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ABSTRACT
High Level Architecture (HLA)-based simulations employ-
ing optimistic synchronization allows federates to process
event and to advance simulation time freely at the risk of
over-optimistic execution and execution rollbacks. In this
paper, an adaptive resource provisioning system is proposed
to accelerate optimistic HLA-based simulations in Virtual
Execution Environment (VEE). A performance monitor is
introduced using a middleware approach to measure the per-
formance of individual federates transparently to the simula-
tion application. Based on the performance measurements,
a resource manager distributes the available computational
resources to the federates, making them advance simulation
time with comparable speeds. Our proposed approach is
evaluated using a real-world simulation model with various
workload inputs and different parameter settings. The ex-
perimental results show that, compared with distributing
resources evenly among federates, our proposed approach
can accelerate the simulation execution significantly using
the same amount of computational resources.

Categories and Subject Descriptors
I.6 [Computing Methodologies]: SIMULATION AND
MODELING

Keywords
HLA-based Simulations, Optimistic Synchronization, Vir-
tual Execution Environment, VM Scheduling, Cloud Com-
puting

1. INTRODUCTION
Parallel and distributed simulations are usually built to

study large-scale and complex systems in desired detail and
fidelity. The High Level Architecture (HLA), IEEE 1516
standard [11], provides a general framework to build a par-
allel and distributed simulation (federation) by integrating
various simulation models (federates). Most work to date
has focused on conducting HLA-based simulations on a tra-
ditional execution platform composed of a group of dedi-
cated computing nodes. Recently, we have witnessed an
increasing interest of moving data and computation to the
Cloud. Large amount of resources can be obtained on the
Cloud for the purpose of executing compute- and data-intensive
HLA-based simulations [6]. Furthermore, resources can be
provisioned elastically according to the simulation workload.
Different from traditional execution platforms, most of the
Infrastructure as a Service (IaaS) Cloud providers [1] adopt
Virtual Execution Environment (VEE) relying on virtual-
ization technologies [2]. In this paper, we investigate how to
accelerate HLA-based simulations in VEE.

One of the greatest challenges in HLA-based simulations
is the time synchronization among federates, which ensures
that all events are processed in time stamp (TS) order. In
this paper, we focus on the optimistic synchronization ap-
proach [13], which allows a federate to process events and to
advance simulation time freely at the risk of over-optimistic
executions and execution rollbacks. It has good performance
when all federates can advance their simulation time with
comparable speed [6]. This usually requires that federates
should have homogeneous simulation workload and should
execute on homogeneous computational resources. Unfortu-
nately, it is very difficult to meet such requirement in prac-
tice. Federates which simulate different parts of an unsym-
metric system have probably different workloads. Further-
more, the workload of each federate might change during the
simulation execution. In the traditional execution platform,
federates might execute on heterogenous computing nodes.
In VEE, federates may share resources with other federates
or even other applications.

In this paper, each federate is encapsulated and executed
on a virtual machine (VM). VMs consolidated on a com-
puting node are scheduled by a hypervisor to share the un-
derlying resources. By setting relevant parameters of the
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VM scheduling algorithm, VMs can be constrained to use
a desired share of computational resources, i.e., CPU com-
pute cycles (to be explained in Section 3.2). Consequently,
the performance of federates can be controlled. Inspired
to this, we propose an adaptive resource provisioning sys-
tem for the purpose of accelerating optimistic HLA-based
simulations in VEE. A performance monitor is introduced
using a middleware approach to measure the execution per-
formance of federates transparently to the simulation appli-
cation. A resource manager is developed as a bridge between
the performance monitor and hypervisor. It periodically
retrieves performance measurements of federates from the
performance monitor and the amount of available resources
from the hypervisor. Based on the performance measure-
ments, the resource manager can predict workload of the
federates and then distribute the available resources to the
federates accordingly. As a result, federates are able to ad-
vance their simulation time with comparable speed, avoiding
over-optimistic executions and execution rollbacks. Hence,
the simulation execution can be accelerated using the same
amount of computational resources.
The rest of the paper is organized as follows: Section 2

discusses the related work. Section 3 introduces some back-
ground knowledge including HLA-based simulations and VM
scheduling in VEE. Section 4 illustrates the details of our
proposed adaptive resource provisioning system. Section 5
describes the experiment design and discusses the experi-
mental results. Finally, Section 6 concludes the paper and
outlines the future work.

