
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2011

A virtualization-based approach for zone migration in distributed A virtualization-based approach for zone migration in distributed

virtual environments virtual environments

Nguyen Binh Duong TA
Singapore Management University, donta@smu.edu.sg

Thang NGUYEN

Tran NGUYEN

Do NGUYEN

Xueyan TANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TA, Nguyen Binh Duong; NGUYEN, Thang; NGUYEN, Tran; NGUYEN, Do; TANG, Xueyan; CAI, Wentong; and
ZHOU, Suiping. A virtualization-based approach for zone migration in distributed virtual environments.
(2011). Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques:
SMUTools 2011, Belgium, March 21-25. 249-256.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4771

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4771&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Nguyen Binh Duong TA, Thang NGUYEN, Tran NGUYEN, Do NGUYEN, Xueyan TANG, Wentong CAI, and
Suiping ZHOU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4771

https://ink.library.smu.edu.sg/sis_research/4771

A virtualization-based approach for zone migration in
distributed virtual environments

Duong N. B. Ta, Thang Nguyen, Tran
Nguyen, Nguyen Do, Xueyan Tang,

Wentong Cai
School of Computer Engineering

Nanyang Technological University, Singapore
binhduong@ntu.edu.sg

Suiping Zhou
School of Computing
Teesside University
Middlesbrough, UK

s.zhou@tees.ac.uk

ABSTRACT
This paper deals with the zone migration problem in large-
scale distributed virtual environments (DVEs), e.g., mas-
sively multi-player online games, distributed military simu-
lations, etc. To support real-time interactions among thou-
sands of concurrent, geographically separated clients, a dis-
tributed server architecture is generally needed. In such ar-
chitecture, the large virtual world can be partitioned into
multiple smaller zones, enabling load distributions or zone-
to-server mappings to improve interactivity. For example, a
zone might be mapped (assigned) to a server location near
most of its clients to reduce network latency. In this paper,
we consider the problem of live zone migration over wide
area networks (WANs) to support DVE zone re-mapping
or load re-distribution in a geographically distributed server
infrastructure. We propose a virtualization-based zone mi-
gration approach, and develop several migration algorithms
to effectively migrate multiple DVE zones.

We have implemented the proposed migration approach
and algorithms in a tool for DVE performance enhance-
ment and monitoring. Extensive experiments have also been
conducted with an online multi-player game prototype con-
structed using the Torque 3D game engine. The results
demonstrate the feasibility of our migration approach.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation;
C.2.4 [Distributed Systems]: Distributed applications

Keywords
Virtualization, distributed virtual environment, zone migra-
tion

1. INTRODUCTION
Distributed Virtual Environments (DVEs) are distributed

systems that allow multiple geographically distributed clients

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DISIO 2011 March 21, Barcelona, Spain.
Copyright 2011 ICST, ISBN XX-XXX-XXXX-XX-X.

(users) to explore and interact with each other in real time
within a shared, computer-generated virtual world, in which
each client is represented by an avatar. A client controls the
behavior of his/her avatar by various inputs, and the up-
dates of an avatar’s state need to be sent to other clients
in the same zone of the virtual world to support the inter-
actions among clients. Examples of DVEs can be seen in
multiple areas, such as collaborative design, military simu-
lations, e-learning, virtual shopping mall, and multiplayer
online games [14].

Typically, in large-scale DVEs with thousands of clients
interacting simultaneously, the resource requirements in terms
of network bandwidth, CPU cycles, memory, etc. are huge,
and will increase very quickly as the number of concurrent
clients increases. A distributed server infrastructure is usu-
ally required [13, 18] for such resource-intensive applications.
In this architecture, each client connects to one of multiple
geographically distributed servers in the system, and clients
interact with each other through these servers. For load dis-
tribution, the large virtual world is spatially partitioned into
several distinct zones, with each zone managed by only one
server. A client only interacts with other clients in the same
zone, and may move from one zone to another over time.
As a server only needs to handle a few zones instead of the
entire virtual world, the system becomes more scalable.

