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Abstract

Distributed virtual environments (DVEs) are distributed systems that allow multiple geographically distributed clients
(users) to interact simultaneously in a computer-generated, shared virtual world. Applications of DVEs can be seen in
many areas nowadays, such as online games, military simulations, collaborative designs, etc. To support large-scale DVEs
with real-time interactions among thousands or even more distributed clients, a geographically distributed server architec-
ture (GDSA) is generally needed, and the virtual world can be partitioned into many distinct zones to distribute the load
among the servers. Due to the geographic distributions of clients and servers in such architectures, it is essential to effi-
ciently assign the participating clients to servers to enhance users’ experience in interacting within the DVE. This problem
is termed the client assignment problem (CAP) in this paper. We propose a two-phase approach, consisting of an initial
assignment phase and a refined assignment phase to address the CAP. Both phases are shown to be NP-hard. Several heu-
ristic assignment algorithms are then devised and evaluated via extensive simulations with realistic settings. We find that,
even under heterogeneous environments like the Internet where accurate input data for the assignment algorithms are usu-
ally impractical to obtain, the proposed algorithms are still beneficial to the performances of DVE.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, advances in high-speed network-
ing technologies, computer graphics and CPU pro-
cessing power have enabled the rapid development
of distributed virtual environments (DVEs). DVEs
are distributed systems that allow multiple geo-

graphically distributed clients (users) to explore
and interact with each other in real-time within a
shared, computer-generated 3D virtual world [1],
where each client is represented by an avatar. A cli-
ent controls the behavior of his/her avatar by vari-
ous inputs, and the updates of an avatar’s state
need to be sent to other clients in the same zone of
the virtual world to support the interactions among
clients. DVEs have been applied in many areas, such
as collaborative design, military simulations,
e-learning and multiplayer games [1].
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Developing DVEs faces many challenges. In par-
ticular, various resources are needed, e.g., network
bandwidth, CPU cycles, etc. The resource require-
ments of DVEs may increase quickly as the number
of simultaneous clients increases. In addition, the
network latency may damage the interactivity and
consistency of DVEs [2]. Moreover, since DVEs
are human-in-the-loop applications, cheating is also
an important problem that needs to be considered.
Thus, usually a server-based communication archi-
tecture is employed for DVE applications. For
example, popular Massively Multiplayer Online
Games (MMOGs) such as Everquest [3] and Ultima
Online [4] are operating on large clusters of servers.
However, putting all servers at a central geographic
location may result in high communication delays
for clients which are far from the servers. Moreover,
this centralized architecture is not scalable, since the
Internet connection for the whole server cluster may
fail. Someone may argue that multihoming1 can
resolve this problem. However, we should note that
in multihoming, two independent network links
from different ISPs may actually share the same
transmission line [5]. This problem essentially forms
a single point of failure in the network connections.

Therefore, a geographically distributed server

architecture (GDSA) is desirable to support large-
scale DVEs [6,7]. With this architecture, multiple
geographically distributed servers are connected to
each other, usually via well-provisioned connec-
tions. Each client is connected to one of these serv-
ers, and clients interact with each other through
these servers.

In order to deal with large-scale DVEs with hun-
dreds, or even thousands of clients interacting
simultaneously, usually the virtual world is spatially
partitioned into several distinct zones, with each
zone managed by only one server, as in [3]. A client
only interacts with other clients in the same zone,2

and may move to other zones. As a server only
needs to handle one or more zones instead of the
entire virtual world, the system is more scalable.
In this paper, we refer to such a partitioning
approach as the zone-based approach.

Due to the fact that clients in a DVE are geo-
graphically distributed and the heterogeneous nat-
ure of the Internet, a bad assignment of clients to
servers would result in degraded interactivity for
the DVE. For example, one of the most popular
approach to assign clients to servers in a DVE is
only based on the resource limitation, hence the
name resource-driven distribution [8,9]. Since the net-
work delays are not taken into account in this
approach, it is very likely that a large number of cli-
ents in the DVE may have poor interactivity due to
large client–server network delays. Thus, there is a
strong need for efficient mechanisms to assign the
participating clients to servers to reduce the client–
server communication delay. This is referred to as
the client assignment problem (CAP) in this paper.
We propose a two-phase approach to the CAP. In
the initial assignment phase, the zones of the virtual
world are assigned to servers. Then, in the refined

assignment phase, a client is assigned to an appro-
priate (usually nearby) server to communicate with
the server that is hosting the client’s zone. Based
on this two-phase approach, several assignment
algorithms are devised and evaluated. We show that
the greedy algorithms that take into account the cli-
ent–server round-trip network delays significantly
outperform a delay-oblivious algorithm, even when
the input data, i.e., network delays, to these algo-
rithms are inaccurate.

The rest of the paper is organized as follows. Sec-
tion 2 describes the geographically distributed ser-
ver architecture, the client assignment problem
and some related work. The proposed algorithms
are presented in Section 3. Section 4 addresses some
practical considerations in implementing the assign-
ment algorithms. Section 5 describes our evaluation
methodology, and results are discussed in Section 6.
Section 7 concludes the paper.

2. Problem formulation

2.1. Notations and concepts

In this paper, we focus on DVEs that adopt the
geographically distributed server architecture
(GDSA) [6,7] and the zone-based partitioning
approach as shown in Fig. 1. All geographically dis-
tributed servers are usually fully meshed with well-
provisioned network connections, although this is
not a required assumption for our approach.

Before formulating the client assignment prob-
lem, we introduce the following notations:

1 Multihoming is a networking technique to enhance the
reliability of the Internet connection of an IP network. In this
technique, the network in question establishes connections to two
or more completely different ISPs [5].

2 For simplicity, we say that a client is in a zone if its avatar is
currently residing in that zone.
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• ci – A client in the DVE.
• C = {c1, . . . ,ck} – The set that consists of all cli-

ents in the DVE.
• zi – A zone in the DVE.
• Z = {z1, . . . ,zn} – The set that consists of all

zones in the DVE.
• si – A server in the DVE.
• S = {s1, . . . , sm} – The set that consists of all serv-

ers in the DVE. We now introduce the following
definitions:

Definition 2.1 (Contact server). The contact server

of a client is the server that the client directly
connects to. A client only sends inputs to its contact
server. The contact server may process the inputs
and send updates to the client if it is hosting the
client’s zone, or it may forward the client’s inputs to
another server which is hosting the client’s zone. We
denote the contact server of a client cj as sc(cj).

For example, in Fig. 1a, s1 is the contact server of
c1 and c2.

Definition 2.2 (Target server). The target server of a
client is the server that is hosting the client’s zone.
Inputs from a client will be forwarded to its target
server. The target server may send updates to the
client directly if it is also the contact server of the
client, or it may send to the client indirectly via
the client’s contact server. All clients in a zone have
the same target server (therefore, we may say ‘‘the
target server of a zone’’), while they may have
different contact servers. We denote the target
server si of a client cj or a zone zk as st(cj) or st(zk),
respectively.

For example, in Fig. 1a, s1 is both the contact
and target server of c1 and c2, i.e., sc(c1) = sc(c2) =
st(c1) = st(c2) = s1. In Fig. 1b, we switch c2 to server
s2 (but the avatar of c2 is still in zone z1), the target

server of c1 and c2 is still s1, the contact server of c1

is s1, while the contact server of c2 is now s2. Inputs
from c2 are forwarded to s1 by s2. Since the network
connection between s1 and s2 is well-provisioned
with little congestion, the communication between
c2 and s1 may now have shorter delay (assuming
s2 is closer to c2 than s1). However, this incurs extra
resource utilization for inter-server communication
between s1 and s2.

• Rsi – The resource consumption on a server si.
This can be measured by CPU usage, network
bandwidth usage, etc. Since the network band-
width often represents the major operating cost
in current server-based MMOGs [10], in this
paper, we assume that the server CPU is not a
bottleneck, and measure the resource consump-
tion by the network bandwidth usage only.

