. Furthermore, it filters away
irrelevant and secure code from the generated vulnerability
report. This ensures soundness and scalability.

- Fully automated tool. A tool called JoanAudit which fully
automates our proposed approach has been implemented for
Java Web systems based on a program slicing tool called
Joana [24]. We have published the tool and the user manual
online [25] so that our experiments can be replicated.

- Specialized security analysis. JoanAudit is readily configured
for SQLi, XMLi and XPathi vulnerabilities. In comparison,
current program slicing tools are not dedicated to such
security needs while most of the existing taint analysis tools
do not readily support XMLi and XPathi vulnerabilities.

- Systematic evaluation. We evaluated our approach based on
25 programs from five Java Web systems. We analyzed
84 sinks from those Web programs. For each of them, a
conventional slice was computed using Joana and a security
slice was computed using our approach. Compared to the
sizes of conventional program slices, our security slices are
significantly smaller with reductions averaging 80%. Thus,
the results show that our security slices are significantly more
precise in terms of information relevant to security auditing.
Based on manual verification, we also confirmed that the
security slices are sound since all the information relevant
to security auditing is extracted.

The paper is organized as follows: Section II provides
background information for XMLi, XPathi, and SQLi vulner-
abilities; Section III presents the proposed security slicing ap-
proach; Section IV evaluates the approach; Section V discusses
related approaches; and Section VI concludes the study.

II. XML, XPATH, AND SQL INJECTION

In what follows, we give a short overview of the injection
vulnerabilities we address based on the definitions provided by
OWASP [1].

XML injection: XMLi attack is an integrity violation, where
an attacker changes the hierarchical structure of an XML
document by injecting XML elements through an input source
(a program point at which data that can be manipulated by a
malicious user is accessed).

XPATH injection: XPathi is an attack technique used to ex-
ploit applications that construct XPath (XML Path Language)
queries using data from an input source to query or navigate
XML documents. It can be used directly by an application to
query an XML document as part of a larger operation, such
as applying an XSLT transformation to an XML document or
applying an XQuery to an XML document.

SQL injection: Similar to XPath, SQLi is an attack tech-
nique used to exploit applications that construct SQL queries
by using user inputs to access or update relational databases.

1 protected void doPost(HttpServletRequest req, /*...*/) {
2 String account = req.getParameter("account");

3 String password = req.getParameter("password");
4 String mode = req.getParameter("mode");
5 if(mode.equals("login")) {
6 if (allowUser(account, password)) // ...
7 } else { createUser(account,password) } // ...
8 }
9 protected boolean allowUser(String account,

10 String password) { // ...
11 Document doc = builder.parse(XMLFILE);
12 XPath xpath = xPathfactory.newXPath();
13 String q = "/users/user[@nick=’"+

ESAPI.encoder().encodeForXPath(account) + "’ and
@password=’" +
ESAPI.encoder().encodeForXPath(password) + "’]";

14 NodeList nl = (NodeList)xpath.evaluate(q, doc,
XPathConstants.NODESET); // ...

15 }
16 protected void createUser(String account,
17 String password) {
18 String newUser = "<user nick=\"" +

ESAPI.encoder().encodeForXMLAttribute(account) + "\"
password=\"" +

ESAPI.encoder().encodeForXMLAttribute(password) + "
\" />";

19 FileWriter fw = new FileWriter(XMLFILE); // ...
20 bw.write("<users>\n" + getPresentUsers() + newUser + "\

n</users>"); // ...
21 }

Listing 1. Secure servlet with sanitization functions.

For example, the Java code snippet illustrated in Listing 1
grants or denies access to a Web application or service and/or
creates a new user. The Java servlet interface implementa-
tion doPost() stores the values of three POST parameters
account, password and mode in variables that carry the
same names. All the parameters are provided by the user of the
Web application. The mode parameter can be either login if
a user wishes to get access to the application, or �=login if
a user wants to create a new user account. In the former case,
the function allowUser() is called with account and
password as parameters, whereas in the latter case these two
parameters are passed to another function createUser()
which is in charge of creating a new user. User credentials are
stored in an XML file as illustrated in Listing 2.

1 <users>
2 <user nick="alice" password="alicepass"/>
3 <user nick="bob" password="bobpass"/>
4 </users>

Listing 2. XML file (XMLFILE) to store user credentials.

For granting or denying access, the function
allowUser() in Listing 1 executes an XPath query
(sink) at line 14 to compare the password stored in the XML
attribute password for one of the entries in Listing 2 with
the one accessed from an input source: the POST parameter
password. In the example, the user inputs are sanitized
in line 13 by calls to the OWASP Enterprise Security API
(ESAPI) [26], which provides a rich set of sanitization
functions for various vulnerability types. The calls to those
functions are highlighted. If the user input was used directly
in the sink without such sanitization, the sink would be
subject to XPathi attacks. In Listing 2, by just knowing the
user name, an attacker could launch a tautology attack using
the value ’ or ’1’ = ’1 as password and would get
access to the user’s credential data.

Likewise, in the absence of any sanitization, the
XML document processing operation (sink) in the function
createUser() at line 20 would be vulnerable to XMLi
attacks. An XML tag is created with a user input using string

554

concatenation in line 20. If the user inputs account and
password were not sanitized, as they are in line 18, a user
could compromise the integrity of the XML file by using one
of the following metacharacters: < > / ’ = ".

III. APPROACH

Our terminology and definitions regarding security slicing
are based on those of Hammer [24] as we rely on his program
slicing approach and tool.

Since we intend to provide practical support for the au-
diting of XMLi, XPathi, and SQLi vulnerabilities in Web
applications and services, our security slicing approach is
targeted towards specific Web technologies (J2EE) since our
targeted types of vulnerabilities are commonplace in such
systems.

When extracting security slices, we aim to achieve the
following objectives:

1) Soundness: A security slice contains all the relevant
program statements enabling any security violation to be
audited.

2) Precision: A security slice contains only relevant program
statements relevant to minimize the auditing effort.

3) Scalability: The security slicing algorithm can handle
programs of realistic size.

Achieving these objectives is desirable but in practice
one has to compromise between soundness and precision
depending on the analysis goal. In our context, we prioritize
soundness since finding all possible security violations is a
priority for security auditing, though we also try to optimize
precision to the extent possible.

Our proposed, fully automated approach includes six main
steps. To clarify our contributions, we distinguish the steps
where we rely solely on Joana.

1) Construct a system dependence graph (SDG) from the
bytecode of a Java program. An SDG contains interpro-
cedural dependency information of all the statements in
the program. Thus, it provides a foundation for program
analysis (Joana).

2) Identify the set of input sources I and sinks S from the
SDG, i.e. all the input sources from which XMLi, XPathi,
and SQLi attack values might come from, and all the sinks
that are sensitive to these attacks.

3) Compute program chop C(I, s) for each identified sink
s ∈ S. Program chopping is a form of program slic-
ing which contains interprocedural control- and data-
dependence information from the source criteria to the
target criteria; in this case, from I to s. As such, every
sink in a program can be audited using these chops
(Joana).

4) Perform information flow control (IFC) analysis to extract
information flow traces along each path from C(I, s).

5) Filter each chop C(I, s) based on the extracted infor-
mation flow traces to generate a concise and minimal
chop for security auditing, referred to as a security slice
SS(I, s).

6) Extract path conditions from each security slice SS(I, s)
to facilitate security auditing (e.g. checking feasible con-
ditions for security attacks).

The above steps are implemented in JoanAudit [25] and its
implementation information is provided in Appendix A. The
following sub-sections describe the steps in detail.