2. RELATED WORK
A number of research work have been done on accelerat-

ing parallel and distributed simulations on traditional ex-
ecution platforms. Federate migration protocols [15] were
proposed to achieve workload balance in the federation exe-
cution. Different synchronization approaches are mixed [25]
or replicated [16] for the purpose of taking their advantages
in the same simulation execution. The Adaptive Time Warp
protocol [24] improves performance of optimistic synchro-
nization by reactively blocking the optimistic execution of
simulation components. Specifically, a simulation compo-
nent is blocked if it has executed far beyond others in the
same simulation execution. The protocol is most closely re-
lated to our proposed approach. However, its performance
is sensitive to the frequency of global synchronization, which
is time-consuming in the Cloud due to the unstable network
performance [30].
Recently, researchers have tried to tackle the technical

challenges that arise in moving parallel and distributed sim-
ulations to the Cloud [26, 6]. Malik et. al [17] have pro-
posed a novel protocol to enhance optimistic synchroniza-
tion efficiency on the Cloud in the presence of high network
latency and jitters. Similar to the Adaptive Time Warp pro-
tocol [24], the protocol proposed in [17] reactively blocking
the execution of fast simulation components. In contrast,
we propose to proactively make federates advance simula-
tion time with comparable speed, and thus, avoids execution
rollbacks.
In addition, researchers have also tried to accelerate par-

allel and distributed simulations on modern many-core pro-
cessors [7, 4]. Similar to our proposed approach, Child and
Wilsey [4] have explored the features of Dynamic Voltage
and Frequency Scaling (DVFS) for the purpose of reducing

the execution rollbacks in optimistic simulations. The per-
formance of individual simulation components are controlled
by adjusting the frequency and voltage of their correspond-
ing CPU cores. However, due to the hardware limit, only
four to six discrete frequency-voltage pairs are made pos-
sible. To the best of our knowledge, we are the first to
consider accelerating HLA-based simulations by harnessing
virtualization technologies which are commonly used in the
Cloud. Different from DVFS, the virtualization technolo-
gies leveraged in this paper enable fine-grained adjustment
of CPU resources (to be explained in Section 3.2).

In Cloud computing, under-provisioning resources will cause
Service Level Objective (SLO) violation, resulting in finan-
cial penalties; while over-provisioning resources will increase
cost and waste resources that could be assigned to other
users. To avoid these problems, several elastic resource allo-
cation systems [10, 28, 14, 22] have been proposed. In [10,
28], signature-driven and state-driven approaches are used
to predict application workload. According to the work-
load prediction, resources are automatically allocated to the
corresponding VMs. In [14, 22], the amount of resources
necessary to achieve application SLO is automatically de-
termined using a control theory-based estimator. Unfortu-
nately, these resource allocation systems are targeted at web
server applications and cannot be directly applied on opti-
mistic HLA-based simulations. For instance, the workload
of web server applications can be predicted according to his-
torical CPU utilization rate [10, 28], as the CPU is put to
idle when the workload is light. In contrast, optimistic fed-
erates consume allocated CPU resource on optimistic execu-
tions which might be rolled back in the future. Hence, the
CPU utilization rate does not represent the useful workload
of federates. In addition, the performance target of server
applications are well defined in SLO and their real perfor-
mance can be measured easily [14, 22]. In contrast, the
performance of an HLA-based simulation is concerned with
the performance of individual federates, as well as the time
synchronization among them. It is also non-trivial to mea-
sure federate performance transparently to the simulation
applications.

3. BACKGROUND

3.1 HLA-based Simulations
In an HLA-based simulation, federates might be devel-

oped by different participants from different organizations.
They are executed in a parallel and distributed manner.
The HLA interface specification implemented by a Runtime
Infrastructure (RTI) defines how a federate interacts with
other federates in the federation. Usually, an RTI compo-
nent is provided by the RTI to connect each joined federate
to the federation. It keeps part of the RTI state concerned
with the federate and takes care of the federate’s need to
exchange messages and to request time advancement. The
bidirectional interface between the federate and its RTI com-
ponent is usually implemented via ambassadors. Federates
invoke services provided by the RTI ambassador, while the
RTI delivers callbacks to the federate through its federate
ambassador. For instance, a federate sends messages by in-
voking the corresponding RTI services (e.g., SendInterac-
tion). These messages are delivered to receiving federates
in the form of callbacks (e. g., ReceiveInteraction).