• RT
ci

– The amount of resource (network band-
width) utilized by a client ci on its target server.
Note that RT

ci
> 0; 8ci.

• RC
ci

– The amount of resource utilized by a client
ci on its contact server. Note that RC

ci
¼ 0 if the

contact server and target server of ci are the
same, otherwise RC

ci
¼ 2RT

ci
, since all communica-

tions between ci and its target server are for-
warded by its contact server (assuming the
resource utilization is measured by bandwidth
requirement).

• Rzi – The amount of resource utilized by a zone zi

on its target server. We have Rzi ¼
P

cj2zi
RT

cj
.

• Csi – The resource capacity of a server si.
• dcisj – The round-trip network delay between a

client ci and a server sj.

• D – The delay bound of a DVE. The delay bound
indicates the required upper bound of the round-
trip communication delay between a client and its
target server to guarantee the interactivity of the

Fig. 1. Geographically distributed server architecture (GDSA).
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DVE. For different types of DVEs, there are dif-
ferent delay bound requirements. For example,
multiplayer real-time strategy (RTS) games like
Microsoft’s Age of Empires [11] typically require
a latency of 500 ms [12], while FPS games and
car-racing games have much more stringent
latency requirements, about 250 ms [13] and
100 ms [14], respectively. It should be noted that
the communication delay between a client and
its target server is different from the network delay
between the client and its target server. The com-
munication delay is the sum of the network delay
and the processing delay at the target server. How-
ever, we assume that the processing delay of a cli-
ent’s request will not increase greatly as long as the
workload of the server does not exceed a pre-
defined threshold. Hence, in this paper the cli-
ent–server communication delay is determined
by the client–server network delay. In the follow-
ing, the term ‘‘network delay’’ and ‘‘communica-
tion delay’’ are used interchangeably.

For interactive applications like DVEs, the client–
server communication delay is the most important
Quality of Service (QoS) parameter that the system
provides to clients [13]. In this paper, we say that a
client is with QoS or without QoS if the communica-
tion delay between the client and its target server is
smaller or larger than the delay bound, respectively.

2.2. The client assignment problem

Our client assignment problem (CAP) under con-
sideration is for the static case, i.e., for a snapshot of
the system, and the client-to-zone relation at this
snapshot is known. With the geographically distrib-
uted server architecture and the zone-based
approach, the client assignment problem (CAP)
concerns how to assign the participating clients in
a DVE to servers so that the total number of clients
with QoS is maximized. We formulate the client
assignment problem as follows.

Definition 2.3 (Client assignment problem (CAP)).
For each client cj in the DVE, find the target server
sk and the contact server sl for cj to maximize

jfcj 2 zi : dcjsk ¼ ðdcjsl þ dslsk Þ 6 D; 8zi 2 Zgj ð1Þ

subject to

Rsi 6 Csi ; 8si 2 S; ð2Þ
where jÆj denotes the cardinality of a set.

Remark 2.1. In Definition 2.3, if sl and sk refer to
the same server, then dslsk ¼ 0.

Remark 2.2. The constraint (2) ensures that the
resource consumption on each server si will not
exceed its capacity.

2.3. A two-phase approach to the CAP

With the GDSA and the zone-based partitioning
approach, we notice that a client may need to con-
nect to a different server from its target server to
minimize the client–server communication delay.
In fact, direct routing in the Internet may result in
a larger end-to-end delay than indirect routing,
since the network congestion level in the links along
the direct path may be higher than that in the indi-
rect path. Several existing researches had leveraged
this fact to reduce the end-to-end network delay
using indirect routing, for example Resilient Over-
lay Network [15] and Detour [16]. Here, if we
assume that the links between each pair of servers
are well-provisioned with high bandwidth capaci-
ties, an indirect routing via these links is very likely
to reduce the client–server communication delay.

Therefore, to address the client assignment prob-
lem, in this paper we propose a two-phase approach
as follows. First, in the initial assignment phase, we
assign the zones to servers, i.e., find a target server
for each client. Then, in the refined assignment

phase, each client is assigned to an appropriate ser-
ver to communicate with its target server, i.e., find a
contact server for each client. As mentioned above,
if the network links between servers are well-provi-
sioned, for each client we may find a suitable con-
tact server that is different from that client’s target
server to minimize the client–target server commu-
nication delay via indirect routing.

In fact, both the initial assignment and refined
assignment are themselves complex optimization
problems. In order to obtain good solutions to the
CAP, we must optimize some ‘‘assignment costs’’
in both phases. In the following sections, we sepa-
rately formulate the initial assignment and refined
assignment problem, and prove them to be NP-hard.

2.3.1. The initial assignment problem (IAP)

To formulate the initial assignment problem, we
propose the following metric to measure the cost
of assigning a zone zj to a server si

CI
ij ¼ jfck 2 zj : dcksi > Dgj: ð3Þ
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CI
ij measures the number of clients in a zone zj that

do not satisfy the delay bound D, i.e., without QoS.
Therefore, by minimizing the total cost when all
zones are assigned, the total number of clients with
QoS in the DVE would be maximized. The initial
assignment problem is formulated as follows.

Definition 2.4 (Initial assignment problem (IAP)). Let
I = {1, . . . ,m} and J = {1, . . . ,n} be the set of
indexes of servers and zones in the system, respec-
tively. For each i 2 I and j 2 J, given the cost CI

ij of
assigning zone zj to server si as defined in (3), find an
assignment matrix X = (xij), with xij = 1 if zone zj is
assigned to server si or xij = 0 otherwise, which
minimizes the total cost

CIðX Þ ¼
Xm

i¼1

Xn

j¼1

CI
ijxij ð4Þ

subject toXn

j¼1

Rzj xij 6 Csi ; 8i 2 I ; ð5Þ

Xm

i¼1

xij ¼ 1; 8j 2 J ; ð6Þ

xij 2 f0; 1g; 8i 2 I ; 8j 2 J : ð7Þ

Remark 2.3. In Definition 2.4, constraint (5)
ensures that the capacity of each server will not be
exceeded. Constraint (6) means that each zone is
assigned to only one server.

Remark 2.4. In the IAP, the number of binary deci-
sion variables is mn, while the number of constraints
is m + n, i.e., O(n), since the number of zones n is
usually much larger than the number of servers m.

Theorem 2.1. The IAP is NP-hard.

Proof. We consider in our model the special case
where the resource capacity Csi of each server is
the same. We further assume that the cost CI

ij when
assigning a zone zj, j 2 J = {1, . . . ,n} to server si,
i 2 I = {1, . . . ,m} has the special form of Di�1, where
D > 1 is a constant, i.e., assigning any zone to server
s1 costs CI

1j ¼ 1, to server s2 costs CI
2j ¼ D, to server

s3 costs CI
3j ¼ D2, etc. Then the optimization goal of

IAP in this special case would be to assign all the
zones to the smallest possible number of M servers,
with server indexes ranging from 1 to M. This is
exactly the well-known Bin Packing problem [17],

in which a bin corresponds to a server and an item
corresponds to a zone. Since IAP generalizes the Bin
Packing problem, which is NP-hard, IAP is also
NP-hard.3 h

2.3.2. The refined assignment problem (RAP)

After the initial assignment phase, some clients
may still be without QoS. The refined assignment
phase will attempt to further increase the number
of clients with QoS in the DVE. One possible
approach is to exploit the well-provisioned inter-ser-
ver connections, if they are available. We propose
the following metric for the refined assignment to
measure the cost of selecting server sk as the contact
server for a client cj, where si is cj’s target server

CR
ij ¼

ðdcjsk þ dsk siÞ � D; if ðdcjsk þ dsk siÞ > D;

0; if ðdcjsk þ dsk siÞ 6 D:

(

ð8Þ
CR

ij measures the ‘‘distance’’ from the delay bound D
of the communication delay of a client cj if cj is as-
signed to server sk as its contact server. Therefore,
by minimizing the total cost when all clients are as-
signed, the total number of clients with QoS in the
DVE would be maximized. The refined assignment
problem is then formulated as follows.