A. System Dependence Graph Construction

Constructing an SDG is the first step of our approach since
program slicing and chopping can be computed from the SDG
of a given program. For the sake of completeness, we provide
definitions below.

An SDG is an ideal data structure for program analysis
because program slices can be soundly and efficiently com-
puted from it in linear time [27], [28]. In other words, the
complexity of building a slice or a chop from an SDG of N
nodes is O(N) while the worst case complexity of building
an SDG itself is O(N3) [24].

To compute an SDG, program dependence graphs repre-
senting each procedure in the program have to be computed
first.

Definition 1 (Program Dependence Graph) [29]. A pro-
gram dependence graph (PDG) is a directed graph G = (N,E)
where N is the set of nodes representing the statements of a
given program, and E is the set of control-dependence and
data-dependence edges which induce a partial order on the
nodes in N .

However, as a PDG can only represent an individual proce-
dure, slicing on a PDG merely results in intraprocedural slices.
For computing program slices from interprocedural programs,
Horwitz et al. [27] defined system dependence graphs which
are essentially interprocedural program dependence graphs
from which interprocedural program slices can be soundly and
efficiently computed.

Definition 2 (System Dependence Graph) [27]. A system
dependence graph consists of all the PDGs in the program,
which are connected using interprocedural edges that reflect
calls between procedures. This means that each procedure in
a program is represented by a PDG. But the PDG is then
modified to contain formal-in and formal-out nodes for every
formal parameter of the procedure. Each call-site in a PDG
is also modified to contain actual-in and actual-out nodes for
each actual parameter. The call node is connected to the entry
node of the invoked procedure via a call edge. The actual-in
nodes are connected to their corresponding formal-in nodes via
parameter-in edges, and the actual-out nodes are connected to
their corresponding formal-out nodes via parameter-out edges.
Lastly, summary edges are inserted between actual-in and
actual-out nodes of the same call site to reflect that actual-out
parameters in a call-site are dependent on actual-in parameters.

Hence, SDG provides an interprocedural model of a Java
program, capturing interprocedural data-dependencies, con-
trol-dependencies, and call-dependencies. Fig. 1 illustrates a
simplified sample SDG that partly resembles the program in
Listing 1 (just the doPost() and allowUser() methods).

B. Identification of Input Sources and Sinks

After the construction of the SDG model of the Java
program, our approach identifies two classes of nodes in the

555

��������	

�����������

��������

����������

�����������

���� � ��

�������

����������

�����������

����������

����������

������� �������

�������

� ����� �����
������� �������� �

���������	
����

�
��� � ��

����������

���� �

�
��� � ��

��

��
�

��

��

�������

!�������
����������
!�	��

�

�����

�����������

�����
��

��	�
���	���� ��������������� ����	�������������

"������!#� $!�%$����

���������������

&����'��(����!�!��

�

Fig. 1. Simplified SDG of the example program in Listing 1.

SDG that are required for program chopping which relies on
a source criterion (Input source) and a target criterion (Sink):

1) Input sources are Web program functions or operations
that access data which can be manipulated by malicious
users. Specifically, in our approach, we define the follow-
ing elements as input sources: accesses to HTTP request
parameters (e.g. getParameter()), HTTP headers,
cookies, session objects, external files, and databases.

2) Sinks are Web program functions or operations that are
sensitive to XMLi, XPathi, or SQLi. Specifically, we de-
fine the following elements as sinks: XML document op-
erations (e.g. xmlobj.setTextContent()), XPath
queries (e.g. xpath.evaluate()), and SQLi queries
(e.g. sqlstmt.executeQuery()).

In our prototype tool, the bytecode signatures of the above
program functions and operations are predefined in configura-
tion files to enable the tool to identify them from the SDG. In
Fig. 1, the input sources that correspond to lines 2, 3 and 4
in Listing 1 are highlighted with solid dashed frames, whereas
the sink that corresponds to line 14 is highlighted with a white
dashed double stroke.

C. Program Chopping

We are interested in whether data values accessed from the
identified input sources are used in the sinks. We, therefore,
aim to extract a program slice that contains the statements
influenced by a set of input sources, which lead to the sink
through possibly different program paths. This is done by the
following steps:

From the SDG, we first compute the backward program
slice for each sink s.

Definition 3 (Backward Program Slice) [27]. The backward
program slice of an SDG G = (N,E) with respect to the
target criterion s ∈ S, where S is the set of identified sinks
with S ⊆ N , consists of all the statements that influence s:

BS(s) = {j ∈ N | j →� s}

where j →� s denotes that there exists an interprocedurally
realizable path from j to s, so that s is reachable through
a set of preceding statements (possibly across procedures).
The detail algorithms for computation of interprocedurally
realizable paths and the backward slice are given by Horwitz
et al. [27].

Afterwards, just the slices influenced by user input leading
to s have to be extracted from BS(s) by means of forward
program slicing and chopping.

Definition 4 (Forward Program Slice) [30]. The forward
program slice of an SDG G = (N,E) with respect to the
source criterion I ⊆ N consists of all the nodes that are
influenced by I:

FS(I) = {j ∈ N | i →� j ∧ i ∈ I}

Definition 5 (Program Chop) [31], [32]. The program chop
of an SDG G = (N,E) with the source criterion I and the
target criterion s is defined as:

C(I, s) = FS(I) ∩BS(s)

Basically, backward slicing allows us to extract all those
statements that could influence the execution of a security-
sensitive statement while forward slicing allows us to extract
all the statements to which potentially malicious data from
input sources could flow to. Hence, program chopping, the
intersection of the two slices, allows us to identify security-
relevant nodes that are on the paths from I to s and, thus,
involved in the propagation of potentially malicious data from
input sources to a sink.

For example, a chop between the input sources
getParameter() on lines 2, 3, and 4 and the sink
evaluate() on line 14 in Listing 1 is shown in Fig. 2.
As illustrated, chopping allows us to just focus on the parts of
the SDG that are interesting for security auditors, i.e. all paths
that connect input sources to a sink.

�������

����	
����

������� ����	��

����	��

����� �����
����������������

���������������

���� �

����

�� ��

��

��������
����������������

����
��

�

����	
����

�������

Fig. 2. The chop with the source criterion {2, 3, 4} and the target criterion
{14} of the example program in Listing 1.

D. Information Flow Control Analysis

IFC analysis is a technique that checks whether a software
system conforms to a security specification. Relying on the
work of Hammer [24], we adapt his generic flow-, context-
and object-sensitive interprocedural IFC analysis framework

556

to suit our specific information flow problem with respect to
XMLi, XPathi, and SQLi. More specifically, we apply this
technique to support the filtering mechanisms explained in the
next sub-section.

Our goal is to trace how information from an input source
can reach a sink, and then to analyze which paths in the chops
are secure and which ones may not be secure.

We specify allowed and disallowed information flow based
on a lattice called security lattice, i.e. a partial-ordered set
that expresses the relation between different security levels.
We use a standard diamond lattice LLH [33], as depicted in
Fig. 3, that expresses the relation between four security levels
HL, HH , LL, and LH . Every level l = L0L1 contains two
components, i.e. a Confidentiality level L0 and the Integrity
level L1. Confidentiality requires that information is to be
prevented from flowing into inappropriate destinations or sinks,
whereas Integrity requires that information is to be prevented
from flowing from inappropriate input sources [34].

Each input source and sink is annotated with a security
label that enables the detection of allowed and disallowed
information flow. Annotation is done automatically based on
our predefined sets of input sources and sinks.

An input source, where data that is supposed to be secret
but could be manipulated by an attacker is accessed, is labeled
with HL – this data has the most restricted in usage as it cannot
flow to any destination that has a different security label. In our
approach, we label input sources like the getParameter()
functions from the Java servlet API as HL since user confi-
dential data is often obtained from such input sources, which
can also be tampered with by an attacker.

