
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2016

Metaflow: a scalable metadata lookup service for distributed file Metaflow: a scalable metadata lookup service for distributed file

systems in data centers systems in data centers

Peng SUN

Yonggang WEN

Nguyen Binh Duong TA
Singapore Management University, donta@smu.edu.sg

Haiyong XIE

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Data Storage Systems Commons, and the

Software Engineering Commons

Citation Citation
SUN, Peng; WEN, Yonggang; TA, Nguyen Binh Duong; and XIE, Haiyong. Metaflow: a scalable metadata
lookup service for distributed file systems in data centers. (2016). IEEE Transactions on Big Data. 4, (2),
203-216.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4767

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4767&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1

MetaFlow: a Scalable Metadata Lookup Service for
Distributed File Systems in Data Centers

Peng Sun, Yonggang Wen, Senior Member, IEEE, Ta Nguyen Binh Duong, and Haiyong Xie

Abstract—In large-scale distributed file systems, efficient meta-
data operations are critical since most file operations have
to interact with metadata servers first. In existing distributed
hash table (DHT) based metadata management systems, the
lookup service could be a performance bottleneck due to its
significant CPU overhead. Our investigations showed that the
lookup service could reduce system throughput by up to 70%,
and increase system latency by a factor of up to 8 compared to
ideal scenarios. In this paper, we present MetaFlow, a scalable
metadata lookup service utilizing software-defined networking
(SDN) techniques to distribute lookup workload over network
components. MetaFlow tackles the lookup bottleneck problem by
leveraging B-tree, which is constructed over the physical topology,
to manage flow tables for SDN-enabled switches. Therefore,
metadata requests can be forwarded to appropriate servers
using only switches. Extensive performance evaluations in both
simulations and testbed showed that MetaFlow increases system
throughput by a factor of up to 3.2, and reduce system latency
by a factor of up to 5 compared to DHT-based systems. We also
deployed MetaFlow in a distributed file system, and demonstrated
significant performance improvement.

Index Terms—Metadata Management, Software-Defined Net-
working, B-tree, Big Data

I. INTRODUCTION

METADATA for file systems is “data about data” [1]
and plays a crucial role in file system management.

Specifically, metadata summarizes the basic information re-
garding files and directories in file systems. A metadata object
is commonly represented as a key-value pair, where the key
denotes the file name, and the value consists of a set of
attributes (e.g., file size, permission, access time, disk block,
etc.) for the file or directory. In file systems, before users
perform any file-related operations such as open, read, write,
delete, etc., they have to acquire the files’ metadata first.
Therefore, metadata management strategies play an important
role in determining the system performance.

Distributed file systems like HDFS [2], GFS [3], Lustre [4],
Ceph [5], and PVFS [1] usually separate the management of
metadata from storage servers. Such separation could make it
easier to scale the storage capacity and bandwidth of the file
system, since new storage servers can be added to the cluster
when needed [6]. In these systems, clients should interact
with the metadata server first to fetch files’ addresses and
other attributes, after that they could perform operations on
the desired files. It has been shown in previous work e.g.,

Peng Sun, Yonggang Wen and Ta Nguyen Binh Duong are with School
of Computer Science and Engineering, Nanyang Technological University,
Singapore. Email: {sunp0003, ygwen, donta}@ntu.edu.sg.

Haiyong Xie is with the China Academy of Electronics and Information
Technology, Beijing 100041, China. Email: haiyong.xie@gmail.com.

[7], [8] that more than 80% of file operations need to interact
with metadata servers. Therefore, efficient metadata operations
are critical for distributed file systems’ performance. In [9],
the authors showed that an optimized metadata management
system could improve the performance of directory operations
in Lustre and PVFS2 significantly (more than 20 times).

The traditional single metadata server scheme cannot cope
with the increasing workload in large scale storage systems
[2], [10]. Therefore, most modern distributed file systems like
GFS, Ceph, and Lustre deploy a cluster to share the metadata
workload. In these systems, a very large metadata table is
partitioned into smaller parts located on separate servers.
It might be straightforward to achieve large-scale metadata
storage by just adding more servers; however the same cannot
be said for improving the system performance. Many novel
distributed metadata management systems have been proposed
to provide high performance metadata services, for instance
[5], [11], [12].