Definition 2.5 (Refined assignment problem (RAP)).
Let I = {1, . . . ,m} and J = {1, . . . ,k} be the set of
indexes of servers and clients in the system, respec-
tively. For each i 2 I and j 2 J, given the cost CR

ij of
selecting server si as the contact server of client cj,
find an assignment matrix X = (xij), with xij = 1 if
client cj takes server si as its contact server or xij = 0
otherwise, which minimizes the total cost

CRðX Þ ¼
Xm

i¼1

Xk

j¼1

CR
ijxij ð9Þ

subject to

Xk

j¼1

RC
cj

xij6 Csi�
X

ck

RT
ck

 !
; si¼ stðckÞ; 8i2 I ; ð10Þ

Xm

i¼1

xij¼1; 8j2 J ; ð11Þ

xij2f0;1g; 8i2 I ; 8j2 J : ð12Þ

3 We would like to thank Gunther Raidl for helping with the
NP-hardness of the Generalized Assignment Problem and hence
this proof.
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Remark 2.5. In Definition 2.5, constraint (10)
ensures that the remaining capacity of each server,
i.e., the amount of resource of each server that still
remains after the initial assignment, will not be
exceeded. Constraint (11) means that each client is
assigned to only one contact server.

Remark 2.6. In the RAP, the number of binary
decision variables is mk, while the number of con-
straints is m + k, i.e., O(k), since the number of cli-
ents k is usually much larger than the number of
servers m.

Theorem 2.2. The RAP is NP-hard.

Proof. The proof is similar to that for the IAP. h

2.4. Related work

To the best of our knowledge, there is no exist-
ing work that directly addresses the client assign-
ment problem in DVEs as we have described.
Research on how to assign clients to servers in
DVEs is usually formulated as a load distribution
problem in a locally distributed server architecture,
i.e., all the servers are placed in the same machine
room [18,19]. Such approaches may damage the
interactivity of the DVE, since clients may be far
away (in terms of network delays) from the
servers.

Recently, the interest in investigating server and
network architectures to reduce the effect of net-
work latency for DVEs has been increased
[20,8,9]. In [8,9], the authors introduced the concept
of latency driven distribution (LDD) for the distribu-
tion of a DVE over the networking architecture, as
opposed to the traditional resource driven distribu-

tion (RDD), i.e., load distribution. Our client
assignment problem shares the idea of the LDD
concept. However, the authors of [8,9] only investi-
gate the provision of immersive audio communica-
tion in DVEs within the context of the LDD
concept. In their work, two clients that belong to
two adjacent DVE zones are able to hear each
other. However, several important kinds of interac-
tions that may happen in a DVE such as shooting
enemies, manipulating objects, changing object
ownership, etc., were not studied. These interactions
may raise complicated consistency issues, if the cli-
ents in adjacent zones are managed by different
physical server machines.

In a more recent work [21], the authors proposed
a distributed algorithm for clients to selects the best
server in a mirrored architecture for online games,
taking into account the network delay between cli-
ents and servers. The mirrored architecture repli-
cates the DVE zones at multiple servers. This
approach shares some similarities with the web ser-
ver replica placement problem in CDNs [22,23].
However, unlike the replication of web documents,
DVE replication faces serious consistency problems
[2] which may damage the users’ experience in inter-
acting with the virtual world. In our approach,
which employs the discrete partitioning strategy,
only one server has the control over the state of a
zone, thus consistency can be enforced.

3. Client assignment algorithms

To address the client assignment problem (CAP),
in this section we propose some algorithms for the
initial assignment (IAP) and then for the refined
assignment (RAP). Since both IAP and RAP are
NP-hard, we seek heuristic solutions instead of opti-
mal ones. We start with algorithms for the IAP,
with which we assign zones to servers, i.e., deter-
mine the target servers for clients. We propose three
algorithms for the IAP: the first one randomly
assigns the zones, while the second one is a greedy
heuristics to minimize the number of clients without
QoS in the system. The third algorithm for IAP dif-
fers from the second one only in the cost metric
used.

After the target servers for clients are determined,
in the refined assignment phase, we find an appro-
priate contact server for each client. This assign-
ment phase depends on the quality, i.e., network
latency, of the inter-server connections. If the
inter-server connections are not well-provisioned,
i.e., the servers use the commodity Internet to com-
municate with each other, the only feasible refined
assignment approach is to connect each client to
the server hosting its zone, i.e., based on the virtual
location of clients. On the other hand, if servers are
fully meshed with good network connections, e.g.,
private, dedicated networks, or QoS-enable net-
works, then it is possible to reduce the client–server
communication delay of a client by assigning that
client to a contact server different from its target ser-
ver. In this case, we propose two algorithms. The
first algorithm selects the closest server of a client
as its contact server, and the second algorithm is a
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greedy heuristics similar to the one for solving the
IAP.

Finally, by combining the algorithms for the IAP
and the RAP, we have the two-phase algorithms for
the CAP. For comparison purpose, we also present
the optimal algorithm using the ‘‘branch-and-
bound’’ method to solve the integer programming
formulation of IAP and RAP.

3.1. Algorithms for the IAP

3.1.1. Random assignment of zones (RanZ)
In RanZ, zones are assigned to randomly selected

servers with the only concern of not overloading the
servers. The pseudo-code of the algorithm is shown
in Fig. 2. In this algorithm, the following procedure
is repeated until all zones have been assigned: first
we randomly select a zone zj, and then a server si

with sufficient capacity is randomly selected to take
zj, i.e., the target server of all clients in zj is set to si.

Remark 3.1. The computation cost of the RanZ
algorithm is O(mn), where n is the number of zones
and m is the number of servers.

Remark 3.2. The communication cost of the RanZ
algorithm is O(m), where m is the number of servers
in the system, since the master server that runs
RanZ needs to contact m servers to obtain the work-
load information.

3.1.2. Greedy assignment of zones – algorithm 1

(GreZ-1)

Since RanZ is oblivious to client–server network
delays when assigning zones to servers, the obtained

performance in terms of the number of clients with
QoS may not be good, i.e., the cost of the assign-
ment as defined in Eq. (4) may be high. Hence, in
the GreZ-1 algorithm, we use a greedy heuristics
to minimize the total number of clients without

QoS in the system.
The pseudo-code is shown in Fig. 3. Let lij ¼

�CI
ij (recall that CI

ij measures the number of clients
without QoS in zone zj if zj is assigned to si) be a
heuristic measure of the desirability of assigning
zone zj to server si. The smaller the cost CI

ij is, the
higher the desirability lij is. The algorithm itera-
tively considers all the unassigned zones and pick
a zone zj with the maximum difference qj between
the largest desirability lijj and the second largest
desirability lsj. Then, zj is assigned to a server si with
the highest value of lij and with sufficient resource
capacity. This procedure is adapted from the well-
known approach used to solve the Generalized
Assignment Problem [24,25].

Let us illustrate the effectiveness of the GreZ-1
algorithm using an example. Assuming that the
DVE has two zone z1 and z2, and two servers s1

and s2. Each server can only take one zone, due to
its capacity constraint. Let us further assume that
assigning z1 to s1 or s2 costs CI

11 ¼ 10 or CI
21 ¼ 20,

respectively. Similarly, assigning z2 to s1 or s2 costs
CI

12 ¼ 5 or CI
22 ¼ 10, respectively.

The desirability difference q1 of zone z1 is equal
to l11 � l21 ¼ �CI

11 � ð�CI
21Þ ¼ �10� ð�20Þ ¼ 10,

while q2 of z2 is equal to l12 � l22 ¼ �CI
12�

ð�CI
22Þ ¼ �5� ð�10Þ ¼ 5. Hence, the GreZ-1 algo-

rithm will select z1 to assign first. As a result, z1 is
assigned to server s1, and z2 is assigned to server
s2, since each server can only take one zone. The

Fig. 2. IAP – Random assignment of zones.
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total cost of this assignment is 10 + 10 = 20, i.e., in
total there are 20 clients that are without QoS in the
system.