An optimistic federate invokes Flush Queue Request (FQR)
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service iteratively during the simulation execution. It forces
the RTI to deliver all buffered messages to the federate. In
the mean time, the FQR request might trigger a federation-
wide time synchronization. The time granted by the RTI af-
ter FQR service is referred to as logical time of the federate.
It defines the lower bound of future execution rollbacks. It
can be used for fossil collection in the federate, e.g., the stor-
age space containing checkpointed states with TS smaller
than the granted time can be reclaimed. Since the federate
is allowed to process events freely, its simulation time (i.e.,
TS of the event being processed) might be greater than its
logical time. However, it might receive a straggler message
whose TS is smaller than its simulation time. If so, a causal-
ity error happens and the federate needs to rollback its exe-
cution by discarding the over-optimistic execution (i.e., the
execution of those events with TS greater than the TS of the
straggler message). It must undo the modification on fed-
erate state relying on federate state saving and restoration
mechanism [13, 9]. Additionally, it needs to invoke Retract
services to unsend those incorrect messages which were sent
during the over-optimistic execution. In the case that the
messages have already been delivered to the receiving fed-
erates, the RTI informs those federates to remove the effect
of the incorrect messages through Request Retraction (RR)
callbacks. This may cause secondary execution rollbacks in
the receiving federates.

3.2 VM Scheduling
In VEE, the hypervisor monitors the underlying resources

and performs VM scheduling. Credit scheduler [33], the de-
fault CPU scheduler in Xen, is a proportional share sched-
uler. The credit allocation for VMs is managed by two pa-
rameters: a weight and an optional cap. By default, only
weight is defined for each VM. In this case, the credit sched-
uler is work-conserving, which means that a VM that has
expended all of its credit will be allocated additional CPU
share if no other VM is using its allocated share. Option-
ally, we can use cap to specify the maximum CPU share
the VM is allowed to consume. In this case, the credit
scheduler is non-work-conserving, which means that a VM
never consumes CPU share beyond the cap even if the rest
of CPU share is left idle. Compared with work-conserving,
non-work-conserving provides better performance isolation
among VMs [3, 27]. The cap value, rather than the weight
value, precisely specifies the CPU share allocated to a VM.
It can be any integer value (denoted as c) between 1 and
100, indicating that c% time of one CPU core is scheduled
for the VM 1. In this paper, the computational resources al-
located to federates are controlled through the fine-grained
adjustment of the CPU caps of their resident VMs.

4. ADAPTIVE RESOURCE PROVISIONING
SYSTEM

4.1 Architecture Overview
The architecture of our proposed adaptive resource pro-

visioning system is illustrated in Figure 1. Each federate is
executed on its individual resident VM. Similar to the solu-
tions in [31], a performance monitor can be inserted between

1The cap value can also be greater than 100, indicating that
more the one CPU core is scheduled for the VM

Figure 1: Overview of the adaptive resource provi-
sioning system

the federate and its RTI component as a middleware. By in-
tercepting the RTI services and callbacks, the performance
monitor is able to measure the performance of the federate
transparently to the simulation application. More details
will be provided in Section 4.2.

A resource manager is developed as a bridge between the
performance monitor and the hypervisor of the computing
node. It periodically adjusts the resource shares for federates
in the federation for the purpose of making them have the
same performance. The simulation execution is divided into
a number of successive control intervals. The control interval
length is a parameter used in the adaptive resource provi-
sioning system. In each control interval, the resource man-
ager retrieves performance of federates through their perfor-
mance monitors. In the meantime, it retrieves the available
resources of the computing node through its hypervisor. An
algorithm is developed to distribute the available resources
among federates. Finally, the resource manager sends re-
source shares of federates (i.e., caps of their resident VMs) to
the hypervisor, and the latter schedules VMs accordingly (as
described in Section 3.2). By allocating appropriate compu-
tational resource shares, the federates with different work-
loads are able to achieve comparable performance. Com-
pared with the scheme that evenly distributes computational
sources among federates, the adaptive resource provisioning
system allocates less computational resources to federates
with low workload. Hence, they can avoid over-optimistic
executions and execution rollbacks. On the other hand, the
adaptive resource provisioning system allocates more com-
putational resources to federates with high workload. Hence,
the overall federation execution can be accelerated. More
details will be provided in Section 4.3.

Although only one computing node is illustrated in Fig-
ure 1, the adaptive resource provisioning system can be
easily extended to multiple computing nodes for large-scale
HLA-based simulations. In this case, the resource managers
deployed at different computing nodes should coordinate
with each other for the purpose of making all federates in
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the federation have the same performance. In addition, the
resident VMs should be migrated among computing nodes
if necessary to achieve workload balance and/or to reduce
communication overhead [5].