In such architecture and virtual world partitioning ap-
proach, it is desirable to migrate DVE zones across servers
to ensure the workload is equally distributed [11, 17]; or
to bring the zones closer to their respective clients [10, 16,
18]. The latter problem is usually referred to as the zone
mapping problem, which arises due to the Internet’s het-
erogeneity; and the fact that clients in a DVE are usually
geographically separated. So, it is likely that a large number
of clients in a zone may be far away (in terms of round-trip
network latency) to the server hosting that zone, thus the
DVE interactivity for these clients may be greatly degraded.
Hence, there is a strong need for mechanisms to assign (map)
DVE zones to servers in such a way that reduces the network
latency between clients and servers. On the other hand,
the former problem usually concerns how to assign zones to
servers in DVEs with the objective of balancing the workload
among servers [11, 17]. Furthermore, due to DVE dynam-
ics, e.g., users joining and leaving, zone re-mapping or load
re-distribution would be needed to maintain a certain level
of performance. These important problems require the ca-
pability of flexible, seamless zone migration across servers in
WANs. We should note that the migration must be live so

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DISIO 2011, March 21, Barcelona, Spain
Copyright © 2011 ICST 978-1-936968-00-8
DOI 10.4108/icst.simutools.2011.245557

249

that the clients would be able to continue with the interac-
tion in the virtual world during the migration.

In this paper, we propose a virtualization-based approach
to deal with the live zone migration problem in DVEs. Es-
sentially, we propose to encapsulate each distinct DVE zone
in a virtual machine. When a zone needs to be moved to an-
other physical server, the virtual machine hosting it will get
migrated. Compared to traditional methods such as process
migration [12], this approach inherits a number of major
advantages of virtualization technology. For example, our
approach is platform-independent, e.g., it can be used for
any existing zone-based, multi-server DVEs without code
modification/customization.

Below, we summarize the key contributions of this paper.
• We propose a virtualization-based, live zone migra-

tion approach over WANs for DVEs. For more flexibility,
we consider the possibility of separating the migration of
the virtual machine from the storage of each zone. We also
develop two algorithms, namely sequential and parallel mi-
gration, for migrating multiple zones efficiently.
• We integrate the proposed zone mapping approach into

a scalable and extensible software framework named DINE
(DVE INteractivity Evaluation). DINE has been designed
to support the development, integration, and performance
evaluation of algorithms/methods to improve the interactive
performance of large-scale DVEs. The framework is flexible
enough to serve as either an evaluation platform for the de-
velopment of new DVE interactivity enhancement methods,
or a real-world performance monitoring and management
suite for existing DVEs.
• We conduct extensive experiments to evaluate the effec-

tiveness of the newly proposed approach. In particular, we
have developed a DVE prototype with multiple zones using
the Torque 3D game engine. We use this game to evaluate
the performance of our proposed migration approach with
multiple real and simulated, automated game clients.

The rest of the paper is organized as follows. Section 2
describes the zone migration problem. The proposed vitu-
alization based approach and migration algorithms are pre-
sented in Section 3. Section 4 describes the implementation
of the proposed approach. Simulation methodology and re-
sults are described in Sections 5 and 6, respectively. Section
7 concludes the paper.

2. ZONE MIGRATION IN DVES
Important problems in zone-based, large-scale DVEs with

a geographically distributed server architecture such as zone
mapping [16] require the capability of flexible zone migration
across servers over WANs. Due to the Internet latency’s fluc-
tuations, clients’ preferences and distributions, differences
in time zones, etc., it is often necessary to quickly migrate
many zones to and from geographically distributed server
locations at the same time in order to achieve a desirable
level of interactivity. Previous work, e.g., [6] have focused
on migrating only a single game server in local area net-
works (LANs) where latency is minimal and bandwidth is
abundant.

In this paper, we consider the problem of migrating multi-
ple DVE zones in a geographically distributed server archi-
tecture. We assume that in such architecture, there are well-
provisioned network links interconnecting the distributed
servers (Figure 1). The whole virtual world is partitioned
into a number of distinct zones, with each zone managed

by only one server. Due to the triggering of zone mapping
algorithms [16], or load distribution mechanisms [11], mul-
tiple zones might need to be migrated to different servers,
as illustrated in Figure 1.

Figure 1: Zone migrations in a geographically dis-
tributed server architecture

Due to the highly interactive and human-in-the-loop na-
ture of most DVEs, it is desirable that the zone migration
will not affect the clients’ experience of exploring and inter-
acting in the virtual world. Therefore, two of the key factors
that we consider in such migration are the total migration
time, and the migration overhead. Since zone migration is
needed to improve interactivity via load re-distribution or
zone re-mapping, the migration time should be as short as
possible so that DVE clients would enjoy a better level of
interactivity sooner.

On the other hand, zone migration would involve trans-
ferring DVE contents, client network connections, etc. from
one server location to another, possibly far away, server loca-
tion. Such operations might consume a significant amount
of server and network resources, which in turn may affect
the clients’ interactivity during migration. Hence, we need
to carefully quantify and assess the effect of such migration
overhead.