However, if we do not follow the procedure of
GreZ-1, then z2 may be chosen to assign first. In this
case, z2 will be assigned to s1, thus z1 has to be
assigned to s2. The total cost in this case would be
20 + 5 = 25, which is larger than the cost obtained

using GreZ-1. Thus, by sorting the zones according
to their desirability differences q, GreZ-1 can
effectively reduce the number of clients without
QoS in the system.

3.1.2.1. Complexity analysis. We first analyze the
computation cost of the GreZ-1 algorithm. Let m,
n and k denote the number of servers, the number

Fig. 3. IAP – Greedy assignment of zones – algorithm 1.
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of zones and the total number of clients, respec-
tively. The GreZ-1 algorithm consists of four parts.
The first part (from line 2 to line 8) is to find all the
values lij. The cost of this part is O(mk). The second
part (from line 9 to line 12) is to find qj for all zj 2 Z.
In the line 10, Quicksort is used. Hence, the cost of
this part is O(n)[O(m logm) + O(1)], or O(mn logm).

The third part (line 13) is to sort the list of n val-
ues qj. Using Quicksort, the cost is O(n logn). The
final part (from line 14 to line 27) is to assign zones
to servers. There are m servers and n zones, hence
the cost of this part is O(nm).

Hence, the overall computational cost of the
GreZ-1 algorithm is O(mk) + O(mn logm) +
O(n logn) + O(nm), or O(max{O(mk), O(mn logm),
O(n logn)}).

Remark 3.3. The computation complexity of the
GreZ-1 algorithm is O(max{O(mk),O(mn log -
m),O(n logn)}), where n is the number of zones, m

is the number of servers and k is the number of
clients in the system. In practice, usually k� m and
k� n, hence the overall complexity of GreZ-1 for
most cases can be written as O(mk).

We now analyze the communication cost of GreZ-1.
In this algorithm, the master server needs to obtain
the network delays for each pair of client and server
in the system using network measurement tools like
King [26]. The communication cost of this opera-
tion is O(mk). Similar to the case of RanZ, the mas-
ter server also needs to obtain workload
information from m servers. Hence, the total com-
munication cost of GreZ-1 is O(mk + m), or O(mk).

Remark 3.4. The communication complexity of the
GreZ-1 algorithm is O(mk), where m is the number
of servers and k is the number of clients in the
system.

3.1.3. Greedy assignment of zones – algorithm 2

(GreZ-2)

The only difference between GreZ-1 and GreZ-2
lies in the cost metric they use. With the cost metric
in Eq. (3), Greedy-1 aims to minimize the total num-
ber of clients without QoS in the system directly.
For the GreZ-2 algorithm, we propose to use the
following metric to measure the cost when assigning
a zone zj to a server si

C0ij ¼
P

ck2zj
dcksi

jzjj
: ð13Þ

C0ij measures the average delay from all client ck 2 zj

to server si if they are all assigned to si. By minimiz-
ing this cost function, it is expected that the selected
server si for zj will be near (in terms of network de-
lay) to the center of mass of the client population of
zi, thus the number of clients with QoS may become
large.

3.2. Algorithms for the RAP

3.2.1. Normal inter-server networks

In this case, we assume that the inter-server net-
works are not well-provisioned, i.e., the communi-
cation between any two servers in the system is
done via the commodity Internet (hence the name
‘‘normal’’ inter-server networks). Hence, there is
no incentive to forward messages from a client
to its target server via another contact server.
We propose an algorithm, referred to as the Vir-

tual Location based assignment of clients, for the
RAP.

3.2.1.1. Virtual location based assignment of clients

(VirC). The VirC algorithm for the RAP adopts the
most ‘‘natural’’ way to assign clients to servers in
DVEs. It only considers the virtual location of each
client cj when determining a contact server for cj,
thus cj will connect to the same server that is also
hosting cj’s zone, i.e., the contact server of cj is the
same as its target server. This approach will not
incur any inter-server communication cost. How-
ever, the number of clients with QoS is not
improved compared to the initial assignment.

We analyze the communication cost of VirC. In
this algorithm, the master server only needs to
inform k clients and m servers in the system about
the assignment result, thus the total communication
cost is O(k + m), or O(k) since k� m.

Remark 3.5. The communication complexity of the
VirC algorithm is O(k), where k is the number of
clients in the system.

3.2.2. Well-provisioned inter-server networks

In this case, we assume that the inter-server net-
works are well-provisioned with low network
delays. We propose two algorithms for the RAP,
namely the Closest-server assignment of clients,
and the Greedy assignment of clients.

3.2.2.1. Closest-server assignment of clients (CloC).
In the CloC algorithm, the closest server of each
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client is chosen as its contact server. The main moti-
vation of this algorithm is to reduce the client–target
server communication delay by exploiting the well-
provisioned inter-server networks which have low
delays.

Remark 3.6. The computation complexity of the
CloC algorithm is O(km), where k is the number of
clients and m is the number of servers in the system.

Remark 3.7. Similar to VirC, the communication
complexity of the CloC algorithm is O(k), where k

is the number of clients in the system.

3.2.2.2. Greedy assignment of clients (GreC). The
GreC algorithm is a greedy heuristics which takes
into account network delay from a client to its tar-
get server when selecting contact server for the
client. The pseudo-code is shown in Fig. 4. This
algorithm is similar to the GreZ algorithm for the
IAP. The major difference between the two algo-
rithms lies in the cost metric used. GreC uses the
cost metric defined in Eq. (8).

GreC starts by considering the round-trip delay
to target server of each client in the system. If the
network delay from a client cj to its target server si

is less than the delay bound, the algorithm selects
the same server si as the contact server of cj. Other-
wise, cj is added to a list LE, which only contains cli-
ents having network delay larger than the delay
bound. The next part of the algorithm attempts to
assign each client in LE to a contact server to
increase the number of clients with QoS in the sys-
tem. This part is similar to the GreZ algorithm,
except for the cost function used.

Complexity analysis. We analyze the computa-
tional cost of GreC algorithm. Let m, k denote the
number of servers and the total number of clients,
respectively. The GreC algorithm consists of four
parts. The first part (lines 2–9) is to construct a list
of clients that are without QoS and assign contact
servers for clients with QoS. The cost of this part
is O(k). The second part (lines 10–14) is to construct
the list of values qj for all clients that are without
QoS. The cost of this part is O(k)[O(m) +
O(m logm) + O(1)] or O(km logm). The third part
(line 15) costs O(k logk) (using Quicksort). The final
part (lines 16–29) is to assign clients to contact serv-
ers. The cost of this part is O(km).

Hence the overall computational cost of the
GreC algorithm is O(k) + O(km logm) + O(k log
k) + O(km) or O(max{m logm, logk}k).

Remark 3.8. The complexity of the GreC algorithm
is O(max{m logm, logk}k), where m is the number
of servers and k is the number of clients in the
system.

We analyze the communication cost of GreC. In
this case, the master server needs to obtain the inter-
server network delays for all m servers in the system.
The communication cost for this operation is O(m2).
Then, it needs to inform k clients and m servers
about the assignment result. Thus, the total commu-
nication cost for GreC would be O(m2 + k + m), or
O(max{m2,k}).

Remark 3.9. The communication complexity of the
GreC algorithm is O(max{m2,k}), where m is the
number of servers and k is the number of clients in
the system.

3.3. Two-phase algorithms for the CAP

A two-phase algorithm for the CAP is obtained
by combining the algorithms for the IAP and the
RAP. If the inter-server networks are not well-pro-
visioned, we have the following three two-phase
algorithms:

• RanZ/VirC
• GreZ-1/VirC
• GreZ-2/VirC

If the inter-server networks are well-provisioned,
we have the following six different two-phase
algorithms:

• RanZ/CloC
• RanZ/GreC
• GreZ-1/CloC
• GreZ-1/GreC
• GreZ-2/CloC
• GreZ-2/GreC

3.4. Optimal algorithm using the branch-and-bound
method

For comparison purposes, based on the Integer
Programming formulation of the IAP and RAP,
we use the so-called ‘‘branch-and-bound’’ method
[27] implemented in the free Mixed Integer Linear
Programming (MILP) solver lp_solve [28] to obtain
the optimal solutions to the CAP. lp_solve is a free
MILP solver with full source code, examples and
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detailed manuals. It can solve pure linear, mixed
integer/binary, semi-continuous and special ordered
sets models.