Data labeled with HH is confidential and cannot be
tampered with by an attacker. Data labeled with LH is non-
confidential and also cannot be manipulated by an attacker.
Hence, we use these two labels to annotate data that is
expected to be secure in terms of integrity. In our approach,
functions that access server environment variables read data
from configuration files, etc. are labeled as HH , and func-
tions that read time and date such as getTime() from
java.util.Calendar are labeled as LH . The LL label is
used for data that is non-confidential but could be influenced
by an attacker, e.g. a function that monitors mouse-clicks.

A sink would be labeled with either LH or HH . Depend-
ing on whether the sink is allowed to handle user confidential
data, the confidential label would be either L or H . But at
all times, only high integrity data should be allowed to flow
into the sink to prevent the flow of malicious input values
causing security attacks. Thus, the integrity label is always
H for the types of sinks we consider. In our approach, we
label the sink functions that update or modify databases as
HH since it is common to store highly confidential data in
the back-end databases, whereas we label the sink functions
that generate outputs to external environments (e.g. exception
handling functions) as LH .

Based on annotations, we can trace information flow from
one node to another and detect disallowed information flow
and therefore security violations. For example, if there exists
information flow from an LL input source to an HH sink, a
security violation is detected.

However, one must also consider that program developers
might use sanitization functions that properly validate data
from an input source before using it in a sink. For our running
example in Listing 1, the developer used proper sanitization
functions (lines 13 and 18) between input sources and a sink. In
the example, they used the OWASP security library [26] which
provides sanitization functions for the vulnerability types we
address. Such cases can be considered secure and do not need
to be reported to an auditor.

The concept of declassification [35] can be used for this
purpose. In our context, declassifiers are nodes in the SDG that
represent sanitization functions. Whenever a user input passes
through a declassifier, we modify its security level. In our case,
as sanitization functions ensure the integrity of the data, the
integrity level of the data that reaches the nodes corresponding
to those functions would be changed to H .

For example, in Fig. 1, the input sources account and
password that correspond to lines 2 and 3 of Listing 1
are annotated with the label HL. As these input values pass
through the declassifiers at line 13 (highlighted in bold in Fig.
1), respectively, their security labels are changed to HH . Since
the information flow from HH to HH is allowed according to
the security lattice in Fig. 3, the use of those variables in the
sink node evaluate(), at line 14 and highlighted in bold
in Fig. 1, is considered secure.

However, if there were no sanitization functions, we would
have two direct illegal flows (from account and password
to the evaluate() call) and one illegal indirect flow (from
mode to evaluate()) with HL → HH , which is forbidden
according to the security lattice in Fig. 3.

We assign declassifiers and sinks to different vulnerability
categories. Depending on the vulnerability category of a sink,
a corresponding vulnerability category of a declassifier is
required to appropriately sanitize the input values used in the
sink. For example, the declassifier in line 13 in Listing 1 is
appropriate for the XPath function xpath.evaluate() in
line 14, but is inappropriate for a sink of different vulnerability
category, e.g. a SQL query operation. Table I lists vulnerability
categories and their corresponding declassifiers from OWASP
[26]. Our prototype tool is configured with a set of declassifiers
provided by Apache [36] and OWASP [26]. It also recognizes
PreparedStatement functions from the java.sql pack-
age as declassifiers corresponding to SQL sinks.

HL

HH LL

LH

�
	

	
�

(a)

HL

HH LL

LH

(b)

HL

HH LL

LH

(c)

Fig. 3. Subfigure a highlights the partial order relation between the different
security levels. Subfigure b shows the permitted information flow between
security levels, whereas Subfigure c illustrates the disallowed information flow.

E. Filtering

In this section, we describe the five filtering mechanisms
applied to generate minimal slices for security auditing. For

557

efficiency reasons, the filters are applied at different stages of
our approach. Filter 1 and Filter 2 are applied concurrently
during the SDG construction. Filter 3 is applied on the SDG,
once constructed. Filter 4 and Filter 5 are applied to the
program chops. We mentioned earlier that the goal of our work
is to achieve the highest possible precision while preserving
soundness so that security auditing is scalable.

The original program chops C(I, s) without filters are
sound with respect to the types of input sources and sinks
we consider, since all the statements related to those sources
and sinks are extracted. It is straightforward to claim that by
applying the filtering rules below, which remove statements
that cannot be relevant to security auditing, we achieve better
precision compared to the original program chops. However,
we need to demonstrate that we maintain soundness by not
removing any statement that might be relevant to security
auditing when filtering rules are applied. Therefore, when
defining the filtering rules below, we provide arguments on
how we preserve soundness. Further, we will empirically
demonstrate the soundness in the evaluation section.

Definition 6 (Filter 1: Irrelevant). Filter functions that are
irrelevant to the security analysis of XMLi, XPathi, and SQLi.
Let IR be the set of irrelevant functions. During the SDG
construction, upon encountering a node that corresponds to a
function f ∈ IR, a stub node is generated instead of the PDG
that represents f. By doing so, all the nodes and edges that
correspond to f are filtered while not affecting the construction
of the SDG. For security auditing purposes, the stub node
is annotated with the name of the function and labeled as
irrelevant.

Definition 7 (Filter 2: Known-good). Filter functions with
known-good security properties. Let KG be the set of known-
good functions. During the SDG construction, upon encoun-
tering a node that corresponds to a function f ∈ KG, a
stub node is generated instead of the PDG that represents f.
Therefore, like the filter above, all the nodes and edges that
correspond to f are filtered in such a way as not to affect the
construction of SDG. For security auditing purposes, the stub
node is annotated with the name of the function and labeled
as known-good.

Basically, the above two filters correspond to 1) functions
that are known to be irrelevant to the auditing of XMLi,
XPathi, and SQLi issues; and 2) functions that may be relevant
to security but are known (or assumed) to be correct or free
from security issues. Hence, it is clear that filtering such
functions does not affect soundness. For example, we observed
that Java libraries responsible for invoking the HTTP GET
and POST parameters are commonly present in the original
program chops, though these libraries are known to be irrele-
vant for our security analysis purpose. We would also assume
that input sanitization functions provided by Apache [36] and
OWASP [26] are correct and do not require auditing. In our
tool, we predefine 22 functions as irrelevant and 15 functions
as known-good.

Definition 8 (Filter 3: No input). Filter those sinks that are
not influenced by any input source. This means that if a sink s
is not connected to any input source in I , it is removed from
the SDG as well as all the edges leading to it.

Those sinks that are not influenced by any input sources

would not cause any security issues and, thus, are not relevant
to security auditing. Clearly, this implies that the resulting
code, after applying Filter 3 to SDG, is still sound and yet
more precise.

Definition 9 (Filter 4: Declassification). Filter the secure
paths from chop C(I, s). Let D ⊆ N be the set of declassifier
nodes in SDG, which corresponds to the type of sink s. Let
P be a set of paths from input sources I to s. If there is a
declassifier node d ∈ D on a path p ∈ P , then the path p is
removed from C(I, s).

The presence of a declassifier on a path p in C(I, s), which
is adequate for securing the sink, ensures that values from input
sources are properly validated and sanitized before being used
in s, as far as path p is concerned. Hence, the resulting code
after filtering such paths is still sound and yet more precise.

Note that this filtering process is performed using the IFC
analysis technique discussed earlier. We use information flow
control to filter out those paths, from the set of paths that
are presented to the security auditor, that do not contain any
violation according to the LLH lattice.