3. A VIRTUALIZATION-BASED APPROACH
FOR DVE ZONE MIGRATION

Recently, server virtualization has been gaining popular-
ity, and has become a key technology for server consolida-
tion, e.g., lowering the number of physical servers in data
centers while increasing server utilization; server/application
isolation and security; fault tolerance; and supporting dif-
ferent platforms or legacy applications on the same set of
hardware, etc. Essentially, virtualization hides the physical
characteristics of computing infrastructures from the users;
providing an abstract computing platform on which multi-
ple virtual machines (VMs) can be run. The software suite
that provides the abstract platform and controls the VMs
is referred to as the hypervisor, or virtual machine monitor
(VMM).

One of the key benefits of virtualization technology is the
capability of live virtual machine migration across physical
servers. Previous work has shown that migrating an entire
VM (which includes its operating system and all applica-
tions) would help to avoid many problems introduced by
migrating individual processes [6]. Most notably is the prob-
lem of “residual dependencies”, in which the original server
must still remain available and accessible over the network
after the processes in question have been migrated. This is
to make it possible to service certain system calls; or mem-
ory accesses on behalf of migrated processes.

250

Another benefit of VM migration over process migration
is that in-memory state can be transferred in a consistent
manner [6]. This means, for example, that we can migrate
an online game server without asking clients to reconnect;
which enables transparent migrations. Last but not least,
VM migration offers the capability of migrating an entire set
of applications to other physical machines without concerns
about hardware compatibility.

In this paper, we propose an approach based on virtual-
ization for DVE zone migration. Due to the geographically
distributed server architecture, the zones will need to be able
to migrate over WANs. In this approach, each DVE zone
is encapsulated in a VM. Each VM has only one zone; and
a physical server may handle multiple VMs (zones) as long
as the server capacity permits. When a zone needs to be
migrated to another physical server, the entire VM will get
migrated. This virtualization-based approach is very flexi-
ble, as it can be used for any zone-based, multi-server DVEs
without any modifications to the DVE’s code.

We consider the problem of zone migration in DVEs, lever-
aging existing work in VM migration over WANs, e.g., [8,
20]. Being a class of human-in-the-loop and highly inter-
active applications, DVEs are more demanding in terms of
CPU, memory, GPU and network resources; rather than
being data-intensive like those applications considered in [8,
20] for instance. Therefore, we focus on the key issues about
zone migration that might affect DVE’s interactivity in a
geographically distributed server architecture, namely the
problem of storage’s location, and migration algorithms.

Figure 2: Virtualization-based approach for zone
migration in DVEs

3.1 Storage’s location
Usually, in a LAN environment, there will be centralized

storage facilities to store the VM disk images. When a VM
needs to be migrated to another physical server, only the
operating system and its applications will be transferred.
The disk image of that VM will remain where it is. Due
to LAN’s high bandwidth and minimal latency, such a re-
mote storage approach might not be a serious problem for
most of the applications running in the VM. On the other
hand, it is not possible to eliminate WAN’s latency; and
migrating VM’s storage over WANs may incur considerable
overhead. Furthermore, DVEs require a high level of inter-
activity. Therefore, we need to carefully consider whether
the VM’s storage should be migrated together with the VM
itself when the DVE zone gets migrated.

Figure 2 illustrates our virtualization-based approach for
DVE zone migration. In our approach, we consider two
separate components for each zone, namely the VM (the
operating system and all its applications) and the storage for

that VM. A VM’s storage may reside at any physical server
in the system, as long as its location does not affect the
zone’s interactivity significantly. When a zone needs to be
migrated, the VM will be transferred first. Depending on the
users’ requirements, the VM’s storage might get migrated to
the same new physical server of the VM, or may remain at
its current location. In Figure 2, the storage of zone z1’s
VM is at server s2, while its VM runs at server s1. z1’s VM
will need to access the storage via the inter-server network
link between s1 and s2. On the other hand, zone z2’s VM
and its storage are all at server s3.

In such migration approach, we will have multiple VMs
migrating across distributed physical servers freely, each of
them maintaining an open network connection back to its
storage residing somewhere in the system. We believe that
this remote storage approach would not affect the DVE in-
teractive performance significantly in most situations, as
DVEs are not data-intensive applications. However, we will
still need to carefully quantify and assess any possible effect
that it might have in real-world scenarios.

3.2 Migration algorithms
Since a new zone mapping arrangement may require the

migration of multiple zones across physical servers [16], we
need to consider how to efficiently migrate a large number
of zones. In this paper, we propose two algorithms to deal
with such scenario, namely, parallel and sequential migra-
tion. Note that these algorithms can be used for both mi-
gration of VMs and storage.