4.2 Performance Monitor
In HLA-based simulations, the performance of a federate

is measured by its execution speed, i.e., how fast the federate
can advance its simulation time. Intuitively, it can be mea-
sured as the advanced simulation time in a control interval
divided by the control interval length. However, execution
rollbacks might happen during the control interval. If so, the
simulation time decreases and the federate wastes time on
over-optimistic executions and execution rollbacks. Hence,
the execution speed measured in this manner may not ac-
curately characterize the useful workload of the federate. In
some extreme cases, the measured execution speed might
even be a negative value. To solve this problem, the simu-
lation execution is partitioned into epochs, which is usually
much smaller than the control interval. Only the epochs
without over-optimistic executions and execution rollbacks
are taken into account for performance measurement.
As shown in Figure 1, the performance monitor in the

middleware is able to intercept FQR services invoked by fed-
erates. By default, the argument (i.e., the requested time) of
a FQR service is the TS of the next internal event in the fed-
erate. Usually, it is quite close to the simulation time of the
federate. Hence, we can use the requested time to estimate
the progress of federates approximately2. In this way, feder-
ate execution can be partitioned into epochs, each of which
is defined as the requested time interval between two subse-
quent FQR requests. Usually, federates are not required to
invoke a FQR service before processing every event. Hence,
an epoch is likely to include multiple processed events.

Algorithm 1 Intercept FQR service

1: Let E be the list of epochs in each control interval
2: if RollbackF lag == true then
3: RollbackF lag = false
4: else
5: Append a new epoch (Ek) at the end of E
6: Ek → begTS = ReqT ime(k − 1)
7: Ek → endTS = ReqT ime(k)
8: Ek → advTS = ReqT ime(k)−ReqT ime(k − 1)
9: Ek → exeT ime = Clock(k)− Clock(k − 1)
10: end if

As shown in Algorithm 1, the epochs in the control in-
terval are kept in a list denoted as E. On intercepting
the kth FQR invocation, the performance monitor creates
a new epoch Ek (Lines 5), except that an execution roll-
back is detected (to be discussed later) before the FQR in-
vocation (Lines 2 and 3). In the meantime, it also records
the requested time denoted as ReqT ime(k) and the wall
time clock denoted as Clock(k). Then, ReqT ime(k−1) and
ReqT ime(k) respectively defines the beginning and the end
of Ek (Lines 6 and 7). The advanced simulation time and
execution time of Ek is ReqT ime(k)−ReqT ime(k− 1) and
Clock(k)− Clock(k − 1) respectively (Lines 8 and 9).
As mentioned in Section 3.1, messages and RR callbacks

2For better accuracy, the performance monitor can provide
federate with a modified FQR interface including both sim-

Algorithm 2 Intercept messages and RR callbacks

1: LetM be the list of delivered messages and RR callbacks
after each FQR service

2: minMsgTS = min
Mi∈M

Mi → TS

3: for Each Ei ∈ E do
4: if minMsgTS < Ei → endTS then
5: Remove Ei from E
6: RollbackF lag = true
7: end if
8: end for

are delivered to federates after each FQR invocation. In or-
der to detect the execution rollbacks, the performance mon-
itor intercepts the delivered messages and RR callbacks, as
shown in Algorithm 2. Firstly, it calculates minMsgTS,
i.e., the minimum TS of those messages and RR callbacks
(Line 2). In the case that theminMsgTS is smaller than the
endTS of an epoch in E, the epoch includes over-optimistic
execution which will be rolled back. Therefore, it should not
be considered for performance measurement (Lines 3 to 5).
Once an execution rollback is detected, the rollbackF lag is
set to true. This will prevent the performance monitor from
creating an epoch on intercepting the subsequent FQR in-
vocation (Lines 2 and 3 in Algorithm 1).

At the end of each control interval, the performance mon-
itor is required to measure the execution speed of the feder-
ate during the control interval, as shown in Algorithm 3.
It is possible that the control interval might not include
any epoch, especially when the control interval is too short
and/or when the federate encounters an execution rollback.
In this case, the performance monitor simply reports an in-
valid execution speed, i.e., NaN (Not a Number). Other-
wise, the execution speed of the federate is calculated as the
sum of advanced simulation time of all epochs in the con-
trol interval divided by the sum of execution time of those
epochs. After the performance is measured, the list E is
able to be cleared up for keeping epochs in the subsequent
control interval.