Definition 10 (Filter 5: Automated fixing). Automatically
fix those sinks that can be identified as definitely vulnerable
and that can be properly fixed without user intervention. This
means that, after fixing a vulnerable sink s, the whole chop
C(I, s) does not require to be audited.

A sink which directly uses the user input is definitely
vulnerable. It can also be fixed by applying an adequate
sanitization function on the input. For example, consider an
XPath sink:

xpath.evaluate("/users/user[@account=’"+req.getParameter("
account")+"’]")

The input req.getParameter("account") is di-
rectly used in the sink without going through any other pro-
gram operations. Thus, while the sink is definitely vulnerable,
it can also be automatically fixed by wrapping a standard
sanitization routine around the input as below:

xpath.evaluate("/users/user[@account=’"+ESAPI.encoder().
encodeForXPath(req.getParameter("account"))+"’]")

Clearly, automated fixing is not possible for all cases, espe-
cially when an input passes through functions and operations
that cannot be reasoned with by our analysis. Fixing is also not
possible when our analysis cannot determine the appropriate
sanitization function to use according to the type of sink and
how the input is used in the sink (context). Specifically, there
are four types of cases where automated fixing is performed
by our approach, which are listed in Table I.

First, the IFC analysis identifies the vulnerability category
of a sink and the input which is directly used in the sink. It then
extracts the query string from the sink statement and tries to
find an appropriate sanitization function by matching the string
with context patterns in Table I to identify the context in which
the input appears (e.g. attribute or tag value). Extracting the
query string may require tracking back the variables used in the
sink, which is performed by traversing the nodes in the chop
C(I, s) backwards starting from s. No fix is made if pattern
matching is unsuccessful. Fixes are applied in source code by
replacing the original vulnerable statement with the modified,

558

TABLE I. AUTOMATED VULNERABILITY FIXING RULES

Vulnerability- Context Context Pattern Security API

Category of sink

SQLi SQL attribute "Select attrb From table Where attrb="+input ESAPI.encoder().encodeForSQL()
XPathi XPath attribute "/tag.../tag[@attrb|tag/text()="+input+"]" ESAPI.encoder().encodeForXPath()
XMLi XML attribute "<element attrb="+input ESAPI.encoder().encodeForXMLAttribute()
XMLi XML tag "<tag>"+input+"</tag>" ESAPI.encoder().encodeForXML()

secure statement as shown in Listing III-E. It is possible as we
keep the mappings between the nodes in the chops and their
corresponding source code line numbers.

Hence, as we filter only those cases that can be appro-
priately fixed, the resulting report after filtering them is still
sound and yet more precise for security auditing.

The appropriate sanitization functions shown in Table I are
from OWASP [26] and are configured in our tool. However,
users may also choose to use their own set of sanitization
functions by modifying its configuration file.

F. Path Condition

Our security slices provide an auditor with the information
about how data from input sources could influence operations
at sinks. However, information about why input sources could
have an influence on sinks would be useful for security analysts
to assess the risks.

Such information could be obtained by extracting path
conditions. A path condition PC(i, s) states the necessary
condition for the presence of information flow from an input
source i ∈ I to a sink s ∈ S via one or more paths. It can be
computed from the security slice SS(I, s) using the algorithm
given by Snelting [37]:

1) compute all the paths P from I to s in SS(I, s).
2) for every node n ∈ p on a path p ∈ P , compute the

execution condition E(n). The execution condition E(n)
is a necessary condition for the execution of n, which
can be computed by traversing the incoming control-
dependence edges and collecting the predicates of the
ancestor nodes, until a root node of SS(I, s) is reached.
Typically, E(n) includes conditions from if-, for-, or
while- statements.

3) a path condition for p is the conjunctive combination of
the execution conditions:

PC(p) =
∧
n∈p

E(n)

4) when more than one path exist between i and s, the path
condition of multiple paths is the disjunctive combination
of the path conditions for individual paths:

PC(i, s) =
∨

p=i→�s

PC(p)

If the auditor finds that the condition is impossible, the
corresponding path could be safely ignored for security audit-
ing. On the other hand, if the conditions are satisfiable, the
analyst could verify whether they allow insecure information
flow and, thus, determine the causes of security vulnerabilities.
To illustrate, in our running example program in Listing 1, a
path exists from an input source at line 4 to the sink at line 14.

Assuming that the program does not contain any sanitization
function, the following path condition would be computed and
reported to the auditor:

E(5) = mode.equals("login")

PC(4, 14) = E(5) = mode.equals("login")

IV. EVALUATION

A. Research Questions

To evaluate whether our approach achieves precision,
soundness and scalability in providing assistance to security
auditing, we aim to answer the following research questions:

1) Question 1. (Precision) How much reduction can be
expected from security slicing in terms of source code
to be inspected? Is the reduction practically significant?

2) Question 2. (Soundness) Do we extract all the statements
that are relevant to auditing XMLi, XPathi, and SQLi
vulnerabilities?

3) Question 3. (Scalability) Does the tool scale to realistic
systems in terms of run-time performance?

B. Test Subjects

Table II shows the five Web applications/services that
we used in our evaluation. It reports the sizes of the test
subjects in terms of lines of code (LOC). The test subjects
have an average size of 28 kLOC, and the largest one has
52 kLOC, which is fairly typical for that type of systems.
The third column in Table II shows the numbers of Web
programs (#Prog.), i.e. JSP, Java servlets and classes, contained
in each test subject and analyzed by our tool JoanAudit. The
table also reports the numbers of input sources (#Sources),
sinks (#Sinks), and declassifiers (#Declassifiers) that JoanAudit
identified. For sinks and declassifiers, the numbers are shown
separately with respect to XML, XPath, and SQL. Some sinks
are very general and are exploitable in various ways (e.g.
sinks that allow attackers to load arbitrary classes on server
side). Due to their universality, we also considered them in
our evaluation and their number is listed in column “others”
in Table II.

WebGoat [38] is a deliberately in-secured Web applica-
tion/service for the purpose of teaching security vulnerabilities.
It contains various realistic vulnerabilities that are commonly
found in Java Web applications. Apache Roller [39] is a blog-
ging application that supports thousands of users and blogs. It
also contains Web service APIs. Pebble [40] is also a blogging
application that offers some Web service capabilities, e.g. an
RPC API for blog post notifications. Regain [41] is a search
engine that allows users to search for files over a Web front-
end. PubSubHubbub (PubSub) [42] is the implementation of an
open protocol for distributed publish/subscribe communication
on the Internet. We selected WebGoat, Apache Roller and

559

Pebble since they are commonly used as benchmarks for
security [15], [43], [44], [13], [45], and Regain since it is used
in practice by dm, one of the biggest drug stores in Europe.
These test subjects, together with our tool, can be obtained
from our Website [25].

TABLE II. TEST SUBJECTS

Java #Prog. #Sources #Sinks #Declassifiers

LOC

X
M

L

X
P

at
h

S
Q

L

o
th

er
s

X
M

L

X
P

at
h

S
Q

L

WebGoat 5.2 24,608 14 40 3 1 29 13 0 0 25

Roller 5.1.1 52,433 3 14 13 0 0 0 11 0 0

Pebble 2.6.4 36,592 3 6 7 0 0 0 3 0 0

Regain 2.1.0 23,182 1 1 1 0 0 0 3 0 0

PubSub 0.3 1,964 4 16 13 4 0 0 4 0 0

C. Experiment

1) Experimental design: To answer the first question, we
compare the sizes of the slices produced by our security slicing
method and state-of-the-art chopping (using Joana’s chopping
functionality) in terms of the numbers of nodes and edges.
That is, for each sink s, we compute a slice using our approach
and a normal, unfiltered chop with the criterion (I, s). We use
the Wilcoxon signed-rank test over the slice sizes across Web
programs so as to determine whether the differences in sizes
of the two types of slices are statistically significant. But what
is more important is whether this difference is of practical
significance, i.e., does it save significant auditing effort?