3.2.1 Parallel migration
In the parallel migration algorithm, all the zone migra-

tions will start at the same time. For example, in Figure 1,
all the four zones z1, z2, z3 and z4 will be migrated concur-
rently. A parallel migration is expected to have short com-
pletion time. However, it may cause significant overhead on
some physical servers in the system, thus possibly affecting
the migration time and the interactivity performance of the
clients in those servers. In Figure 1, a parallel migration
may overload server s3, as this server will need to handle
the migrations of 3 zones at the same time: two incoming
zones (z1 and z3) and one outgoing zone (z2).

3.2.2 Sequential migration
In the sequential migration algorithm, at any point in

time, there will be only one migration transaction for each
physical server in the system. For example, a sequential mi-
gration for the scenario in Figure 1 might start with zone
z1’s migration from s1 to s3. At the same time, zone z4

can also be migrated from s2 to s4. However, z3’s migration
will need to wait until these two migrations complete. Al-
though sequential migration reduces concurrency, it might
reduce the overhead on the physical servers. This in turn
might help to shorten the overall migration time, and may
provide a better level of interactivity for DVE clients during
migration.

3.3 Related work
To the best of our knowledge, there is no existing work

that directly addresses the problem of DVE zone migration
in a geographically distributed server architecture, where
physical servers are interconnected by links with bandwidth
much lower and latency much higher compared to those in

251

LANs. Previous work such as [6] only considered a single
DVE zone migration in LAN.

Recent research efforts have considered Internet/WAN VM
migration [5, 7, 8, 19, 20]. For example, [7] uses mobile IPv6
to enable constant network connectivity during live migra-
tion of VMs over Internet. CloudNet [20] provides similar
capabilities using Multi-Protocol Label Switching (MPLS)
based VPNs, as well as a disk replication system for stor-
age migration. [5] combines a block-level solution with pre-
copying and write throttling to migrate an entire running
web server and its storage, with minimal disruptions. [8]
proposes a distributed storage access mechanism that sup-
ports live VM migration over WAN. It works as a storage
server for a block-level storage I/O protocol such as iSCSI
or NBD (Network Block Device). Most of the existing work
focuses on maintaining seamless network connectivity dur-
ing and after the process, and storage migration for data-
intensive applications. Our work instead focuses on impor-
tant issues in a virtualization-based approach for DVE zone
migration, such as storage’s location and how to migrate
multiple zones efficiently. These problems might affect the
interactive performance of DVEs significantly.

In [9], the authors have proposed an online game resource
provisioning model using smaller and less expensive sets of
self-owned data centers, complemented by virtualized cloud
computing resources during peak hours. They have studied
the impact of provisioning virtualized cloud resources, ana-
lyzed the components of virtualization overhead, and com-
pared provisioning of virtualized resources with direct pro-
visioning of data center resources. However, the impact of
VM migrations on online games’ performance has not been
experimentally studied.

In [4], the authors have considered a combination of load
distribution and increased resource locality by migrating on-
line game state to an optimal location considering all users
that are currently interacting in the game. The level of
game-state granularity can range from entire virtual regions
to single game objects. They have also highlighted that
not all states related to an object need to be migrated, so
some migration overhead can be reduced. To enable con-
tinuous interaction with the virtual environment during mi-
gration, remote method invocations with a distributed name
service have been implemented. This approach might pro-
vide a lighter-weight migration facility compared to VM mi-
gration. However, it would be difficult to support existing
DVEs. Consistency maintenance [21] might also be hard to
implement. In our approach, the entire DVE zone’s state is
encapsulated in a single VM, thus consistency policies can
be enforced relatively easy.

4. DESIGN AND IMPLEMENTATION
Figure 3 shows our implemented zone migration facility.

We use Xen [3] version 3.4.1 as the VMM, and xNBD [8] as
the storage back-end manager, all running on Linux kernel
2.6.31. We have designed the software to be flexible and ex-
tensible, for example, we can easily incorporate other VMMs
such as KVM [2], or a different storage manager such as Dis-
tributed Replicated Block Device (DRBD) [1] if needed.

Xen [3] is a popular VMM for IA-32, x86-64, Itanium
and ARM architectures. It allows several guest operat-
ing systems to run on the same computer hardware con-
currently. Initial versions of Xen support only paravirtu-
alization, which requires modifications of guest operating

systems’ kernels. Starting with Xen 3.0, hardware-assisted
virtualization is supported, enabling unmodified guest op-
erating systems to run within Xen VMs. This allows the
virtualization of proprietary operating systems (for exam-
ple Microsoft Windows). In this paper, we implement each
DVE zone as a Windows XP VM.