Existing approaches, e.g., [5], [11], [12], focused on build-
ing overlay-based metadata management systems, which could
be centralized or decentralized. These systems usually pro-
vides two main operations: lookup and I/O. In particular, the
lookup operation aims to locate the desired metadata; and the
I/O operation retrieves the metadata itself from the storage
server using the address returned by the lookup operation.
However, the throughput and latency of these overlay-based
systems could be significantly degraded due to the bottleneck
created by a large number of lookup operations. Such oper-
ations actually compete for CPU cycles with I/O operations,
which might lead to reduced system throughput. Meanwhile, it
could take a long time to locate a metadata object in overlay-
based systems, which might increase the system latency.

In this paper, we propose MetaFlow, a new, efficient and
fast distributed lookup service for metadata management.
Rather than setting up a separate lookup operation, MetaFlow
utilizes network components to locate the desired metadata
with two techniques: software-defined-networking (SDN) and
a B-tree based overlay network. SDN provides the ability
for network switches to forward packets based on metadata
identifiers. A B-tree based overlay is constructed over all
physical switches and servers in the data center to generate
and maintain forwarding tables for SDN-enabled switches. In
this way, a metadata request can reach its target server directly,
without the need for a separate lookup operation to query the
destination. As a result, the latency in metadata operations
could be reduced; and more available CPU cycles would be
dedicated to I/O operations to improve the overall system
throughput.

ar
X

iv
:1

61
1.

01
59

4v
2

 [
cs

.D
C

]
 1

0
N

ov
 2

01
6

2

The primary contributions of this paper are as follows:

1) We propose MetaFlow, a new distributed lookup service
for metadata management, which transfers the lookup
workload from servers to network components with min-
imal overhead.

2) We design and develop a working implementation of
MetaFlow using SDN and B-tree.

3) We conduct extensive experiments using both large-scale
simulations and a real, working testbed. The results
show that MetaFlow could improve the metadata system’s
performance significantly.

4) We deploy MetaFlow in a real-word distributed file
system. The results show that MetaFlow is able to demon-
strate significant performance gain.

The rest of the paper is structured as follows. Section
2 presents existing lookup services for distributed metadata
management. Section 3 identifies the performance bottlenecks
through a measurement study on two DHT-based metadata
management systems. Section 4 introduces MetaFlow-based
system design, which harnesses the capability of SDN, to
solve the lookup performance issue. Section 5 describes the
algorithm to generate flow tables for SDN-enabled switches
using B-tree. In Section 6, we introduce the flow table update
algorithm when new node joins or leaves the system. The
evaluation results are detailed in Section 7. In Section 8, we
compare MetaFlow to information centric networking (ICN).
Section 9 concludes the paper.

II. EXISTING APPROACHES

Lookup services for metadata management, which map
a metadata object to its location, i.e., a metadata storage
server, have been receiving much attention. The following
summarizes existing lookup services for distributed metadata
management, including subtree partitioning, hash-based map-
ping and distributed hash table.

A. Subtree Partitioning

Static subtree partitioning [13] is a simple way of locating
metadata objects used in many file systems such as NFS [13].
This approach requires an administrator to manually divide the
directory tree, assign subtrees to different metadata servers,
and store the partition information at some well-known loca-
tions. Clients can use the static partition information to locate
metadata objects easily. This scheme works well when the
file access pattern is uniform in the file system. However,
in real file systems, the file access pattern is highly skewed
[14]. Thus, the static subtree partition scheme may have
significant unbalance workloads. Dynamic subtree partitioning
[15], which dynamically maps subtrees to metadata servers
based on their workload, is proposed to solve this problem.
However, when a metadata server joins or leaves the system,
the dynamic subtree partitioning scheme needs to refresh all
subtree’s information, generating high overhead in large-scale
distributed file systems [14].