Algorithm 3 Measure performance

1: if E is empty then
2: exeSpeed = NaN //NaN: Not a Number
3: else

4: exeSpeed =
∑

Ei∈E Ei→advTS
∑

Ei∈E Ei→exeTime

5: end if
6: Remove all elements from E
7: return exeSpeed

4.3 Resource Manager
Since the workload prediction is not the main focus of this

paper, we simply use the simulation workload in the current
control interval to predict that in the subsequent control
interval. It is also assumed that federate performance in-
creases proportionally with increasing VM Cap [27]. Take
the ith federate as an example, at the end of kth control inter-
val, the resource manager retrieves the measured execution
speed denoted as MESi(k) from the performance monitor.

ulation time and requested time arguments. However, such
modified interface is not compliant to the HLA standard.
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Suppose that the caps of its resident VM at kth and (k+1)th

control intervals are set to Capi(k) and Capi(k+1) respec-
tively, we can get the predicted execution speed (PES) at the
(k + 1)th control interval as:

PESi(k + 1) =
MESi(k)

Capi(k)
× Capi(k + 1) (1)

To accelerate the simulation execution, the PES of all fed-
erates should be maximized at every control interval. How-
ever, some constraints should be satisfied in the meantime.
Firstly, the federates can only consume the available re-
source. Suppose that the federation scale is N ; the simu-
lation execution time is T ; the control interval length is t;
the number of available CPU cores is M , we can get

N∑

i=1

Capi(k) ≤M ∗ 100 (2)

for each k ∈ {1, 2, ..., T
t
}. Secondly, each federate cannot

consume more than one CPU core, because the federate,
as a simulation component, is usually single-threaded [18].
That is,

Capi(k) ≤ 100 (3)

for each i ∈ {1, 2, ..., N} and k ∈ {1, 2, ..., T
t
}. Thirdly, to

avoid execution rollbacks, federates should have the same
PES in the same control interval. That is,

PESi(k) = PESj(k) (4)

where i and j ∈ {1, 2, ..., N} and k ∈ {1, 2, ..., T
t
}.

The functionality of the resource manager is illustrated
in Algorithm 4. F denotes the set of all federates in the
federation. At the end of each control interval, the resource
manager retrievesMES from the performance monitor of all
federates in the federation (Lines 5 to 10). In the case that
the retrieved MES is NaN (Not a Number), the MES is
approximately set as the PES of the federate in the control
interval. After that, the resource manager distributes avail-
able resources to federates in the federation for the purpose
of maximizing PES of all federates while satisfying afore-
mentioned constraints.
According to Equation 1, the federate with smaller MES(k)

Cap(k)

should have greater Cap(k+1) to meet the third constraint
(Equation 4) in the next control interval. In other words,

Fm with the minimum MES(k)
Cap(k)

should have the maximum

Cap(k + 1) in the federation. Due to the second constraint
(Equation 3), Capm(k + 1) can be set to 100 at the most.
Without considering the first constraint (Equation 2), we
can initially set Capm(k + 1) = 100. Then, PESm(k + 1)
can be calculated according to Equation 1 (Line 13). Ac-
cording to the third constraint, other federates should have
the same PES as Fm (Line 15). Then, Cap(k+1) for other
federates can be calculated by rewriting Equation 1 (Line
16).
However, the first constraint (Equation 2) will not be sat-

isfied if the ratio of M × 100 to
∑

Fi∈F

Capi(k + 1), denoted

as ϕ, is smaller than one. To make it satisfied, the caps of
all federates should be reduced by ϕ times. Obviously, the
second constraint will be satisfied as well. Since the PES
of all federates will be reduced by ϕ times, they will remain
the same, making the third constraint satisfied. In the case
that ϕ > 1, the federates in the federation cannot consume

all the available CPU resources. Fm becomes the bottleneck
that holds back the simulation execution.

Algorithm 4 Resource Manager

1: F = {F1, F2, · · · , FN};
2: k = 0;
3: while k < T

t
do

4: Thread.sleep(t);
5: for each Fi ∈ F do
6: MESi(k) = Fi → measurePerformance();
7: if MESi(k) == NaN then
8: MESi(k) = PESi(k);
9: end if
10: end for
11: Choose Fm ∈ F where MESm(k)

Capm(k)
= min

Fi∈F

MESi(k)
Capi(k)

;

12: Capm(k + 1) = 100;

13: PESm(k + 1) = MESm(k)
Capm(k)

× Capm(k + 1);

14: for each Fi ∈ F− {Fm} do
15: PESi(k + 1) = PESm(k + 1);

16: Capi(k + 1) = PESi(k+1)
MESi(k)