Xen supports live migration of VMs between networked
physical hosts with minimal disruption. Once a live migra-
tion starts, Xen VMM iteratively transfers the memory of
the migrating VM to the destination machine without stop-
ping the VM’s execution. In the last iteration, the migrating
VM needs to be stopped to carry out some synchronization
before the VM continues its execution at the new destina-
tion. We use this feature to implement DVE zone migration.

Figure 3: Implementation of the virtualization-
based migration approach

Since DVE zones will need to be migrated over WANs,
both the VM and its storage might need to be migrated.
To enable storage migration, we use xNBD [8], which is a
NBD (Network Block Device) server program. xNBD is fully
compatible with the NBD client driver of the Linux kernel.

In Figure 3, each zone is encapsulated in a Xen VM. The
storage of each VM is managed by xNBD. The Xen VM
connects to its storage (regardless of the storage’s location)
using the standard NBD client program, which is included
in all recent versions of the official Linux kernel. The key
components in our implementation are the migration coor-
dinator and the migration worker. Both of them are multi-
threaded programs, and have been implemented in Java for
better portability.
• Migration coordinator: This component runs on a

centralized monitoring server, and manages the entire mi-
gration process of multiple zones. It receives a list of zones
that need to be migrated, and schedules the migrations of
those zones in a parallel or sequential manner. It sends con-
trol commands to and waits for completion signals from the
migration workers.
• Migration worker: This component runs on each

physical server in the DVE’s infrastructure. Its main task
is to carry out the migration for the zones hosted by its
physical server. It receives commands from the migration
coordinator regarding which zones, where and when they
need to be migrated. Once a zone migration is completed, it
will notify the coordinator. The migration worker commu-
nicates directly with Xen VMM and the xNBD via our own
Linux shell scripts to facilitate VM and storage migration.

252

4.1 Integration into DINE
To examine the performance of the newly proposed zone

migration approach under realistic scenarios, we have in-
tegrated it into our own scalable and extensible software
framework named DINE (DVE INteractivity Evaluation)
[15]. Essentially, DINE has been designed and implemented
to support the development, integration, and performance
evaluation of interactivity enhancement methods for large-
scale DVEs. The framework is flexible enough to serve as
either an evaluation platform for the development of new
DVE interactivity enhancement methods, or a real-world
performance monitoring and management suite for existing
DVEs.

In this paper, we use the zone mapping algorithms [16]
as a case study to demonstrate the capabilities of the newly
proposed zone migration approach. We have implemented
a complete solution starting from monitoring DVE interac-
tive performance via scalable network latency measurement,
triggering the zone mapping algorithms when the Quality of
Service (QoS) level drops below a given threshold, and mi-
grating some zones to appropriate servers to achieve better
QoS according to the results of the zone mapping algorithms.

5. EVALUATION METHODOLOGY

5.1 The DVE prototype

Figure 4: The DVE prototype

For more realistic evaluation of the zone migration algo-
rithms, we develop a DVE prototype using the Torque 3D
game engine1. The prototype is a First-Person Shooter mul-
tiplayer online game, in which players move around a 3D
virtual city, collect resource items and shoot at each other.
The game has multiple separate zones, and players will need
to select their zones before joining the game. They may also
switch from one zone to another during gameplay. Each zone
is hosted by a Xen VM running Windows XP Service Pack
3. Multiple zones may run on the same physical server, but
each VM only handles a single zone. In this paper, a VM
hosting a game zone is referred to as a game server. Figure
4 shows a screenshot of the game.

5.2 Workload model
To conveniently and efficiently evaluate the proposed al-

gorithms with realistic DVE workloads, we implement an
artificial, automatic game client to replace real human play-
ers. This simulated game client tries to emulate human be-
haviors during gameplay. For example, it can find its way

1http://www.torquepowered.com/products/torque-3d

around the virtual city, collect the resource items, and do
some shootings. It sends messages to and receives updates
from the game server in the same way as the real game client.
We remove the 3D rendering tasks from the simulated game
client in order to reduce the load, and thus be able to run
multiple simulated clients on one PC.

To ensure that using simulated clients will not affect the
outcome of our performance evaluation, we conduct some
experiments to verify the load that those clients generate
on the game server. We run each individual experiment
for 10 times, and report the average result. Figure 5 shows
the game server-side incoming and outgoing bandwidth with
varying number of clients in three different cases. In the
first case, we run each simulated game client on a separate
PC. In the second case, all simulated game clients are on
a single PC. In the third case, we run real clients with full
3D graphics, each on a separate PC. The results in Figure
5 show that the network workloads in most situations are
very similar. In addition, we find that the game server’s
CPU utilizations (not shown in Figure 5) are also similar in
all cases.