Lookup Subsystem Storage Subsystem
Lookup Request
Lookup Reponse

I/O Request
I/O Response

Fig. 1. DHT-based distributed metadata management system architecture. In
such systems, each server consists of two subsystems, namely lookup and
storage subsystem, to deal with lookup and I/O operations separately.

B. Hash-based Mapping

Hash-based mapping [16] is another distributed metadata
lookup service used in Lustre [4], etc. This approach hashes a
file name to an integer k, and assigns its metadata to a server
according to the remainder value when dividing k by the total
number of metadata servers. There is no lookup overhead on
storage servers with this approach, since such lookup is done
on the client side using the hash function. However, the hash-
based mapping approach might not be practical due to two
reasons. First, since all metadata objects must be re-allocated
when a metadata server joins or leaves the system. Second,
hash-based mapping may have high POSIX directory access
overhead [14] [15]. Specifically, since the hash-based mapping
scheme eliminates all hierarchical locality, metadata objects
within the same directory may be allocated to different servers.
Therefore, when trying to satisfy POSIX directory access
semantics, such a scheme needs to interact with multiple
metadata servers, generating high overhead.

Three approaches have been proposed to tackle the POSIX
directory access’s performance issue for hash-based mapping.
First, GFS shows that there is no need to satisfy POSIX
semantics strictly for most cloud computing applications [3]
[17]. Second, an efficient metadata caching system also helps
improve the directory access performance [17]. Finally, Lazy
Hybrid (LH) [16] has been proposed to combine the best of
both subtree partitioning and hash-based mapping to address
the directory access problem.

C. Distributed Hash Table

Recent work have been focusing on using the Distributed
Hash Table (DHT) [18] model for the distributed metadata
lookup service, because it allows nodes to join or leave the
system dynamically with minimal overhead. In these systems,
a metadata operation consist of two sequential operations:
lookup and I/O. As shown in Figure 1, an I/O operation must
wait for the completion of its associated lookup operation,
since it needs to know the destination to send the I/O request.
Generally, each node has two subsystems to process lookup
requests and I/O requests separately. The lookup subsystem
maintains some storage information to locate metadata objects.
The storage subsystem, which is usually a high performance
in-memory storage system [10], deals with the I/O requests
on metadata objects. Two DHT-based approaches are widely

3

used: (i) Chord [19]. In a N -node system, each Chord node
maintains O(logN) other nodes’ storage information. On
average, each lookup request needs to interact with O(logN)
nodes to locate a metadata object. For example, Arpeggio
[20], a peer-to-peer file-sharing network, uses Chord to support
distributed metadata lookup. (ii) One-Hop [21]. One-Hop
allows each node to maintain all other nodes’ information.
Therefore, any lookup requests will be processed by only
one node. As shown in [17], One-Hop could achieve high
throughput and low latency for metadata operations.

III. PROBLEM IDENTIFICATION

We argue that overlay-based systems might not be the best
solutions for metadata management, due to bottlenecks caused
by the lookup service. We construct a testbed to carry out a
series of experiments to identify potential performance issues.

A. Experiment Configurations

We conduct experiments using a testbed with up to 200
Linux containers [22] and 3 physical switches. In the testbed,
we implement two DHT-based models (i.e., Chord and One-
Hop), and one centralized model (i.e., Central Coordinator
[23], which uses a central server to locate metadata objects)
to provide the lookup service. In the experiment, each file and
directory’s metadata object is a 250 and 290 bytes of key-value
pair, respectively [10]. We set up a set of clients to generate
a mix get and put metadata operations with a ratio of 20%
and 80%, respectively, to simulate the real metadata workload
[24]. In the get operation, a client retrieves a metadata object
using the given file name. In the put operation, a client writes
new data into a metadata object. We measure the throughput
and latency respectively to identify the performance issues:
• Throughput: We compare the DHT-based systems to an

ideal system, which provides linear throughput perfor-
mance without any performance reduction in theory.
• Latency: We use the hash-based mapping approach,

which has no additional lookup latency, as the baseline.
Since the traditional hardware virtualization techniques