To answer the second question, we checked all the security
slices produced by our method against the source code to
determine whether they omit any statement relevant to auditing
XMLi, XPathi, and SQLi vulnerabilities.

To answer the last question, we evaluate our tool on
realistic test subjects, such as Apache Roller and Pebble (> 36
kLOC), and report its runtime performance results.

2) Results: As shown in Table II, we analyzed 25 Web
programs from the five test subjects. For each Web program,
an SDG was constructed. We computed normal chops and
security slices from each SDG. The numbers of normal chops
and security slices extracted from each Web program/SDG are
given in the third column (Chops) of Table III. No chopping
and security slicing was performed for 11 of the sinks in
Table II because the tool determined that those sinks are not
influenced by any input source. Overall, we computed 73
normal chops from 77 sources and 84 sinks, and 21 security
slices from 25 Web programs.

The sizes (nodes and edges) of SDGs, normal chops, and
security slices are reported in Table III. The last column in
Table III reports the final output of JoanAudit, i.e. the numbers
of remaining security slices that require auditing after filtering
has been performed. Some of the computed security slices are
completely filtered when, for example, all the paths in a slice
are detected to be secured by the use of declassifiers.

To determine how much reduction security slicing achieves
compared to normal chopping, we compute the relative size
reduction of security slices compared to the unfiltered standard
chop. The results (in percentage) are given in Table III (in
brackets). We can observe that, both in terms of the number
of nodes and edges, our security slices are significantly smaller

than their normal counterparts. With mean and median reduc-
tions above 80% and 73%, respectively (shown in the last
two rows of Table III), one can expect significant practical
benefits. Not surprisingly, Wilcoxon signed-rank tests over 25
observations (#Prog.) show that the size reductions achieved
with security slices are statistically significant at the 99% level.

The above comparison result reports the benefit of security
slicing over chopping using a tool (Joana) that is not easy
to configure and use for standard engineers. Furthermore, for
situations where security auditors have no program chopping
tool they know how to use or have access to, we can also
check the percentage of the entire program code that needs to
be audited with security slices. Comparing the security slice
sizes and the SDG sizes in Table III, we can observe that on
average security slicing would require the audit of only 0.8%
of the code for all the sinks in a given Web program.

Since the unfiltered standard chops and the security slices
are both based on the control-flow paths between sinks and
sources, the size reduction of security slicing as compared
to normal chopping in Table III is directly correlated to the
reduction of manual effort required from security auditors for
verifying vulnerable paths in the source code. Hence, these
results answer our first research question by clearly suggesting
that a significant reduction in code inspection can be expected.

Next, for all of the security slices from each test subject,
we manually checked if those slices miss any information
important for auditing their security vulnerability. Listing 3
shows the code corresponding to a security slice reported by
JoanAudit which we use as an example to illustrate how slices
were inspected. Since our approach relies on a predefined set of
signatures of sinks, sources and declassifiers, an auditor knows
where to start with the manual inspection. In our example, an
auditor would first look at the sink function at line 5 and the
parameters used in the sink. Then she would analyze the path
condition at line 3 reported by the tool and track back the
parameter used in the sink (query at line 5) to the source call
(getParameter() at line 1). By doing so, an auditor would
be able to determine the vulnerability condition of the sink.
Following a similar process, we verified that all security slices
provided sufficient information for security auditing, which
addresses our second question.

1 String accountNumber = s.getParameter(ACCT_NUM, "101");
2 String query = "SELECT * FROM user_data WHERE userid = " +

accountNumber;
3 if (accountNumber.toString().equals(answer_results.

getString(1))) { /* ... */ } else {
4 Statement statement = conn.createStatement(/*...*/);
5 ResultSet results = statement.executeQuery(query);
6 }

Listing 3. Slice from the WebGoat (BlindNumericSqlInjection).

During our manual inspections of security slices, we also
observed that filtering rules have different effects on different
test subjects. For example, for Apache Roller, Regain and
PubSub, the larger part of the slice size reduction is mainly
due to the declassification filter and the filtering of known-
good library files whereas for WebGoat, the majority of the
slice size reduction is due to declassification, the filtering of
irrelevant library files and automated fixing (four vulnerable
sinks were fixed automatically).

Last, as shown in Table IV, we measured the time taken
for computing each step in the generation of security slices

560

TABLE III. COMPARISON OF NORMAL CHOPPING AND SECURITY SLICING

Program Name Chops SDG Chopping SecSlicing

Nodes Edges Nodes Edges Nodes (%) Edges (%) SecSlices

to be audited

WebGoat 43 160,573 923,709 7,980 3,975 1,533 (81) 764 (81) 14

1 BackDoors 3 11,196 63,350 640 319 359 (44) 179 (44) 2

2 BlindNumericSqlInjection 2 9,573 52,262 173 86 124 (28) 62 (28) 1

3 BlindScript 5 21,558 140,134 1,534 765 0 (100) 0 (100) 0

4 BlindStringSqlInjection 2 9,616 52,580 173 86 124 (28) 62 (28) 1

5 InsecureLogin 3 11,998 68,257 1,450 725 0 (100) 0 (100) 0

6 MultiLevelLogin1 5 13,525 80,281 874 435 0 (100) 0 (100) 0

7 MultiLevelLogin2 5 12,546 71,773 1,290 641 0 (100) 0 (100) 0

8 SqlAddData 3 10,565 58,219 198 98 157 (21) 78 (20) 2

9 SqlModifyData 5 10,623 58,350 409 203 368 (10) 183 (10) 4

10 SqlNumericInjection 3 13,576 77,717 239 119 58 (76) 29 (76) 1

11 SqlStringInjection 3 12,155 69,502 437 217 113 (74) 56 (74) 1

12 WsSAXInjection 1 8,075 45,164 140 70 140 (0) 70 (0) 1

13 WsSqlInjection 2 9,191 49,232 333 166 0 (100) 0 (100) 0

14 XPATHInjection 1 6,376 36,888 90 45 90 (0) 45 (0) 1

Roller 12 16,361 142,811 1,492 743 43 (97) 21 (97) 1

15 CommentDataServlet 1 11,119 115,398 128 64 0 100 0 (100) 0

16 AuthorizationServlet 1 752 3,578 43 21 43 0 21 (0) 1

17 OpenSearchServlet 10 4,490 23,835 1,321 658 0 100 0 (100) 0

Pebble 5 1,605 7,824 79 39 56 (29) 28 (28) 1

18 ImageCaptchaServlet 1 829 4,033 56 28 56 0 28 0 1

19 SecurityUtils 3 236 1,128 18 9 0 100 0 100 0

20 XmlRpcController 1 540 2,663 5 2 0 100 0 100 0

Regain 1 43,197 622,748 100 50 0 (100) 0 (100) 0

21 FileServlet 1 43,197 622,748 100 50 0 (100) 0 (100) 0

PubSub 12 37,567 307,390 1,209 603 530 (56) 264 (56) 5

22 Published.Discovery 2 160 726 53 26 53 (0) 26 (0) 2

23 PuSHhandler 2 35,968 299,363 850 425 410 (52) 205 (52) 1

24 PubSubHubbub.Discovery 2 182 843 67 33 67 (0) 33 (0) 2

25 Subscriber 6 1,257 6,458 239 119 0 (100) 0 (100) 0

Total 73 259,303 2,004,482 10,860 5,410 2,162 (80) 1,077 (80) 21

Mean 3 10,372 80,179 434 216 86 (80) 43 (80) 1

Median 2 9,616 52,580 198 98 53 (73) 26 (73) 1

and normal chops. We observe that the SDG construction
takes longer than other analysis steps. This is because SDG
construction has a worst case time complexity of O(N3) with
N being the size of the underlying dependence graph, whereas
the rest of the analysis algorithms are much less complex
(e.g. program chopping can be performed in linear time on
the number of nodes in SDG). More importantly, we observe
that JoanAudit took an average of 50s to analyze an entire test
subject and required a maximum of 2 minutes to analyze the
largest one. This shows that our tool can be practically run on
Java Web systems that are in the same ball park size range
as our test subjects, which is the case for many such systems.
Given that security auditors typically have to manually audit
large chunks of code in practice, our tool can be a great asset.