The resource consumptions on the client-side PC in the
second case (i.e., all simulated clients on a single PC) are not
significant either. In particular, CPU utilizations are 1.8%
for one client, 4.1% for 5 clients and 5.5% for 10 clients. The
data indicate that we may run a number of simulated clients
on the same PC without greatly affecting the evaluation.

 0

 5

 10

 15

 20

 25

 30

1 5 10

in
c
o
m

in
g
 b

a
n
d
w

it
h
 (

K
B

p
s
)

number of clients

Case 1
Case 2
Case 3

(a) Incoming

 0

 5

 10

 15

 20

 25

 30

1 5 10

o
u
tg

o
in

g
 b

a
n
d
w

it
h
 (

K
B

p
s
)

number of clients

Case 1
Case 2
Case 3

(b) Outgoing

Figure 5: Incoming and outgoing game server band-
width

5.3 Network model
We use netem2, and the HTB queuing discipline3 which

are included in mainline Linux kernels starting from version
2.4.20 to emulate a WAN with high round-trip latency in
our LAN. The current netem version emulates variable la-
tencies, loss, duplication and packet re-ordering, which are
typical properties of WANs. On the other hand, HTB al-
lows the use of one physical link to simulate several slower
links and to send different kinds of traffic on different sim-
ulated links. We use HTB to assign different latency values
to client-server and inter-server network links.

5.4 Default parameters
Unless stated otherwise, the following settings and param-

eters are used in the experiments. The network bandwidth

2http://www.linuxfoundation.org
3http://luxik.cdi.cz/ devik/qos/htb

253

(a) 2 zones, 2 servers (b) 2 zones, 3 servers (c) 4 zones, 3 servers (d) 4 zones, 4 servers

Figure 6: Zone migration configurations

 0

 20

 40

 60

 80

 100

 120

 140

1 2

to
ta

l
ti
m

e
 (

s
e
c
)

configuration

sequential
parallel

(a) 2 zones, 2 servers

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3

to
ta

l
ti
m

e
 (

s
e
c
)

configuration

sequential
parallel

(b) 2 zones, 3 servers

 0

 50

 100

 150

 200

 250

 300

1 2

to
ta

l
ti
m

e
 (

s
e
c
)

configuration

sequential
parallel

(c) 4 zones, 3 servers

 0

 20

 40

 60

 80

 100

 120

 140

1 2

to
ta

l
ti
m

e
 (

s
e
c
)

configuration

sequential
parallel

(d) 4 zones, 4 servers

Figure 7: Completion times for VM migrations

between any pair of physical machines is 100Mbps. The la-
tency between each pair of physical servers hosting VMs is
set to 100ms. Client-server latency is equivalent to LAN’s
latency, which is negligible (around 1ms). There are 10 sim-
ulated clients per zone; and all these clients run on the same
client-side PC. Each experiment is run for 10 times, and the
average result is reported.

6. RESULTS

6.1 Characterization of the remote storage ap-
proach

In the first set of experiments, we study the effect of hav-
ing a remote storage for a VM hosting a DVE zone. Recall
that in our virtualization-based zone migration approach,
the VM hosting a zone can be freely migrated across physical
servers, while its storage may remain at the original server,
and only gets migrated if required. Such approach may have
some performance issues if the application hosted by the VM
is data-intensive, since WANs typically have lower band-
width and higher latency, compared to LANs. Hence, we
need to conduct some experiments to characterize our DVE
prototype’s storage access patterns; and to carefully study
the DVE performance in cases of having a remote or a local
storage.

In the experiments, we set up two different scenarios. In
the first scenario (referred to as “remote storage”) we run a
DVE zone on a physical machine, and its storage on another
one. The two physical machines are interconnected by a
100Mbps link with 100ms round-trip latency. In the other
scenario (referred to as “local storage”), the same DVE zone

and its storage are located on the same physical machine.
We first measure the game map loading time when the

game server starts up; then the storage access bandwidth
for both scenarios during gameplay. For the latter experi-
ment, we use various numbers of clients (1, 5 and 10) playing
in the zone for about 2 minutes in each individual measure-
ment. We find that the time to load the game map in case
of local storage is around 5 seconds versus 7 seconds for
the remote storage. During gameplay, the storage band-
width consumptions are pretty low, and are similar for both
remote and local storage. In particular, storage read oper-
ations consume about 1.3 KBps, and do not change much
for different numbers of clients. The write operations are
negligible in terms of storage access bandwidth. The results
indicate that DVE is not a storage-access-intensive appli-
cation, and having a remote storage would not affect the
performance greatly, except when large game maps need to
be reloaded frequently.