× Capi(k) ;

17: end for
18: ϕ = M×100∑

Fi∈F
Capi(k+1)

;

19: if ϕ < 1 then
20: for each Fi ∈ F do
21: Capi(k + 1) = ϕ× Capi(k + 1);
22: PESi(k + 1) = ϕ× PESi(k + 1);
23: end for
24: end if
25: k ++;
26: end while

5. EXPERIMENTS AND RESULTS

5.1 Experiment Design
AMassively Multiplayer Online Games (MMOGs) ecosys-

tem simulation model is used in our experiments to evaluate
our proposed adaptive resource provisioning system. Nae
et. al [21] have proposed a dynamic resource provisioning
method and introduced the concepts of MMOGs ecosystem.
In the MMOGs ecosystem, game operators rent resources
(CPU, Network and Memory) from data centers for running
the MMOG servers. They are able to dynamically adjust
the amount of renting resources according to the workload
of MMOGs (e.g., the number of players and their interac-
tions). We develop an HLA-based simulation to simulate
the MMOGs ecosystem. It can be used to study the ef-
fect of dynamic resource provisioning schemes using differ-
ent workload prediction algorithms and different resource
hosting policies.

In our HLA-based simulation, each federate simulates the
game servers in a data center. It generates a local event
to simulate the performance and resource provisioning of
the game servers in each time step (i.e., 10 seconds) of the
MMOGs execution [21]. That is, the difference of simula-
tion time between any two successive local event is 10. Each
local event calculates the response time of each interaction
initialized by players connected to the data center and mea-
sures the quality of game experience from the perspective
of those players, using the resources rented from the data
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center in the corresponding time step. Therefore, the simu-
lation model can be used to evaluate resource provisioning
schemes using performance metrics such as resource over-
allocation and resource under-allocation [21]. In addition,
we can also get that the computational resource required for
processing a local event increases proportionally with the in-
creasing number of players connected to the data center in
the corresponding time step. In our experiments, the num-
ber of players connected to the data centers are retrieved
from the trace of RuneScape [21]. They have strong diurnal
pattern. Therefore, the simulation workload of the corre-
sponding federates also have strong diurnal pattern. In the
case that the data centers locate at regions in different time
zones, the corresponding federates may have different simu-
lation workloads at the same simulation time. For simplicity,
the federation scale is set to two in our experiments. Vari-
ous cases of simulation workloads (specifically, the number
of players connected to the corresponding data centers) are
introduced in the two federates. In Case 1, the data cen-
ters locate in the regions within the same time zone. In
Cases 2 and 3, the time difference between the data centers
is around 6 and 12 hours, respectively. For instance, the
number of players during a day in Case 3 is illustrated in
Figure 2.
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Figure 2: Simulation workload of federate (Case3)

In addition, federates might send external events to each
other to simulate the communication between servers lo-
cated at different data centers. For instance, servers may
replicate some parts of their game state in different data
centers to tolerate unpredictable failures [19]. Depending
on different strategies, state replications might be triggered
at different situations and the replication frequency might
vary in a large range. For simplicity, we assume each exter-
nal event is triggered by an internal event. The probability
of generating external events is denoted as PExternEvent.
The TS of an external event equal to TS of the processing
internal event plus a lookahead (LA) [9], indicating that the
external event will affect the receiving federate after LA sim-
ulation time. PExternEvent and LA are used as parameters
in our HLA-based simulation. In our experiments, we will
evaluate the performance of a number of simulation execu-
tions with different parameter inputs, i.e., different values of
PExternEvent and LA.
Optimistic synchronization is employed in the MMOGs

ecosystem simulation model. Federates are allowed to pro-
cess three events before invoking the next FQR service. In
addition, the infrequent state saving approach described in [8]
is adopted. Federates save their state after processing 15
events. When a causality error happens, the federate must

roll back to a previous saved state and coast-forward execu-
tion to recreate the desired execution state.

The simulation executes on an RTI implemented by reusing
the code in SOHR [23]. For efficiency consideration, RTI
components are implemented as the libraries of their corre-
sponding federates; the communication among RTI compo-
nents use JAVA socket instead of the heavy Grid service in-
vocation. Experiments are carried out on a computing node
installed with 12 Intel Xeon 2.67GHz CPU cores, 24 GB
RAM, CentOS 6.2 and Xen 4.1.2. Each federate executes
on a VM with one VCPU core, 2 GB RAM and CentOS 6.2.