(e.g., Kernel Virtual Machine (KVM), Xen [25], etc.) may
reduce the system performance significantly [26], we use the
container-based virtualization [22] to run our experiments,
reducing the additional overhead caused by the hypervisors
[27]. Specifically, we create up to 200 Linux containers
using Docker [22], a lightweight Linux container management
system. Each Linux container is allocated with a 2 GHz CPU
core and 4 GB memory. In the experiments, we use four
different storage subsystems:
• Redis [28]: Redis is a pure in-memory key-value storage

system. Metadata management systems in HDFS, GFS,
PVFS, etc. use only the memory to store the metadata.
• LevelDB (HDD) [29]: LevelDB (HDD) is a fast key-value

storage system using both the memory and the hard disk
drive (HDD). Some file systems like Tablefs [30] store
the metadata using LevelDB.
• LevelDB (SSD): LevelDB (SDD) uses both the memory

and the solid state disk (SSD) to manage key-value data.

 L i n e a r
 C e n t r a l C o o r d i n a t o r
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00
1 E 5
2 E 5
3 E 5

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(a) MySQL (HDD)

 L i n e a r
 C e n t r a l C o o r d i n a t o r
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00
1 E 7
2 E 7
3 E 7

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(b) LevelDB (HDD)

 L i n e a r
 C e n t r a l C o o r d i n a t o r
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00
1 E 7
2 E 7
3 E 7

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(c) LevelDB (SSD)

 L i n e a r
 C e n t r a l C o o r d i n a t o r
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00
1 E 7
2 E 7
3 E 7

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(d) Redis

Fig. 2. DHT-based metadata management systems’ throughput comparison
in a testbed with four types of storage subsystems.

 M y s q l L e v e l D B (H D D)
 R e d i s L e v e l D B (S S D)

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

(a) Chord

 M y s q l L e v e l D B (H D D)
 R e d i s L e v e l D B (S S D)

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

(b) One Hop

Fig. 3. The lookup subsystem’s CPU overhead in DHT-based metadata
management systems using four types of storage subsystems.

• MySQL (HDD): MySQL is a conventional relational
database management system (RDBMS). In the exper-
iments, we deploy MySQL on the HDD. To measure
HDD’s impact, we disable the query cache function
in MySQL. This serves as a lower bound for storage
subsystems’ performance.

B. DHT: Throughput

Figure 2 shows that DHT could cause large throughput
reductions, where the throughput is defined as the maximum
number of metadata operations that a metadata cluster can
deal with. DHT solves the single node performance bottle-
neck problem in Central Coordinator, and provides higher
throughput. However, compared to the ideal system, Chord
has roughly 70% throughput reduction with 200 Redis servers
as shown in Figure 2 (a). The corresponding measure for
One-Hop is 50%. When using LevelDB (HDD) and Lev-
elDB (SSD), DHT-based systems still have no less than 20%
throughput reduction as shown in Figure 2 (b) (c). Even when
we use a storage subsystem with low I/O throughput like
MySQL (Figure 2 (a)), there is still roughly 10% performance
reduction for DHT-based approaches with 200 servers.

We carry out system profiling with Valgrind [31] to identify
the source of significant throughput reduction in DHT-based
systems with LevelDB and Redis. Figure 3 shows that such
reductions are mainly caused by high CPU cycle consump-
tion of the lookup service. In the Chord-based system, the
lookup subsystem consumes roughly 70% of CPU cycles
in our experiments with more than 100 Redis nodes. The

4

5 0 1 0 0 1 5 0 2 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

La
ten

cy
(us

)

C l u s t e r S i z e

 H a s h C e n t r a l C o o r d i n a t o r
 C h o r d O n e - H o p

(a) MySQL (HDD)

5 0 1 0 0 1 5 0 2 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

La
ten

cy
(us

)

C l u s t e r S i z e

 H a s h C e n t r a l C o o r d i n a t o r
 C h o r d O n e - H o p

(b) LevelDB (HDD)