We also measure the game server latency from the client
side in both scenarios. For this purpose, we develop an
application-level latency measurement tool similar to qstat4.
Such tool provides more accurate measurement compared
to the simple “ping” command which collects only network-
level latency. The obtained results show that there are not
much difference in round-trip client-server latencies (around
14-15ms in most cases) in both remote and local storage
scenarios, with different numbers of clients.

6.2 Zone migration
To realistically examine the performance of the parallel

4http://sourceforge.net/projects/qstat/

254

and sequential migration algorithms, we devise a number of
different zone migration configurations as shown in Figure
6. The configurations range from 2 zones with 2 physical
servers to 4 zones with 4 physical servers. The main per-
formance metric is the migration completion time (in sec-
onds). The experiment results for VM migrations are shown
in Figure 7. Generally, the parallel migration finishes faster
in most configurations, sometimes significantly faster, e.g.,
Figure 7(d).

However, surprisingly in some cases such as configuration
1 in Figure 7(b) and Figure 7(c), the parallel migration per-
forms worse than the sequential migration. In these two
particular scenarios, we observe that there is only a sin-
gle physical server as the migrations’ destination, and the
other two servers are sending all the zones to this destina-
tion server concurrently. As a result, the destination server
might be overloaded, thus the entire migration process could
be slowed down significantly. Therefore, in such cases, the
sequential migration is recommended.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400

se
rv

e
r

la
te

n
cy

 (
m

se
c)

measurement round

Zone 1
Zone 2

(a) Parallel migration

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400

se
rv

e
r

la
te

n
cy

 (
m

se
c)

measurement round

Zone 1
Zone 2

(b) Sequential migration

Figure 8: Client-server latency before, during and
after zone migration - 2 zones, 3 servers, config. 1)

Figure 8 shows the client-server latencies for two zones
before, during and after zone migration for both parallel
and sequential algorithms. We can observe that there is
a distinct latency peak for each zone; this happens when
the corresponding VM is stopped on the original server and
then restarted on the destination server. Despite the high
latency during the peak, no game clients get disconnected,
and the players just experience a very short “pause” in the
game during this transition period.

Figure 9 shows the storage migration completion times for
some configurations listed in Figure 6. In our experiments,
each VM has a disk image of 10GB. The parallel algorithm
outperforms the sequential algorithm in all cases, including
cases in which multiple servers send multiple disk images to
a single destination server. This is because xNBD applies

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2

to
ta

l
ti
m

e
 (

s
e
c
)

configuration

sequential
parallel

(a) 2 zones, 2 servers

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3

to
ta

l
ti
m

e
 (

s
e
c
)

configuration

sequential
parallel

(b) 2 zones, 3 servers

Figure 9: Completion times for storage migrations

some very small artificial delays into the storage transferring
mechanism [8], thus effectively slowing down data transfer
speeds. As a result, the destination server is not overloaded
with a huge amount of incoming data during parallel stor-
age migrations. As we have mentioned previously, a remote
storage does not have much negative performance impact on
DVEs, hence there may not be much incentive for migrating
the storage as fast as possible.

6.3 Zone mapping

Figure 10: Zone mapping experiment

We use the zone mapping algorithms [16] as a case study
to demonstrate the capabilities of the newly proposed zone
migration approach. In this experiment, we use 3 zones
named z1, z2 and z3 which are initially assigned to 3 physi-
cal servers s1, s2 and s3, respectively. We use netem and the
HTB queuing discipline to set the client-server network la-
tency between all clients in the system to server s1, s2, and
s3 to 50ms, 100ms and 200ms, respectively. We calculate
the level of QoS in the system as the percentage of clients
that have client-server round-trip latency less than a given
threshold, which is 80ms in this experiment.

Figure 10 shows a screenshot captured directly from our
DINE tool [15]. We observe that at the start, the system
QoS is around 33%, then it jumps to 100%. This is because
initially, only the clients in z1 having client-server latencies
that are below the given delay threshold. After zone migra-
tions due to the triggering of zone mapping algorithms, the
two zones z2 and z3 get migrated to s1 which has a network
latency of 50ms for all clients in the system. Hence, after
migration, all the clients in the system have client-server

255

latencies less than 80ms.

7. CONCLUSIONS
In this paper, we have proposed a virtualization-based ap-

proach to address the problem of live zone migration over
WAN to support DVE zone mapping or load distribution
in a geographically distributed server infrastructure. We
have also developed and integrated two algorithms, namely
parallel and sequential migrations into an existing DVE per-
formance enhancement and monitoring framework to effec-
tively migrate multiple DVE zones.

Extensive experiments have been carried out with an on-
line multi-player game prototype constructed using the Torque
3D game engine. The results have demonstrated the feasibil-
ity of our zone migration approach, and suggested some use-
ful considerations when applying the proposed algorithms in
practical settings.