We should note that this approach is only
applicable when the system size is small, otherwise

the running time of lp_solve will become very
long (on the order of several hours), which is
clearly impractical for interactive applications
like DVEs which require prompt assignment
decisions.

Fig. 4. RAP – Greedy assignment of clients.
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4. Practical considerations

In this section we address some practical consid-
erations in implementing the proposed assignment
algorithms. These considerations include how to
obtain input data for the algorithms and how to
deal with the inherent dynamics of DVEs.

4.1. Obtaining input data

The first issue is how to obtain input data for the
proposed assignment algorithms. Our algorithms
are centralized, hence we need a dedicated server4

to collect the data and run the algorithms. The input
data includes the client–server and inter-server
round-trip network delays, and the resource
requirement of each client on its server.

4.1.1. Network delays

The server that runs our algorithms can obtain
the client–server network delays using some well-
known network measurement methods such as
IDMaps [29] and King [26]. Both of these methods
are scalable and incur little measurement overhead.

4.1.1.1. Internet Distance Map Service (IDMaps).

IDMaps is a scalable Internet-wide architecture
for measuring and disseminating distance informa-
tion on the Internet. It was designed to be the
underlying service that provides the necessary infor-
mation used by SONAR/HOPS [30], which is a sim-
ple protocol for a host to quickly and efficiently
learns the network distance between any two hosts.
IDMaps relies on special end hosts called tracers

deployed at some strategic locations in the Internet.
Each tracer measures the distance between itself and
a set of Internet hosts that are close to it. The mea-
sured distances are then sent to a set of dedicated
servers, called SONAR/HOPS servers.

To estimate the distance between any two Inter-
net hosts, the SONAR/HOPS servers calculate the
sum of the distances from each host to its nearest
tracer, and the distance between the two corre-
sponding tracers. Obviously, the accuracy of such
approach depends on the number and Internet loca-
tions of tracers. The goal of IDMaps is to achieve

an estimation accuracy ‘‘within a factor of 2 with
very high probability and often better than that’’
[29]. Any client can then query a SONAR/HOPS
server to learn the distance between any two other
hosts using client–server query/reply protocols
similar to the widely used DNS query/reply
protocol.

4.1.1.2. King. King [26] is a very clever approach to
scalable network latency measurements. It does not
require any additional infrastructure like IDMaps.
Instead, King uses existing recursive DNS queries
to accurately measure round-trip network delays
between arbitrary Internet end hosts.

Given a pair of hosts, King first finds their two
nearby DNS servers, for example a and b. It is noted
that Internet hosts are usually close their respective
DNS servers. By issuing a recursive DNS query to
one of these name servers, for example the server
a, King is able to measure a latency value which is
the latency between a and b plus the latency between
the machine that is running it,5 says c, and the name
server a. Then, it measures the latency between c,
and the name server a using an ICMP ping. After
subtracting the first latency value by the second
one, King can produce a rather accurate estimation
of latency between the two given hosts.

We should note that since King uses direct mea-
surements, its accuracy may be significantly better
than extrapolation-based approaches like IDMaps.
In fact, in their evaluation, the authors of King
claimed that their tool was able to produce latency
estimations with less than 20% error in nearly 80%
of all cases.

4.1.2. Resource requirement

In this paper, the server resource requirement of
each client is measured as the bandwidth require-
ment. Following the work in [31], the bandwidth
requirement of each client on its target server RT

ci

in a server-based architecture can be estimated in
advance as follows.

First we assume that the size of the message each
client ci sends to its target server is L bytes, the cli-
ent’s sending frequency, i.e., frame rate, is T, and
the number of concurrent clients in ci’s zone is N.
On receiving a message from client ci, the target ser-

4 This server can be the one that the clients first connect to
before joining the virtual world. It is regarded as the master
server, which monitors the status and locations of other servers
that are hosting the zones, and manages users’ related informa-
tion such as username, password, etc.

5 This machine is also the server that executes our assignment
algorithms.
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ver replies ci with the state updates of all the clients
in ci’s zone, which requires LN bytes.6 Hence, the
bandwidth requirement of a client ci on its target
server RT

ci
can be calculated as

RT
ci
¼ ðLþ LNÞT ¼ ðN þ 1ÞLT : ð14Þ

Based on the definition in the previous section, the
bandwidth requirement of a client ci on its contact
server can be calculated as

RC
ci
¼

2ðN þ 1ÞLT ; if scðciÞ 6¼ stðciÞ;
0; if scðciÞ ¼ stðciÞ:

�
ð15Þ

The total bandwidth requirement on a server sj can
then be easily calculated from the number of clients
that are interacting on it (i.e., it is the target server
for these clients), and the number of clients that
are connecting to it (i.e., it is the contact server for
these clients).

4.2. Dynamic executions of assignment algorithms

Another important consideration is the dynamic
property of DVEs. During the course of interactions
in the virtual world, clients may move from one
zone to another, new clients may join, existing cli-
ents may also leave the virtual world. An obtained
client assignment may not be good after some time.
Thus, the proposed two-phase algorithm needs to be
executed again to ensure good client assignments.

Our concern here is how frequently the client
assignment algorithms should be executed. In a
recent study [32] of the very popular MMOG Line-
age II developed by NCsoft, Korea, the authors
found that the average value of session durations,
i.e., the average time a player keeps on playing the
game, is about 3 h, which is rather long. This may
indicate that we do not have to execute the assign-
ment algorithms frequently. Actually, in a typical
deployment of a large-scale DVE, the master server
that executes the assignment algorithms would con-
stantly monitor the system performance, i.e., the
number of client that are with QoS. Only when this
value become lower than a pre-defined threshold,
then re-assignment should take place.

In addition, we should note that dynamic execu-
tion of the client assignment algorithms may incur
inter-server bandwidth consumption due to the
migrations of zones or clients across servers. Never-

theless, we believe this cost is much smaller com-
pared to the bandwidth consumption due to the
interactions of users in the DVE. This suggests that
the bandwidth cost of re-executing the assignment
algorithms is not a big concern, given that re-assign-
ment does not occur frequently. Indeed, a similar
assumption is used in the context of the Web replica
placement problem [22].

Another situation that reassignment needs to be
done is when a server or a subset of server is sud-
denly down, because of hardware failure, for exam-
ple. This reassignment process is expected to be
completed relatively fast. First, the reassignment in
this case only involves those clients that are cur-
rently connected to the failed servers, i.e., the reas-
signment is not a global assignment involving all
the clients in the system. Second, the master server
of the system must constantly monitor the DVE
servers, and any server failure should be detected
quickly. Moreover, our greedy assignment algo-
rithms are very fast, for example, as shown in Sec-
tion 6, it takes less than 1 s only to complete the
assignment of 5000 clients grouped in 400 zones to
20 geographically distributed servers.

5. Evaluation methodology

5.1. Network models

In our simulations, we used both synthetic topol-
ogies generated by the popular topology generator
BRITE [33] and real Internet topologies. Table 1
lists the topologies used in this paper. We use
BRITE to generate both flat and hierarchical topol-
ogies based on the well-known Waxman and Bara-
basi–Albert model (F–W, F–BA, H–BA/W). The
Waxman model [34] considers all pairs of nodes,
and then decides whether to add a link between
any two nodes with a probability that depends on
the distance between these two nodes and the lon-
gest distance between any two nodes in the network.
The Barabasi–Albert model [35] generates network
topologies that exhibit power-laws as observed in
the seminal paper by Faloutsos et al. [36] in 1999.