5 0 1 0 0 1 5 0 2 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

La
ten

cy
(us

)

C l u s t e r S i z e

 H a s h C e n t r a l C o o r d i n a t o r
 C h o r d O n e - H o p

(c) LevelDB (SSD)

5 0 1 0 0 1 5 0 2 0 00
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

La
ten

cy
(us

)

C l u s t e r S i z e

 H a s h C e n t r a l C o o r d i n a t o r
 C h o r d O n e - H o p

(d) Redis

Fig. 4. DHT-based metadata management systems’ latency comparison in a
testbed with four types of storage subsystems.

 M y s q l L e v e l D B (H D D)
 R e d i s L e v e l D B (S S D)

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

(a) Chord

 M y s q l L e v e l D B (H D D)
 R e d i s L e v e l D B (S S D)

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

(b) One Hop

Fig. 5. The lookup subsystem’s latency overhead in DHT-based metadata
management systems using four types of storage subsystems.

corresponding measures for LevelDB (HDD) and LevelDB
(SSD) are 55% and 60%, respectively. As a result, the storage
subsystem might not have enough CPU resources to deal with
I/O operations. Although the One-Hop based system has better
performance, its lookup service still consumes roughly 40%,
35%, and 25% of CPU cycles when using Redis, LevelDB
(SSD), and LevelDB (HDD) as the storage subsystems with
more than 100 servers, respectively.

In summary, the lookup service could reduce the system
throughput significantly in DHT-based systems, especially
when used with memory intensive storage subsystems like
Redis, because of the CPU resource competition.

C. DHT: Latency

Figure 4 shows that DHT-based systems have high system
latency, which is defined as the time used to complete a get or
put metadata operation. In particular, the Chord-based system
is about 8 times slower than the hash-based system when using
Redis as the storage subsystem as shown in Figure 4 (d).
The One-Hop-based system is much faster than the Chord-
based system, but it is still 2 times slower than the hash-
based system. When using LevelDB (HDD) and LevelDB
(SSD) as the storage subsystems, Chord and One-Hop also
have obviously higher system latency than the hash-based
system by a factor of at least 1.8 and 1.3, respectively, as
shown in Figure 4 (b) and (c). Figure 4 (a) shows that DHT-
based systems perform acceptably when used with MySQL.
However, compared to other systems, storage systems using
MySQL have much higher latency.

Profiling results from Valgrind in Figure 5 show that the
high system latency in DHT-based systems is mainly caused by
the lookup operation. In our experiments, the lookup operation
in the Chord-based system could account for 72% to 84%
of the total system latency when using Redis as the storage
subsystem. Although the One-Hop-based system has better
performance, its lookup operation still takes roughly 35% of
the total system latency. When using LevelDB (HDD) as the
storage subsystem, the lookup operation takes at least 40% and
10% of the total system latency for the Chord-based system
and the One-Hop-based system, respectively.

In summary, the lookup service adds considerable latency
into metadata operations in DHT-based systems. The main
reason is that a lookup operation needs to invoke at least one
remote procedure call (RPC) on storage servers. Based on
Chord’s properties, the Chord-based system invokes log2 M
RPCs on average to locate a metadata object in a M -node
cluster. The One-Hop-based system needs to one RPC per
metadata operation.

IV. METAFLOW: OBJECTIVE AND DESIGN

We propose MetaFlow to solve the performance bottle-
neck caused by lookup operations in existing DHT-based ap-
proaches for the metadata management. This section describes
the design objective, system architecture, and the lookup
workflow in MetaFlow.

A. Objective

We design MetaFlow to provide a fast lookup service
with minimal overhead incurred on metadata storage servers.
Essentially, MetaFlow maps a MetaDataID, which is the hash
value of a metadata object’s file name, to the location of
a server storing this metadata object. Compared to existing
overlay-based approaches, MetaFlow has three key features:
• In-Network Lookup: MetaFlow places the lookup work-

load on network components instead of metadata storage
servers. More specifically, it takes advantage of SDN-
enabled switches to send metadata requests directly to
storage servers using just MetaDataIDs instead of IP or
MAC addresses. As a result, MetaFlow could avoid the
CPU resource competition problem between the lookup
subsystem and the storage subsystem in conventional
DHT-based approaches.