Acknowledgement
This work is supported in part by the Singapore National
Research Foundation under Grant NRF2007IDM-IDM002-
052.

8. REFERENCES
[1] Distributed replicated block device. Available at

http://www.drbd.org, Retrieved on Nov 2010.

[2] Kernel-based virtual machine. Available at
http://www.linux-kvm.org, Retrieved on Nov 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the ACM symposium on Operating
systems principles, pages 164–177. ACM, 2003.

[4] P. B. Beskow, G. A. Erikstad, P. Halvorsen, and
C. Griwodz. Evaluating ginnungagap: a middleware
for migration of partial game-state utilizing
core-selection for latency reduction. In Proceedings of
the 8th Annual Workshop on Network and Systems
Support for Games, NetGames ’09, pages 10:1–10:6.
IEEE Press, 2009.

[5] R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schiöberg. Live wide-area migration of virtual
machines including local persistent state. In
Proceedings of the 3rd international conference on
Virtual execution environments, pages 169–179. ACM,
2007.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hanseny, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In 2nd Symposium on Networked
Systems Design and Implementation (NSDI 2005).
USENIX, 2005.

[7] E. Harney, S. Goasguen, J. Martin, M. Murphy, and
M. Westall. The efficacy of live virtual machine
migrations over the internet. In Proceedings of the 2nd
international workshop on Virtualization technology in
distributed computing, pages 8:1–8:7. ACM, 2007.

[8] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and
S. Sekiguchi. A live storage migration mechanism over
wan for relocatable virtual machine services on clouds.
In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and

the Grid, CCGRID ’09, pages 460–465. IEEE
Computer Society, 2009.

[9] A. Iosup, V. Nae, and R. Prodan. The impact of
virtualisation on the performance and operational
costs of massively multiplayer online games. IJAMC,
4(4):364–386, 2010.

[10] K. W. Lee, B. J. Ko, and S. Calo. Adaptive Server
Selection for Large Scale Interactive Online Games.
Computer Networks, 49:84–102, 2005.

[11] J. Lui and M. Chan. An Efficient Partitioning
Algorithm for Distributed Virtual Environment
Systems. IEEE Transaction on Parallel and
Distributed Systems, 13(3), 2002.

[12] D. S. Milojicic, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou. Process migration. ACM
Comput. Surv., 32(3):241–299, 2000.

[13] V. Nae, A. Iosup, S. Podlipnig, R. Prodan,
D.H.J.Epema, and T. Fahringer. Efficient
Management of Data Center Resources for Massively
Multiplayer Online Games. In Proc. of ACM/IEEE
SuperComputing Conference on High Performance
Networking and Computing, 2008.

[14] S. Singhal and M. Zyda. Networked virtual
environments: design and implementation.
Addison-Wesley, Reading, MA, 1999.

[15] D. Ta, T. Nguyen, S. Zhou, X. Tang, W. Cai, and
R. Ayani. A framework for performance evaluation of
large-scale interactive distributed virtual
environments. In CIT, pages 2744–2751, 2010.

[16] D. Ta, S. Zhou, X. Tang, W. Cai, and R. Ayani.
Efficient zone mapping algorithms for distributed
virtual environments. In Proc. of ACM/IEEE/SCS
PADS, pages 137–144, 2009.

[17] D. N. B. Ta and S. Zhou. A Dynamic Load Sharing
Algorithm for Massively Multi-Player Online Games.
In Proc. of the 11th IEEE International Conference on
Networks, 2003.

[18] D. N. B. Ta and S. Zhou. A Two-phase Approach to
Interactivity Enhancement for Large-Scale Distributed
Virtual Environments. Elsevier Computer Networks,
2007.

[19] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. T.
A. M. de Laat, J. Mambretti, I. Monga, B. van
Oudenaarde, S. Raghunath, and P. Y. Wang. Seamless
live migration of virtual machines over the man/wan.
Future Generation Comp. Syst., 22(8):901–907, 2006.

[20] T. Wood, P. Shenoy, K. K. Ramakrishnan, and
J. V. D. Merwe. Cloudnet: A platform for optimized
wan migration of virtual machines. University of
Massachusetts, Technical Report, 2010.

[21] S. Zhou, W. Cai, B. S. Lee, and S. J. Turner.
Time-space consistency in large-scale distributed
virtual environments. ACM Transactions on Modeling
and Computer Simulation, 14(1):31–47, 2004.

256

	A virtualization-based approach for zone migration in distributed virtual environments
	Citation
	Author

	A virtualization-based approach for zone migration in distributed virtual environments