To complement the synthetic topologies gener-
ated by BRITE, we use a real, flat Internet topology
collected from NLANR [37]. For diversity, we also
collect a real AS-level topology (generated by pro-
cessing the Border Gateway Protocol (BGP) rout-
ing tables) with 110 nodes from [38], and use the
DFN (German Research Network) topology [39]
with 30 nodes as the router-level topology to

6 For simplicity, we assume that all messages have the same
size. This assumption is also used in [31].
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construct a realistic hierarchical topology (H–R/R).
While these topologies are not complete, they at
least partially reflect the ‘‘true’’ topology of the
Internet, which may have great impacts on the sim-
ulation results.

For simplicity, we assume that the round-trip
network delay between any two nodes in the net-
work topology is proportional to the number of
link-hops between them. This assumption is similar
to the one used in most of the previous work [22,40].
In fact, a recent Internet measurement [41] also
showed that round-trip delay is well-correlated with
network hop counts. Moreover, to obtain more
realistic simulations results, in calculating the
network delays, we use both shortest-path routing
and AS-level hierarchical routing [42] where
possible. More specifically, when the network
topology is a hierarchical one, AS-level hierarchical
routing can be employed. However, when flat topol-
ogies are used, shortest-path routing is the only
choice.

The AS-level hierarchical routing is a more real-
istic routing strategy for our simulations, since to
some extent it may reflect the ‘‘true’’ routing prac-
tice in the current Internet [42]. With this strategy,
first we calculate the AS-level shortest path. Then,
to get the distance between any two nodes at the
router-level, the AS-level shortest path is followed,
and for each AS on that shortest path, the router-
level shortest path (within that AS) is used.

5.2. Workload models

5.2.1. Client distributions

To fully evaluate the performance of the pro-
posed assignment algorithms, we simulate several
different client distributions in both the virtual
world and the physical world (the network). The
number of clients may be larger in some specific
zones of the virtual world than others, due to the
clustering of clients in some ‘‘hot’’ zones. For exam-

ple, in online games, clients may be clustered in the
zones with large amounts of game resources such as
energy, gold, etc. In the physical world, due to the
differences in time zones of geographically distrib-
uted clients, at a specific time, the number of online
clients in the DVE may be quite different for differ-
ent geographic regions [43].

We simulate the clustering behavior of clients in
the virtual world by randomly selecting some zones
to have more clients than other zones. To simulate
the clustering of clients in the physical world, some
nodes in the network topology are randomly
selected to have a larger number of clients than
the rest nodes. We have simulated a large number
of different scenarios by changing the number of
clusters and number of clients in each clusters,
and obtained similar results. Hence, in this paper,
we use the following method to generate different
client distributions. For the clustered distribution
in the virtual world, the number of clients in a
clustered zone is 10 times larger than that in a
non-clustered zone. The clustered distribution for
the physical world is generated in a similar man-
ner. Table 2 shows the combination of different
virtual world (VW) and physical world (PW)
distributions.

5.2.2. Physical world-virtual world correlation

In general, we should note that clients gathering
in the same zone of a DVE may not necessarily close
to each other in terms of their physical locations. On
the other hand, it is natural to observe that clients
that are close to each other in their physical loca-
tions (e.g., from the same country or the same geo-
graphic region) tend to gather in a specific zone of
the virtual world due to their common cultural pref-
erences. These phenomena may have great impacts
on the performance of the proposed algorithms.

To model the correlation between clients’ loca-
tions in the physical world and those in the virtual
world, we use a correlation parameter d, where
0 6 d 6 1 [8]. The higher the value of d is, the stron-
ger the tendency for clients from the close geo-

Table 1
Network topologies

Topology Nodes Links

Flat, Waxman (F–W) 3000 6000
Flat, Barabasi-Albert (F–BA) 3000 5997
Flat, real (F–R) 3024 5192
Hierarchical, Barabasi-Albert/Waxman

(H–BA/W)
3000 6197

Hierarchical, real/real (H–R/R) 3300 13,442

Table 2
Distribution types

Type Clusters in PW Cluters in VW

0 No No
1 Yes No
2 No Yes
3 Yes Yes
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graphic locations to gather in specific zones of the
virtual world.

5.2.3. DVE configurations
Different DVE configurations are used for perfor-

mance evaluation. A specific DVE configuration is
determined by the number of servers, the number
of zones, the number of clients and the total resource
capacity of the system. We use the notation number

of servers–number of zones–number of clients-capac-

ity to denote a DVE configuration. For example,
the notation 20s–400z–5000c–2500cp means that
the DVE has 20 servers, 400 zones, 5000 clients
and 2500 Mpbs server bandwidth in total. In investi-
gating the proposed client assignment algorithms,
we use two DVE configurations, 5s–30z–400c–
200cp (small) and 20s–400z–5000c–2500cp (large).
The small configuration is only used to enable the
comparison between our algorithms and the optimal
solution produced by the MILP solver lp_solve [28].
In all other cases, we use the large configuration.

5.3. Performance measures

Two main performance measures, namely the
percentage of clients with QoS in the system (mea-
suring the interactivity of the system), denoted as
pQoS, and the server resource utilization, i.e., band-
width consumption, (measuring the cost of the algo-
rithms), are of interest in the analysis. Results
presented in this paper are obtained by averaging
the results of 50 simulation runs.

5.4. Default settings

Unless otherwise stated, the following assump-
tions and default values are used in the simulations.
The clients are uniformly distributed in the physical
world as well as in the virtual world. For estimating
bandwidth requirement as in [31], the input sending
frequency of each client (frame rate) is set to 25 mes-
sages per second, and the size of each input or
update is 100 bytes, which are close to real settings
[44]. The maximum round-trip delay between any
two nodes in the network topology is set to
300 ms. The interactivity requirement, i.e., the
DVE delay bound D is set to 150 ms. The default
DVE configuration is 20s–400z–5000c–2500cp.

6. Results

6.1. Normal inter-server networks

In this section, we study the performance of cli-
ent assignment algorithms in the case that the net-
works between servers are not well-provisioned,
thus the word ‘‘normal’’. Hence, the client assign-
ment algorithms considered in this section include
RanZ/VirC, GreZ-1/VirC and GreZ-2/VirC. Note
that these algorithms do not incur inter-server
communications.

Figs. 5 and 6 show the CDF of client–server
round-trip communication delays for our algo-
rithms in the small and large configuration with dif-
ferent network topologies. In all cases, we observe
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Fig. 5. Impacts of client assignment – small configuration, normal inter-server networks. (a) F–W topology; (b) F–BA topology; (c) F–R
topology; (d) H–BA/W topology; (e) H–R/R topology.

D.N. Binh Ta, S. Zhou / Computer Networks 51 (2007) 4131–4152 4145

https://www.researchgate.net/publication/221391528_Bandwidth_requirement_and_state_consistency_in_three_multiplayer_game_architectures?el=1_x_8&enrichId=rgreq-0ba486156218644ac07be62b01ab17c8-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0NTUwOTtBUzoxMDQ4OTU2MzM5NTI3NzJAMTQwMjAyMDQ3NjIzMQ==
https://www.researchgate.net/publication/3940577_Behavior_and_performance_of_interactive_multi-player_game_servers?el=1_x_8&enrichId=rgreq-0ba486156218644ac07be62b01ab17c8-XXX&enrichSource=Y292ZXJQYWdlOzIyMjY0NTUwOTtBUzoxMDQ4OTU2MzM5NTI3NzJAMTQwMjAyMDQ3NjIzMQ==


that the GreZ-1/VirC and GreZ-2/VirC significantly
outperforms the delay-oblivious RanZ/VirC algo-
rithm in terms of pQoS. We also observed that
among the three algorithms (RanZ/VirC, GreZ-1/
VirC and GreZ-2/VirC), GreZ-1/VirC has the best
performance in terms of pQoS. This can be
explained by the fact that GreZ-1/VirC aims to
directly minimize the total number of clients with-
out QoS in the system, while GreZ-2/VirC tries to
assign a zone to a server that is close (in terms of
network delay) to the center of mass of the client
population in that zone. The performance improve-
ments of GreZ-1/VirC over RanZ/VirC are 63% (F–
W), 58% (F–BA), 16% (F–R), 35% (H–BA/W) and
25% (H–R/R) for small configuration, and 116%
(F–W), 110% (F–BA), 26% (F–R), 48% (H–BA/
W) and 38% (H–R/R) for large configuration.