Two execution scenarios are studied. In the Fixed sce-
nario, the caps of VMs are fixed at 50, i.e., two federates
share one CPU core evenly. In the Adaptive scenario, the
caps of the resident VMs are dynamically adjusted using our
proposed adaptive resource provisioning system. However,
the sum of their caps is always equal to 100. The simula-
tion length is 2 days, including the first day as the warm up
period.

5.2 Experiment Results
In the first series of experiments, we compare the simula-

tion execution performance in Fixed and Adaptive scenarios
with aforementioned workload cases. The experimental re-
sults are illustrated in Figure 3, including the simulation
execution time, the number of execution rollbacks and the
execution efficiency. The execution efficiency is defined as
the ratio of useful events to total events processed [17]. Be-
sides the useful events, federate might process events in the
over-optimistic execution and the coast-forward execution.
The Fixed scenario (Adaptive scenario) for workload cases
1, 2 and 3 are respectively denoted as F (1), F (2) and F (3)
(A(1), A(2) and A(3)) in the figure. The control interval
length as the parameter in the adaptive resource provision-
ing system ranges from 80 to 5 seconds. Obviously, it is
meaningful for the Adaptive scenario, but not the Fixed sce-
nario. For simplicity, the parameters of the simulation model
are set as follows: PExternEvent = 1% and LA = 45. Differ-
ent parameter inputs of the simulation model will be studied
latter.

In Case 1, federates have similar workload during the sim-
ulation execution. Therefore, federates executed in both
Fixed and Adaptive scenarios are able to advance simula-
tion time with comparable speed. Hence, federates encoun-
ters a small number of execution rollbacks (Figure 3(b)); and
they have high execution efficiency (Figure 3(c)). Therefore,
we can observe from Figure 3(a) that the Fixed and Adap-
tive scenarios have similar execution performance. In Cases
2 and 3, federates have different workload. For the Fixed
scenario, compared with Case 1, the numbers of execution
rollbacks are much greater (Figure 3(b)). Furthermore, the
over-optimistic execution discarded in each execution roll-
back can be very huge due to the different execution speed
of federates. As a result, the execution efficiency are much
lower (Figure 3(c)). Therefore, we can observe from Fig-
ure 3(a) that the execution time of F (2) and F (3) are much
greater than that of F (1). Different from the Fixed scenario,
federates in the Adaptive scenario have comparable execu-
tion speed. They encounter less execution rollbacks (Fig-
ure 3(b)) and have higher execution efficiency (Figure 3(c)).
Therefore, our proposed adaptive resource provisioning sys-
tem is able to reduce the simulation execution time signifi-
cantly (Figure 3(a)).
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Figure 3: Performance comparison with different workload cases and decreasing control interval length
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Figure 4: Caps of the resident VMs (Case3)

Generally speaking, the smaller the control interval length,
the more accurately the resource manager is able to adjust
the resource provisioning according to simulation workload.
As a result, federates encounter less execution rollbacks (Fig-
ure 3(b)) and have higher execution efficiency (Figure 3(c)).
Therefore, we can observe from Figure 3(a) that the sim-
ulation execution time in Adaptive scenario decreases with
the decreasing control interval length. When the control in-
terval length is equal to 5 seconds, the adaptive resource
provisioning system can obtain 22% and 25% performance
enhancement (i.e., the difference in execution time between
Fixed and Adaptive scenarios divided by the execution time
in Fixed scenario) for Cases 2 and 3 respectively. It is worth
to point out that federates executed in the Adaptive scenario
cannot avoid all execution rollbacks. This is because that
they cannot advance their simulation time with the same
speed in practice, due to the accuracy of workload prediction
and performance overhead in VEE [20]. Figure 4 illustrates
the caps of resident VMs of federates during the simulation

execution when the control interval length is 20 seconds. By
comparing Figure 2, we can observe that the CPU resource
is proportionally distributed to federates according to their
simulation workloads.

The second series of experiments are carried out to com-
pare the simulation execution performance in Fixed and
Adaptive scenarios with different parameter inputs of the
simulation model. Due to the space limit, we only report the
experimental results for Case 3 simulation workload, which
is quite common in the MMOGs ecosystem, as the data cen-
ters usually locate at different places around the world. In
addition, the control interval length is set to 20 seconds.
Figure 5 illustrates the simulation execution, number of ex-
ecution rollbacks and execution efficiency with PExternEvent

increasing from 1% to 10%. Three different LA values (i.e.,
15, 45 and 105) are taken into account. The Adaptive and
Fixed scenarios for LA = l are denoted as A − l and F − l
respectively.