• Compatibility: MetaFlow is compatible with existing
lookup services and network infrastructures. MetaFlow
can detect its packets according to the destination TCP
port, and process them using specific rules. Other network
packets will be forwarded normally using existing layer
2/3 switching techniques.

• Zero-Hop: MetaFlow does not have a separate step
to fetch the location of the desired metadata object.
MetaFlow allows the client to establish a network con-
nection directly to a metadata storage server to perform
I/O operations such as get, put, update, delete, etc. with
MetaDataIDs. In the following example, we illustrate
how this could be done using a TCP connection for four
basic metadata operations:

5

Client A

SDN Switch A

SDN Switch B

SDN Switch C

Server A

Server C

Dest Address

Flow Table

Dest Port Action
9000 Forward: Server AMetaDataID_1 / 16
9000 Forward: Server BMetaDataID_2 / 24

Server B

Src Address MetaDataID
Dest Address ClientA_Address

IP header fields

Packet Data

MetaFlow Response Packet Dest Address
MetaDataID Network

Address
Translation

Agent

Dest Address
Server_Address

Storage System

Redis
Memcached

LevelDB
Source Address

Server_Address

Source Address

MetaDataID

MetaFlow Request MetaFlow Response

Src Address ClientA_Address
Dest Address MetaDataID

IP Header Fields

Packet Data

MetaFlow Request Packet

Dest Port 9000

Flow Table

Dest Port Action
9000 Forward: Switch A

SDN
Switch D

Network Link

SDN
Controller

Control Link

MetaFlow-enabled
Storage Cluster

MetaFlow-enabled
Application Cluster

MetaFlow
Controller

1

2

3

4

5

6

7

8

Fig. 6. A MetaFlow-based distributed metadata management system architecture. There are two clusters in the system: the storage cluster hosts a set of
storage servers to provide metadata service with a tree topology; and the application cluster manages a set of clients to query metadata objects. MetaFlow
harnesses the capacity of SDN to forward MetaFlow Requests to their associated storage servers using MetaDataIDs as the destination IP addresses. Thus,
there is no separate lookup operation for a metadata operation in MetaFlow.

MetaDataOperation(FileName, Method){
MetaDataID=Hash(FileName)
Connection=TCPConnect(MetaDataID,

Port)
Connection.request(Method, ...)
Connection.getresponse()
Connection.close()

}

It should be noted that we focus on the lookup service
in this paper. MetaFlow could also support more features
for distributed metadata management such as fault tolerance,
load balancing, and POSIX directory access optimization. In
particular, MetaFlow could leverage SDN-based approaches
[32], [33] to achieve fault tolerance and load balancing. Other
approaches such as GFS [3], metadata caching system [17],
and LH [16] could be used in MetaFlow to improve the
directory access performance.

B. System Design

MetaFlow contains four key components: Storage Cluster,
Application Cluster, SDN-based Networking, and MetaFlow
Controller.

1) Storage Cluster: The storage cluster consists of a set of
storage servers and their associated switches. In this work, we
manage all storage servers using a tree topology such as the
tier tree [34] or the fat tree [11]. Each storage server has two

subsystems: (i) a high performance key-value storage system
such as Redis or LevelDB to maintain metadata objects; and
(ii) a network address translation (NAT) agent to manage
source and destination IP addresses for MetaFlow requests and
responses.

2) Application Cluster: The application cluster manages a
set of clients. For example, it can be a MapReduce cluster,
which queries metadata objects for HDFS related operations.
It should be noted that the storage and application cluster could
either be located in the same physical cluster or two separated
physical clusters.