TABLE IV. RUNTIME PERFORMANCE (IN MILLISECONDS)

SDG Source/Sink Chopping Filtering Total

Generation Identification

WebGoat 124,301 504 12,266 694 137,765

Roller 23,815 56 763 69 24,703

Pebble 4,570 20 128 53 4,771

Regain 44,311 40 285 30 44,666

PubSub 39,213 85 965 153 40,416

D. Threats to Validity

Our empirical evaluation is subject to threats to validity.
The results were obtained from five selected Web application-
s/services, and hence, they cannot necessarily be generalized
to all Web services or Web applications. However, by choosing
test subjects that vary in sizes and functionalities, and by
picking realistic Java projects (with 28 kLOC on average)
that are well-known benchmarks in the context of security,
we minimized this threat.

Since our security slicing approach and tool are targeted
towards Java Web systems, the approach may not produce
the same results for Web systems based on other languages.
However, since the fundamental principles of our approach
are not programming language specific, they can be adapted
to other languages such as C ++ using C ++ program slicing tools
(e.g. CodeSurfer [46]).

V. RELATED WORK

Our work is most closely related to static taint analysis and
program slicing approaches.

A. Taint analysis

Taint analysis approaches label data from input sources
as tainted data and then, detect vulnerabilities if the tainted
data flows into sinks without passing through any sanitization
function (declassifier).

Almorsy et al. [47], Livshits and Lam [13], Pérez et al.
[16], Tripp et al. [15], [17], and Huang et al. [18] developed
taint analysis tools that support Java Web systems.

In general, there are three key differences between static
taint analysis approaches and our security slicing approach.
First, these analyses typically deal with only one security
property (integrity) whereas our IFC analysis, by means of a
security lattice, can deal with multiple security properties (in
our case, integrity and confidentiality). Second, taint analysis
does not perform control-dependency analysis. This informa-
tion could be essential for correctly identifying vulnerabilities
or auditing the correctness of input sanitization procedures
since if-constructs are often used to check user inputs. For

561

example, consider a simplified example from one of our test
subject WebGoat below:

1 String employeeId = req.getParameter(’id’);
2 if(Integer.parseInt(employeeId) == EMPLOYEE_ID))
3 ResultSet results = stmt.executeQuery("SELECT * FROM

employee WHERE userid =" + employeeId); //SQL sink

In the above example, a taint analysis approach would
falsely report a vulnerability since there is a data-flow from the
input source at line 1 to the sink at line 3, without considering
the sanitization through a call to parseInt() at line 2 that
does not have an impact on the value of employeeId itself.
By contrast, our approach correctly identifies the path from
line 1 to line 3 as secure due to the parseInt() declassifier
and, thus, does not report a vulnerability. It is common for
software engineers to use sanitization procedures as in the
example above. Hence, if these procedures need to be audited,
our approach would be more suitable than a taint analysis
approach.

Jovanovic et al.’s taint analysis tool [14] reported five
false positives due to such cases. Tripp et al. [17] reported
40% false positives on analyzing WebGoat. From our manual
inspection of some of the WebGoat source code, missing
control-dependency information seems to be responsible for at
least five of their false positive cases. Likewise, in [48] it was
reported that Livshits and Lam’s taint analysis approach [13]
yielded 20% false positives due to missing control-dependency
information.

Last, our approach filters irrelevant and secure code
whereas taint analysis approaches typically report all the data-
flow traces without any form of filtering. Furthermore, our
approach is dedicated to XMLi, XPathi and SQLi vulnerabil-
ities. Among the current taint analysis approaches, to the best
of our knowledge, only Pérez et al. [16] readily address XMLi
and XPathi vulnerabilities. However, since Pérez et al.’s work
is not evaluated in [16], it is difficult to verify the effectiveness
of their tool. It is also possible to adapt the other approaches
to support XMLi and XPathi and even equip them with our
proposed filtering mechanisms. However, since developers are
often not security experts, these tasks may not be trivial.
By contrast, our tool is already configured with an extensive
library of input sources, sinks, declassifiers with respect to
XMLi, XPathi and SQLi and thus, can be used out-of-the-box.

B. Program slicing

Krinke [49] proposed barrier slicing approaches that could
allow auditors to filter specific parts of the program that are
known to be correct. Our approach makes use of this idea to
prune Java libraries that are irrelevant to our security auditing
purposes. Despite the various slicing approaches proposed in
the literature, in practice there are only two slicers that can
handle full Java: Indus [50] and Joana [24]. Indus is built on
Soot [51], a Java bytecode analysis framework, and is less
precise than Joana as it does not fully support interprocedural
slicing [24]. As discussed in our approach section, Joana
provides a sound and precise approach for computing slices
and chops. As our approach and tool are built on Joana, we
have the same advantages. However, Joana only generates
slices for general purposes like checking information flow and
debugging. By contrast, we additionally provide techniques for
pruning statements in the slices produced by Joana and target

the security auditing of vulnerabilities. Joana is, therefore, our
baseline of comparison.

Yamaguchi et al. [22], [52] also proposed methods that
assist security auditing for C/C ++ programs by using machine
learning to classify functions as vulnerable/non-vulnerable
based on the absence/presence of sanitization [52], or by
applying intraprocedural analysis on the code property graph
(a combination of AST, CFG and PDG) of a program [22].
Besides the fact that we focus on Java instead of C/C ++, our
approach is based on interprocedural analysis which takes the
call-return and parameter-passing mechanisms of the program
into account.

The key difference between our approach and the above
approaches is that they do not focus on minimizing the size
of code extracted since their main objective is to extract
all the possible defense features. By contrast, we extract all
the features relevant for security auditing and yet, we also
minimize the size of code extracted by filtering irrelevant or
secure code so that security auditing is scalable and practical.

VI. CONCLUSION AND FUTURE WORK

Injection vulnerabilities are among the most common and
serious security threats to Web applications and services.
A number of approaches have been developed to identify
many of those vulnerabilities in source code, such as taint
analysis. However, they still generate too many false alarms
to be practical, or miss some vulnerabilities. Therefore, they
cannot effectively support security auditing by identifying and
fixing vulnerabilities in source code in a scalable manner. In
this paper, we present an approach, based on state-of-the-art
program slicing, to assist the security auditing of common
injection vulnerabilities, namely XMLi, XPathi, and SQLi. For
every security-sensitive sink in the program, we extract a sound
and precise slice, along with path conditions, to help analysts
perform security auditing on minimal chunks of source code.
This is meant to be complementary to current vulnerability
detection approaches by helping the auditor identify false
positives and negatives. A prototype tool that automates our
approach was fully implemented and was used to generate 21
security slices from 25 Web programs. In comparison with
conventional program slices, we observed that our security
slices are 80% smaller on average while still retaining all the
information relevant for verifying XMLi, XPathi, and SQLi
vulnerabilities. We also made the tool and the test subjects
available online so that researchers can validate and build on
our results.