We also note that the pQoS values of GreZ-1/
VirC are close to the optimal results given by the
branch-and-bound algorithm implemented in the
lp_solve software. Note that lp_solve can only be

applied to small size DVEs, i.e., the small configura-
tion. The average execution time of lp_solve for this
configuration is around 1 s. For the large configura-
tion, the results by lp_solve are not shown since the
execution time was too long (not finished after more
than 10 h), which is clearly impractical for interac-
tive application like DVEs which need timely
assignment decisions. In both small and large con-
figurations, all of our proposed algorithms took less
than 0.5 s to execute.

6.1.1. Impacts of correlations

The performance of our proposed algorithms
with different physical world-virtual world correla-
tion values is shown in Fig. 7. It is observed that
the pQoS values of both GreZ-1/VirC and GreZ-
2/VirC increase significantly with the correlation
value, while the result of the delay-oblivious algo-
rithm RanZ/VirC does not change much. This dem-
onstrates the effectiveness of the greedy algorithms
when the clients in each zone of the virtual world
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Fig. 6. Impacts of client assignment – large configuration, normal inter-server networks. (a) F–W topology; (b) F–BA topology; (c) F–R
topology; (d) H–BA/W topology; (e) H–R/R topology.
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are close to each other in the physical world. In all
cases, GreZ-1/VirC is still the best algorithm in
terms of pQoS. However, it is also noted that
GreZ-2/VirC is a good alternative when the correla-
tion value is very high.

6.1.2. Impacts of client distributions
The simulation results for all assignment algo-

rithms with different client distributions are shown
in Fig. 8. In all cases, both GreZ-1/VirC and
GreZ-2/VirC are always better than RanZ/VirC,
regardless of the client distributions, while GreZ-
1/VirC is the best algorithm.

The impacts of client distributions on pQoS of
the greedy assignment algorithms are clear: the
dominant factor seems to be the client distribution
in the virtual world, for example, the pQoS is better
when the distribution type is 0 and 1, i.e., clients are
distributed uniformly in the virtual world. This
observation can be explained if we look at
Fig. 8(b), which shows the resource utilization for
each distribution type. The distribution type 0 and
type 1 use much less resource than type 2 and type
3, thus GreZ-1/VirC and GreZ-2/VirC perform bet-
ter if clients are not highly clustered in the virtual
world.

6.1.3. Impacts of imperfect inputs

The simulation results obtained above for the cli-
ent assignment algorithms are based on the assump-

tion that we have perfect information about the
network delays between clients and servers. In prac-
tice, we usually have rough estimations of network
delays rather than perfectly accurate information.
To simulate the estimation error, we use the method
presented in [22]. More specifically, we apply an
error factor e to the perfect input data, i.e., assum-
ing the exact value of the delay is d, then the delay
value input to our algorithms is uniformly distrib-
uted in the range ½de ; de�. Note that although the
algorithms use inaccurate inputs to make assign-
ment decisions, their resulted performances, i.e.,
pQoS, are still calculated based on the actual net-
work delays after the assignment is done. As in
[22], we use three different values of e: 1.2, 2 and
4, representing the inaccuracies of the popular net-
work delay estimation tools King [26] and IDMaps
[29].

Fig. 9 shows a typical simulation result obtained
with the inaccurate estimations of network delays.
Despite the imperfect knowledge in network delay,
the greedy algorithms are still much better than
RanZ/VirC which does not consider network
delays. In particular, for e = 1.2, GreZ-1/VirC is
still the best algorithm in terms of interactivity,
and its pQoS only decreases slightly compared to
the cases that use perfect information. However,
when the estimation error becomes large, i.e.,
e = 2 or 4, we see that GreZ-2/VirC is the best algo-
rithm. Fig. 9 shows that GreZ-2/VirC exhibits low
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sensitivity to input data estimation errors, even if
the error is very large, i.e., e = 4. This suggests that
GreZ-2/VirC is a more suitable choice for the client
assignment problem under Internet environments,
where perfectly accurate input data for assignment
algorithms is usually impossible or very costly to
obtain.

6.2. Well-provisioned inter-server networks

In this section, we study the performance of cli-
ent assignment algorithms in the case that the net-
works between servers are well-provisioned. The
client assignment algorithms considered in this case
include RanZ/CloC, GreZ-1/CloC, GreZ-2/CloC,
RanZ/GreC, GreZ-1/GreC and GreZ-2/GreC. To
simulate the well-provisioned inter-server networks,
we reduce the network latency between any two
geographically distributed servers to 50% of the
actual latency values obtained from the topology
generator, as in [21]. Note that we do not show
the impacts of client distributions and correlations
in this case, since they are similar to the case of
normal inter-server work.

Tables 3–6 show the pQoS and resource utiliza-
tion, while Fig. 10(a) and (b) shows the CDFs of
communication delays for the proposed client
assignment algorithms for both small and large con-
figurations with different network topologies. The
first observation is that all the algorithms that have
CloC as the refined assignment perform badly, more
specifically, even worse (in terms of both pQoS and
resource utilization) than the algorithms that have
VirC as the refined assignment,7 although CloC’s
principle is widely used (and produces good results)
in the context of Web replica placement problem.
Note that, for comparison, the performances of
algorithms with the refined assignment VirC are
also included in Tables 3–6 (the values inside the
brackets of the first three rows of each table).

We believe that the main reason for the ineffec-
tiveness of CloC when applying to DVEs is that
the network path from a client to its target server
via that client’s closest server may not be the short-
est paths in many cases, despite the inter-server net-
works are well-provisioned. Hence, selecting the
closest servers as contact servers for clients may
result in high communication delays, and incur

much more resource consumption. This clearly illus-
trates the difference between the client assignment
problem in DVEs and in Web environments: the
‘‘target server’’ of a client in a DVE may not be
its closest server, but this is true for the latter.

We have also tested CloC with higher delay
reduction factors such as 70% or 90% as suggested
in [21]. However, the final conclusion is that in most
cases, CloC worsens the pQoS obtained from the ini-
tial assignment, and significantly increases the
resource utilization. Hence, we deem it inappropri-
ate to solve the client assignment problem in DVEs,
and decide not to further investigate it in this paper.
From this point, for well-provisioned inter-server
networks, we only consider the following greedy
algorithms: RanZ/GreC, GreZ-1/GreC and GreZ-
2/GreC.

6.2.1. Impacts of inter-server network delays

Fig. 11 show the impacts of the delay reduction
factor on our assignment algorithms. Note that
when the reduction factor is 0, i.e., the inter-server
networks are not well-provisioned, GreC is effec-
tively equal to VirC. One important observation
here is, unlike RanZ/GreC, algorithm GreZ-1/GreC
and GreZ-2/GreC do not heavily depend on the
reduction factor. This result suggests that GreZ-1/
GreC and GreZ-2/GreC are still able to perform
well even in the case there is little delay reduction
in the inter-server networks.8 This is because the ini-
tial greedy assignment phase already provides a
good value of pQoS, and there may be not much
room for further improvement in the refined assign-
ment. Nevertheless, whenever low-delay inter-server
networks are available, the refined assignment phase
GreC is still beneficial.

6.2.2. Impacts of imperfect inputs

We evaluate the performances of RanZ/GreC,
GreZ-1/GreC and GreZ-2/GreC with imperfect
input data. Similar to the previous experiment, we
use three different values of the error factor e: 1.2,
2 and 4, to add random noise to the network delays.