3) SDN-based Networking: MetaFlow employs SDN to re-
alize its design objective. SDN is one of the recent approaches
to programmable networks. Based on the fact that the basic
function of a switch is to forward packets according to a set
of rules [35], SDN decouples the control and data planes
of a network. A centralized software-based SDN controller
manages the rules for the switch to forward packets.
OpenFlow. MetaFlow uses OpenFlow [36] as the standard
for SDN. There are three components in an OpenFlow ar-
chitecture: an OpenFlow-enabled switch, which uses flow
entries to forward packets; an OpenFlow controller, which
manages flow tables; and a secure channel, which connects the
controller to all switches. A packet is examined with regard
to the flow entries by using one or more its header fields.
If there is a match, the packet is processed according to the
instruction in the flow entry. If not, the packet is sent to the

6

OpenFlow controller for further processing. OpenFlow 1.0.0
is one of the most widely used specifications [35]. It supports
12 header fields, which include Source/Destination IP Address,
Source/Destination TCP/UDP Port, etc. MetaFlow uses desti-
nation IP address and destination TCP port to forward packets.
Network Packet Format. MetaFlow packets are normal IP
packets. MetaFlow Request is the packet sent by clients to
query a metadata object with the MetaDataID, and MetaFlow
Response is the packet sent from storage servers with the
desired metadata object as the packet’s content. MetaFlow
packets differ from common TCP packets in two aspects:
destination IP address and destination TCP port:
• Destination IP Address: MetaFlow uses the MetaDataID,

which is the hash value of a metadata object’s file
name, as the MetaFlow Request’s destination IP address.
Depending on the IP protocol in use, MetaDataID could
have a different length. MetaDataID is a 32-bit integer
when using IPv4. In IPv6, MetaDataID is a 128-bit
integer.
• Destination TCP Port: MetaFlow uses the destination

TCP port to distinguish MetaFlow packets from other
packets in the cluster. As shown in Figure 6, the
MetaFlow Request uses 9000 as its destination TCP port.
SDN-enabled switches can detect MetaFlow Requests
according to the destination TCP port, and process them
using the appropriate flow tables. Other packets will
be relayed normally using existing layer 2/3 switching
techniques. It should be noted that normal network pack-
ets except MetaFlow packets should not use 9000 as
their destination TCP ports in the example in Figure 6.
Otherwise, they will not be forwarded properly.

4) MetaFlow Controller: The MetaFlow Controller is in
charge of generating and maintaining flow tables for SDN-
enabled switches to forward metadata packets.

C. MetaFlow Packets Forwarding

MetaFlow leverages SDN-enabled switches to forward
MetaFlow packets properly. Specifically, it relays MetaFlow
Requests to corresponding storage servers based on Meta-
DataIDs. It also forwards MetaFlow Responses back to clients.

1) Forward MetaFlow Requests: As shown in Figure 6,
MetaFlow forwards a MetaFlow Request packet via following
three steps:
• From the application cluster to the storage cluster. The

SDN-enabled switch in the application cluster forwards
the MetaFlow Request based on the destination TCP port.
As shown in Figure 6, SwitchD is configured to forward
the MetaFlow Request, whose destination TCP port is
9000, to SwitchA, which is located in the storage cluster.
• From the storage cluster to the storage server. The SDN-

enabled switch in the storage cluster forwards MetaFlow
Requests based on both the destination TCP port and
the destination IP address. As shown in Figure 6, when
receiving packets from SwitchA, SwitchB recognizes the
MetaFlow Request based on the destination TCP port,
and compares its MetaDataID against its flow table
based on a longest prefix match algorithm. According

to the instruction from the matched flow entry, SwitchB
forwards the MetaFlow Request to ServerA.

• From the network layer to the application layer in the
metadata storage server. The server in the storage cluster
forwards the MetaFlow Request to the application layer
from the network layer. Normally, the storage server will
drop the received MetaFlow Request, since its destination
address is the MetaDataID rather than the server’s IP ad-
dress. To solve this problem, MetaFlow deploys a network
address translation (NAT) agent on each storage server to
replace the MetaFlow Request’s destination address with
its physical IP address. Therefore, the application layer
in the storage server could receive and process MetaFlow
Requests.