In the future, we intend to enhance our current approach
by automating the vulnerability verification task. In particular,
we aim to develop techniques that scale symbolic execution in
order to make it applicable to the feasibility analysis of path
conditions in conjunction with security threat conditions.

ACKNOWLEDGMENT

We would like to thank Jürgen Graf and Martin Mohr
from Karlsruher Institute of Technology (KIT) for their kind
and valuable help regarding Joana. This work is supported by
the National Research Fund, Luxembourg (FNR/P10/03 and
FNR9132112).

562

REFERENCES

[1] OWASP, “OWASP Top 10,” https://www.owasp.org/index.php/
Category:OWASP Top Ten Project, 2013.

[2] N. Antunes and M. Vieira, “Soa-scanner: An integrated tool to detect
vulnerabilities in service-based infrastructures,” in Services Computing

(SCC), 2013 IEEE International Conference on. IEEE, 2013, pp. 280–
287.

[3] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated
testing for sql injection vulnerabilities: An input mutation approach,”
in Proceedings of the 2014 International Symposium on Software

Testing and Analysis, ser. ISSTA 2014. New York, NY, USA: ACM,
2014, pp. 259–269. [Online]. Available: http://doi.acm.org/10.1145/
2610384.2610403

[4] N. Laranjeiro, M. Vieira, and H. Madeira, “A technique for deploying
robust web services,” Services Computing, IEEE Transactions on, vol. 7,
no. 1, pp. 68–81, Jan 2014.

[5] J. Thomé, A. Gorla, and A. Zeller, “Search-based security testing of
web applications,” in Proceedings of the 7th International Workshop

on Search-Based Software Testing, ser. SBST 2014. New York, NY,
USA: ACM, 2014, pp. 5–14. [Online]. Available: http://doi.acm.org/
10.1145/2593833.2593835

[6] C. Mainka, M. Jensen, L. L. Iacono, and J. Schwenk, “Making xml
signatures immune to xml signature wrapping attacks,” in Cloud Com-

puting and Services Science. Springer, 2013, pp. 151–167.

[7] T. M. Rosa, A. O. Santin, and A. Malucelli, “Mitigating xml injection
0-day attacks through strategy-based detection systems,” Security &

Privacy, IEEE, vol. 11, no. 4, pp. 46–53, 2013.

[8] A. Razzaq, K. Latif, H. F. Ahmad, A. Hur, Z. Anwar, and P. C.
Bloodsworth, “Semantic security against web application attacks,” In-

formation Sciences, vol. 254, pp. 19–38, 2014.

[9] Z. Su and G. Wassermann, “The essence of command injection
attacks in web applications,” in Conference Record of the 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, ser. POPL ’06. New York, NY, USA: ACM, 2006,
pp. 372–382. [Online]. Available: http://doi.acm.org/10.1145/1111037.
1111070

[10] W. Halfond, A. Orso, and P. Manolios, “Wasp: Protecting web appli-
cations using positive tainting and syntax-aware evaluation,” Software

Engineering, IEEE Transactions on, vol. 34, no. 1, pp. 65–81, Jan 2008.

[11] H. Shahriar and M. Zulkernine, “Information-theoretic detection of
sql injection attacks,” in High-Assurance Systems Engineering (HASE),

2012 IEEE 14th International Symposium on, Oct 2012, pp. 40–47.

[12] Z. Tao, “Detection and service security mechanism of xml injection
attacks,” in Information Computing and Applications. Springer, 2013,
pp. 67–75.

[13] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities
in java applications with static analysis,” in Proceedings of the

14th Conference on USENIX Security Symposium - Volume 14, ser.
SSYM’05. Berkeley, CA, USA: USENIX Association, 2005, pp.
18–18. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251398.
1251416

[14] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis tool
for detecting web application vulnerabilities,” in Security and Privacy,

2006 IEEE Symposium on, May 2006, pp. 6 pp.–263.

[15] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman,
“Taj: Effective taint analysis of web applications,” in Proceedings

of the 2009 ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI ’09. New York, NY, USA:
ACM, 2009, pp. 87–97. [Online]. Available: http://doi.acm.org/10.
1145/1542476.1542486

[16] P. M. Pérez, J. Filipiak, and J. M. Sierra, “LAPSE+ static analysis
security software: Vulnerabilities detection in java ee applications,” in
Future Information Technology. Springer, 2011, pp. 148–156.

[17] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri,
“Andromeda: Accurate and scalable security analysis of web
applications,” in Proceedings of the 16th International Conference

on Fundamental Approaches to Software Engineering, ser. FASE’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 210–225. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-37057-1 15

[18] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis
for java web applications,” in Fundamental Approaches to Software

Engineering, ser. Lecture Notes in Computer Science, S. Gnesi
and A. Rensink, Eds. Springer Berlin Heidelberg, 2014, vol.
8411, pp. 140–154. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-54804-8 10

[19] A. Kiezun, P. Guo, K. Jayaraman, and M. Ernst, “Automatic creation of
sql injection and cross-site scripting attacks,” in Software Engineering,

2009. ICSE 2009. IEEE 31st International Conference on, May 2009,
pp. 199–209.

[20] Y. Zheng and X. Zhang, “Path sensitive static analysis of web appli-
cations for remote code execution vulnerability detection,” in Software

Engineering (ICSE), 2013 35th International Conference on, May 2013,
pp. 652–661.

[21] G. Yang, S. Person, N. Rungta, and S. Khurshid, “Directed incremental
symbolic execution,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 1, pp. 3:1–3:42, Oct. 2014. [Online]. Available: http://doi.acm.org/
10.1145/2629536

[22] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proceedings

of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 590–604.
[Online]. Available: http://dx.doi.org/10.1109/SP.2014.44

[23] M. Weiser, “Program slicing,” in Proceedings of the 5th International

Conference on Software Engineering, ser. ICSE ’81. Piscataway, NJ,
USA: IEEE Press, 1981, pp. 439–449. [Online]. Available: http://dl.
acm.org/citation.cfm?id=800078.802557

[24] C. Hammer, “Information flow control for java - a comprehensive
approach based on path conditions in dependence graphs,” Ph.D.
dissertation, Universität Karlsruhe (TH), Fak. f. Informatik, Jul.
2009, iSBN 978-3-86644-398-3. [Online]. Available: http://digbib.
ubka.uni-karlsruhe.de/volltexte/1000012049

[25] J. Thomé, “JoanAudit: a security slicing tool,” http://wwwen.uni.lu/
snt/research/software verification and validation lab/tools from svv
lab, 2015.

[26] OWASP, “OWASP ESAPI,” https://www.owasp.org/index.php/
Category:OWASP Enterprise Security API, 2015.

[27] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Transactions on Programming Languages

and Systems (TOPLAS), vol. 12, no. 1, pp. 26–60, 1990.

[28] K. J. Ottenstein and L. M. Ottenstein, “The program dependence graph
in a software development environment,” SIGPLAN Not., vol. 19,
no. 5, pp. 177–184, Apr. 1984. [Online]. Available: http://doi.acm.org/
10.1145/390011.808263

[29] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its use in optimization,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp.
319–349, 1987.

[30] J.-F. Bergeretti and B. A. Carré, “Information-flow and data-flow analy-
sis of while-programs,” ACM Transactions on Programming Languages

and Systems (TOPLAS), vol. 7, no. 1, pp. 37–61, 1985.

[31] D. Jackson and E. J. Rollins, “Chopping: A generalization of slicing,”
DTIC Document, Tech. Rep., 1994.

[32] T. Reps and G. Rosay, “Precise interprocedural chopping,” in ACM

SIGSOFT Software Engineering Notes, vol. 20, no. 4. ACM, 1995,
pp. 41–52.