As aforementioned, our proposed adaptive resource provi-
sioning system does not ensure that federates advance their
simulation time with the same speed in practice. Hence, we
can observe from Figure 5(b) that, federates in the Fixed
and Adaptive scenarios encounter similar number of execu-
tion rollbacks when LA is too small (e.g., LA = 15). In
the case that PExternEvent is small, the over-optimistic ex-
ecution discarded in each execution rollback is much longer
in the Fixed scenario than that in the Adaptive scenario.
For this reason, the Adaptive scenario has much higher exe-
cution efficiency (Figure 5(c)) and outperforms the Fixed
scenario significantly (Figure 5(a)). With the increasing
PExternEvent, the over-optimistic execution decreases as the
faster federate is frequently rolled back by the slower feder-
ate due to the straggler messages. As a result, the differ-
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Figure 5: Performance comparison with different LA and increasing PExternEvent

ence in the execution efficiency and execution time between
Adaptive and Fixed scenarios decreases.
When LA is large (e.g., LA = 105), federates in the Adap-

tive scenario with comparable execution speed are able to
avoid almost all rollbacks (Figure 5(b)). As a result, the
execution efficiency in Adaptive scenario is close to one and
is much higher than that in the Fixed scenario. Further-
more, the number of execution rollbacks and execution ef-
ficiency are almost the same regardless of the increasing
PExternEvent. Therefore, we can observe from Figure 5(a)
that the adaptive resource provisioning system can always
achieve significant performance enhancement. When LA =
45, the Adaptive scenario can still outperform the Fixed sce-
nario. However, the performance enhancement significantly
decreases with the increasing PExternEvent, as the number
of execution rollbacks increases and the execution efficiency
decreases in the Adaptive scenario.
Figure 6 illustrates the performance enhancement of the

adaptive resource provisioning system with respect to var-
ious parameter inputs of the simulation model. As we can
see, the adaptive resource provisioning system can achieve
significant performance enhancement except for those pa-
rameter inputs LA = 15 and PExternEvent > 6%. This is
because that the number of execution rollbacks and over-
optimistic executions discarded in execution rollbacks are
similar in Adaptive and Fixed scenarios. With the decreas-
ing PExternEvent, the performance enhancement increases as
the over-optimistic execution in the Fixed scenario increases.
With the increasing LA, the performance enhancement in-
creases as the number of execution rollbacks in the Adaptive
scenario decreases.
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resource provisioning system

6. CONCLUSION AND FUTURE WORK
In this paper, we have proposed an adaptive resource pro-

visioning system for the purpose of accelerating optimistic
HLA-based simulations in VEE. Using a middleware ap-
proach, the performance monitor is able to measure the
performance of individual federates transparently. Based on
the performance measurements, the resource manager can
predict the workload of federates, and then, adjust their
resource allocations accordingly by changing the resource
shares of their VMs. In this way, federates in the same fed-
eration can advance their simulation time with comparable
speeds, and thus, avoid wasting resources on over-optimistic
executions and execution rollbacks. Experiments are carried
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out using a MMOGs ecosystem simulation model where fed-
erates are likely to have dynamic and imbalanced simulation
workload. Furthermore, different parameter inputs of the
simulation model are investigated. As experimental results
have shown, the adaptive resource provisioning system can
significantly accelerate the simulation executions with most
of the investigated parameter inputs.
For simplicity, we have assumed that federates are single-

threaded in this paper. However, in order to exploit the
computational potential of multi-core processors, a feder-
ate can be a group of concurrent and tightly dependent
threads [12]. In the future, we will extend our proposed
adaptive resource provisioning system to support the execu-
tions of multi-threaded federates. Their corresponding VMs
will have multiple virtual CPU cores and the cap values can
be greater than 100. In addition, co-scheduling solutions [32,
29] where virtual CPU cores of the same VM are scheduled
simultaneously will be adopted to reduce the synchroniza-
tion latency among the threads in the same federate. In
the meantime, we will also evaluate the scalability of our
system using large scale simulations on large execution en-
vironments with many computing nodes. With the increas-
ing simulation scale, the communication and computation
overhead of our system increase, as shown in algorithm 4.
However, on the other hand, the problem of workload im-
balance become more critical. As for future work, we also
plan to extend our proposed adaptive resource provisioning
system by adopting more accurate workload prediction algo-
rithms [10, 14, 22, 28]. Besides HLA-based simulations, our
system will also be applied and integrated to other parallel
and distributed applications.
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