7 Algorithms with VirC as the refined assignment do not
require well-provisioned inter-server networks.

8 We should note that providing low-delay networks that
interconnect geographically distributed servers may be expensive,
especially in the current Internet where well-known network QoS
techniques like IntServ or DiffServ have not been widely
deployed. Nevertheless, without a dedicated, private high-speed
network, we still can reduce the communication delays between
distributed servers, by closely monitoring the routing paths
among these servers [15].
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The simulation results are shown in Fig. 12. Note
that we also include the results for RanZ/VirC,
GreZ-1/VirC and GreZ-2/VirC (the algorithms pro-
posed for normal inter-server networks) for
comparison.

From the simulation results, we see that when the
delay estimation error is small, i.e., e = 1.2, all the
algorithms that use the knowledge of network delays
are still better than the delay-oblivious algorithm

RanZ/VirC in terms of pQoS. However, when the
error becomes larger, i.e., e = 2, RanZ/GreC per-
forms even worse than RanZ/VirC in terms of both
pQoS and resource utilization. In this case, although
GreZ-1/GreC and GreZ-2/GreC are still better than
RanZ/VirC, they are not as good as GreZ-1/VirC
and GreZ-2/VirC. Moreover, when e is very large,
i.e., e = 4, GreZ-1/GreC and GreZ-2/GreC perform
comparably to RanZ/VirC, which is much worse

Table 3
Impacts of client assignments on pQoS, well-provisioned inter-server networks, small configuration

Algo. vs. Topo. F–W F–BA F–R H–BA/W H–R/R

RanZ/CloC (RanZ/VirC) 0.24 (0.28) 0.26 (0.32) 0.66 (0.8) 0.58 (0.63) 0.65 (0.72)
GreZ-1/CloC (GreZ-1/VirC) 0.39 (0.47) 0.43 (0.48) 0.8 (0.91) 0.71 (0.83) 0.75 (0.89)
GreZ-2/CloC (GreZ-2/VirC) 0.4 (0.43) 0.39 (0.45) 0.77 (0.9) 0.73 (0.8) 0.76 (0.86)
RanZ/GreC 0.28 0.33 0.81 0.71 0.79
GreZ-1/GreC 0.48 0.49 0.93 0.85 0.91
GreZ-2/GreC 0.44 0.46 0.91 0.82 0.87
lp_solve 0.49 0.51 0.94 0.86 0.92

Table 4
Impacts of client assignments on resource utilization, well-provisioned inter-server networks, small configuration

Algo. vs. Topo. F–W F–BA F–R H–BA/W H–R/R

RanZ/CloC (RanZ/VirC) 0.99 (0.61) 0.99 (0.61) 0.95 (0.61) 0.99 (0.61) 0.99 (0.61)
GreZ-1/CloC (GreZ-1/VirC) 0.97 (0.61) 0.95 (0.61) 0.89 (0.61) 0.97 (0.61) 0.97 (0.61)
GreZ-2/CloC (GreZ-2/VirC) 0.97 (0.61) 0.95 (0.61) 0.9 (0.61) 0.95 (0.61) 0.96 (0.61)
RanZ/GreC 0.7 0.71 0.68 0.8 0.78
GreZ-1/GreC 0.64 0.64 0.62 0.66 0.65
GreZ-2/GreC 0.63 0.63 0.62 0.67 0.66
lp_solve 0.95 0.92 0.65 0.71 0.67

Table 5
Impacts of client assignments on pQoS, well-provisioned inter-server networks, large configuration

Algo. vs. Topo. F–W F–BA F–R H–BA/W H–R/R

RanZ/CloC (RanZ/VirC) 0.24 (0.29) 0.25 (0.31) 0.67 (0.77) 0.63 (0.64) 0.7 (0.71)
GreZ-1/CloC (GreZ-1/VirC) 0.50 (0.65) 0.51 (0.64) 0.76 (0.96) 0.79 (0.94) 0.81 (0.97)
GreZ-2/CloC (GreZ-2/VirC) 0.51 (0.61) 0.51 (0.61) 0.78 (0.94) 0.80 (0.88) 0.82 (0.91)
RanZ/GreC 0.34 0.35 0.82 0.81 0.89
GreZ-1/GreC 0.66 0.65 0.97 0.97 0.99
GreZ-2/GreC 0.63 0.62 0.95 0.93 0.96

Table 6
Impacts of client assignments on resource utilization, well-provisioned inter-server networks, large configuration

Algo. vs. Topo. F–W F–BA F–R H–BA/W H–R/R

RanZ/CloC (RanZ/VirC) 0.99 (0.58) 0.99 (0.58) 0.99 (0.58) 0.98 (0.58) 0.99 (0.58)
GreZ-1/CloC (GreZ-1/VirC) 0.99 (0.58) 0.93 (0.58) 0.93 (0.58) 0.99 (0.58) 0.98 (0.58)
GreZ-2/CloC (GreZ-2/VirC) 0.99 (0.58) 0.9 (0.58) 0.9 (0.58) 0.97 (0.58) 0.99 (0.58)
RanZ/GreC 0.84 0.74 0.74 0.91 0.88
GreZ-1/GreC 0.66 0.59 0.58 0.62 0.6
GreZ-2/GreC 0.64 0.59 0.59 0.67 0.66
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than GreZ-1/VirC and GreZ-2/VirC. This impor-
tant observation suggests that the refined assignment
algorithm GreC is quite sensitive to the estimation
error. Hence, GreC should not be used when the net-
work delays input to the assignment algorithms are
highly inaccurate. In such scenario, GreZ-2/VirC is
the best choice, since it not only exhibits low-sensi-
tivity to delay estimation errors, but also does not
require well-provisioned inter-server networks and
thus incurs less resource utilization.

7. Conclusions

Supporting large-scale DVEs with thousands of
simultaneous clients interacting in real-time is a
challenging task. In this paper, we have described
the geographically distributed server architecture
for DVEs. In this architecture, multiple geographi-

cally distributed servers are connected with each
other, usually via well-provisioned networks to pro-
vide low-latency inter-server communications, and
the large virtual world is partitioned into distinct
zones to distribute load among the servers. The cli-
ent assignment problem arises when assigning par-
ticipating clients to servers to enhance the
interactivity of the DVE. In this paper, we have
developed new formulations and algorithms to deal
with this problem.

The main contributions of this paper are as
follows:

• We have proposed and formulated a new prob-
lem, termed the client assignment problem. This
problem essentially concerns how to assign cli-
ents to distributed servers to reduce the client–
server communication delays.
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• We have proposed a two-phase approach, which
consists of an initial assignment and a refined
assignment, to solve the client assignment prob-
lem. Each phase is proved to be NP-hard. There-
fore, we have developed several simple yet
effective two-phase algorithms to address the cli-
ent assignment problem.

• To evaluate the proposed algorithms, we have
developed a realistic simulation model, in which
a wide range of network topologies are used.
We have also implemented real-world routing
protocols, and modelled network delays accord-
ing to real Internet measurements. Different cli-
ent distributions and physical world–virtual
world correlations have been used to simulate
different scenarios in real applications.

• We have conducted extensive simulations to eval-
uate the effectiveness of the proposed client
assignment algorithms. We find that all greedy
algorithms, especially GreZ-1/VirC, GreZ-1/
GreC, GreZ-2/VirC and GreZ-2/GreC, that uti-
lize the knowledge of network delays outperform
the delay-oblivious algorithm, even though the
delays input to these algorithms may be inaccu-
rate. We also find that, when the delay estimation
error becomes very large, the GreZ-2/VirC algo-
rithm performs the best. Moreover, GreZ-2/VirC
does not require well-provisioned inter-server
networks. This property is of great significance
for practical deployments, since usually an Inter-
net-wide well-provisioned network is quite
expensive.

In summary, we believe that our findings in this
paper, especially the two-phase approach with the
greedy assignment algorithms will be very useful
to the designers and researchers of large-scale
DVEs. For the future work, we would like to inves-
tigate the effectiveness of our proposed algorithms
on a real, geographically distributed network test-
bed like PlanetLab [45]. Another interesting
direction is to combine processing delay and net-
work delay in our client assignment problem.
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