[33] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing robust
declassification and qualified robustness,” J. Comput. Secur., vol. 14,
no. 2, pp. 157–196, Apr. 2006. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1150577.1150580

[34] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE J.Sel. A. Commun., vol. 21, no. 1, pp. 5–19, Sep. 2006.
[Online]. Available: http://dx.doi.org/10.1109/JSAC.2002.806121

[35] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifi-
cation,” in Computer Security Foundations, 2005. CSFW-18 2005. 18th

IEEE Workshop. IEEE, 2005, pp. 255–269.

[36] Apache, “StringEscapeUtils,” https://commons.apache.org/proper/
commons-lang/javadocs/api-3.1/org/apache/commons/lang3/
StringEscapeUtils.html, 2015.

563

[37] G. Snelting, “Combining slicing and constraint solving for validation
of measurement software,” in Static Analysis, ser. Lecture Notes in
Computer Science, R. Cousot and D. Schmidt, Eds. Springer Berlin
Heidelberg, 1996, vol. 1145, pp. 332–348. [Online]. Available: http://
dx.doi.org/10.1007/3-540-61739-6 51

[38] OWASP, “OWASP WebGoat project,” https://www.owasp.org/index.
php/Category:OWASP WebGoat Project, 2015.

[39] Apache, “Apache Roller blogging application,” http://roller.apache.org/,
2015.

[40] Pebble, “A lightweight, open source, java ee blogging tool,” http://
pebble.sourceforge.net/, 2015.

[41] Regain, “Regain search engine,” http://regain.sourceforge.net/, 2015.

[42] PubSubHubbub, “A simple, open, webhook based pubsub protocol
& open source reference implementation,” https://code.google.com/p/
pubsubhubbub/, 2015.

[43] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “Aside: Ide support
for web application security,” in Proceedings of the 27th Annual

Computer Security Applications Conference, ser. ACSAC ’11. New
York, NY, USA: ACM, 2011, pp. 267–276. [Online]. Available: http://
doi.acm.org/10.1145/2076732.2076770

[44] Y. Liu and A. Milanova, “Practical static analysis for inference of
security-related program properties,” in Program Comprehension, 2009.

ICPC ’09. IEEE 17th International Conference on, May 2009, pp. 50–
59.

[45] A. Møller and M. Schwarz, “Automated detection of client-state ma-
nipulation vulnerabilities,” Transactions on Software Engineering and

Methodology, vol. 23, no. 4, August 2014, earlier version in Proc. 34th
International Conference on Software Engineering (ICSE) 2012.

[46] T. Teitelbaum, “Codesurfer,” SIGSOFT Softw. Eng. Notes, vol. 25,
no. 1, pp. 99–, Jan. 2000. [Online]. Available: http://doi.acm.org.proxy.
bnl.lu/10.1145/340855.341076

[47] M. Almorsy, J. Grundy, and A. S. Ibrahim, “Supporting automated
vulnerability analysis using formalized vulnerability signatures,” in Pro-

ceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering. ACM, 2012, pp. 100–109.

[48] L. K. Shar and H. B. K. Tan, “Auditing the XSS defence features
implemented in web application programs,” IET Software, vol. 6, no. 4,
pp. 377–390, 2012.

[49] J. Krinke, “Slicing, Chopping, and Path Conditions with Barriers,”
Software Quality Journal, vol. 12, no. 4, pp. 339–360, Dec.
2004. [Online]. Available: http://link.springer.com/10.1023/B:SQJO.
0000039792.93414.a5

[50] G. Jayaraman, V. P. Ranganath, and J. Hatcliff, “Kaveri: Delivering the
indus java program slicer to eclipse,” in Fundamental Approaches to

Software Engineering. Springer, 2005, pp. 269–272.

[51] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot - a java bytecode optimization framework,” in
Proceedings of the 1999 Conference of the Centre for Advanced Studies

on Collaborative Research, ser. CASCON ’99. IBM Press, 1999,
pp. 13–. [Online]. Available: http://dl.acm.org/citation.cfm?id=781995.
782008

[52] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:
Exposing missing checks in source code for vulnerability discovery,”
in Proceedings of the 2013 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’13. New York, NY, USA:
ACM, 2013, pp. 499–510. [Online]. Available: http://doi.acm.org/10.
1145/2508859.2516665

APPENDIX A. IMPLEMENTATION

We implemented our approach as a Java application called
JoanAudit, which is publicly available [25]. The tool makes
use of Joana [24] which is based on IBM’s WALA framework
(http://wala.sourceforge.net). The API is already capable of
generating SDGs from Java bytecode and performing IFC-
based slicing. However, as Joana is not specifically designed
for our security analysis purposes, the additionally required
functionalities for security slicing are implemented and incor-
porated in JoanAudit, as explained below.

Fig. 4 illustrates the architecture of the tool. Given a Java
Web program (i.e. JSP or Java servlet), JoanAudit performs
the six analysis steps discussed in Section III.

As input, JoanAudit requires the bytecode of the program
to be analyzed. The tool contains two XML configuration files–
one specifies a rich set of the Java bytecode signatures of
input sources, sinks and declassifiers, and the other specifies a
configuration for our security lattice explained in Section III-D.
Based on the first configuration file, the tool identifies input
sources, sinks and declassifiers and annotates them in the SDG
automatically. Using the annotations, JoanAudit generates a
program chop for each sink. Based on the security lattice
configuration file, it performs IFC analysis on the program
chops and prunes the secure paths. It then extracts path
conditions from the remaining paths in the chops to help guide
the security auditing.

As output, the tool generates a report that leads the security
auditor to potentially vulnerable parts of the program. A sam-
ple report is shown in Listing 4. The report contains potentially
vulnerable paths (sequences of line numbers) and highlights
the control-flow, data-depenencies, control-dependencies, and
path conditions along these paths. The scopes (the classes to
which the line numbers refer to) are parenthesized with squared
brackets. The tool runs standalone and can be executed on the
command line. Specifying sanitization procedures (declassi-
fiers) is also straightforward by just adding the corresponding
bytecode method signature to the config.xml file.

For the automated fixing filter, we implemented a rudi-
mentary symbolic execution engine that supports simple string
operations. Whenever there is a direct flow from a source
to a sink, we compute the string s used in the sink by
symbolically executing all those operations on the path that
have an impact on s. The resulting string contains constant
and variable parts (symbolic input variables) that represent
the input source values (e.g. /users/user[@nick=’v1’
and @password=’v2’], where v1 and v2 are symbolic
input variables). Afterwards, we apply the patterns from Table I
to determine the appropriate sanitization functions.

Fig. 4. Architecture of JoanAudit.

1 For sink xpath injection (snk_xi)(145):
2 * Control Flow:[org/owasp/webgoat/lessons/XPATHInjection.

java]
131->132->138->139->140->141->142->143->144->145

3 * Data Flow:([org/owasp/webgoat/lessons/XPATHInjection.
java] 143->145)(141->145)(144->143)(143->144)
(131->143)(139->142)(140->141)(138->139)(131->132)

4 * Control Dependencies:([org/owasp/webgoat/lessons/
XPATHInjection.java] 143->145)(144->143)(143->144)
(142->143)(141->142)(140->141)(139->140)(138->139)
(132->138)

5 * Conditions :[org/owasp/webgoat/lessons/XPATHInjection.
java] 132

Listing 4. Sample report generated from WebGoat.

564

	Security slicing for auditing XML, XPath, and SQL injection vulnerabilities
	Citation

	Security Slicing for Auditing XML, XPath, and SQL Injection Vulnerabilities