2) Forward MetaFlow Responses: MetaFlow Responses
are relayed back to clients based on clients’ physical IP
addresses. Normally, the storage server will put its physical
IP address in the MetaFlow Response’s source address field.
However, the client will drop these MetaFlow Responses, since
the requests’ destination address differ from the responses’
source address. For example, a client sends out a request
using the MetaDataID 155.69.146.43 as the destination IP
address. The corresponding storage server sends back the re-
sponse using its physical IP address 192.168.0.1 as the source
IP address. In this case, the client will drop the response,
since it expects a response from 155.69.146.43 rather than
192.168.0.1. To solve this problem, MetaFlow uses the storage
server’s NAT agent to replace the MetaFlow Response’s source
address field with the original MetaDataID before sending out
the response.

V. METAFLOW: FLOW TABLE GENERATION

The central problem in implementing MetaFlow is how
to generate flow tables for the SDN-enabled switches in the
storage cluster. Since MetaFlow places the lookup workload
on network components, we have to generate flow tables
for the SDN-enabled switches in both the application cluster
and the storage cluster. Flow tables for the application clus-
ter’s switches could be generated easily, since these switches
forward MetaFlow Requests to a pre-determined destination,
which is the storage cluster. However, in the storage cluster, the
MetaFlow Requests’ destination storage servers are not known
in advance. Therefore, existing IP-based routing protocols
cannot work any more. In this section, we describe the flow
table generation algorithm in MetaFlow.

MetaFlow generates appropriate flow tables based on a log-
ical B-tree data structure, which is mapped from the physical
tree network topology. More specifically, the MetaFlow Con-
troller maps the storage cluster’s physical network topology,
which could be a tier tree [34] or fat tree [11], to a logical B-
tree data structure. Using the B-tree’s property, MetaFlow then
distributes the metadata objects across storage servers, and
generates appropriate flow tables for SDN-enabled switches.

A. Physical Tree Topology
MetaFlow has to be able to work with different tree topolo-

gies in data centers. There are two widely used tree topologies:
tier tree and fat tree.

7

Root Node

Inner Nodes

Leaf Nodes

100

30 80

15 26 48 65 85 92

120 150

108 115 127 139 167 175

Fig. 7. A B-tree example.

A tier tree network consists of two or three layers of
network switches. A three-tier tree network contains an edge
layer, connecting servers via top of rack (ToR) switches; an
aggregation layer, using end of rack (EoR) switches to connect
ToR switches; and a core layer at the root of the tree. There
is no aggregation layer in a two-tier tree network.

A fat tree network is an extended version of the three-tier
tree network. Pod is the basic cell of a fat tree network. As-
sume that each switch has n switch ports in a fat tree network,
a Pod consists of n/2 aggregation layer switches, n/2 edge
layer switches, and their connected servers. Therefore, each
edge layer switch connects n/2 aggregation layer switches,
and each core layer switch connects n/2 core switches in the
fat tree network.

B. Logical B-tree

B-tree is a self-balancing tree data structure, which has two
key features: 1) it distributes the key-value data across its
nodes in a balanced manner, 2) it allows lookup operations
in logarithmic time. A B-tree is made up of three types of
nodes: leaf node, inner node and root node. We adopt the
widely-accepted definition by Comer [37], where these nodes
construct a sample B-tree as shown in Figure 7.

A B-tree stores key-value pairs in its nodes in non-
decreasing order of the keys’ values. The key-value pair stored
in the non-leaf node also acts as the partition value to separate
the subtree. To search a key, the B-tree is recursively traversed
from the top to the bottom starting at the root node. At each
level, the search algorithm chooses the subtree according to the
comparison result between the desired key and stored partition
values. For example, in Figure 7, if a client queries the key 65,
it will choose the left subtree at the root node. Then it chooses
the middle subtree at the inner node. Finally, the client can
fetch the value of key 65 at the leaf node.

C. Mapping Physical Tree Topology to Logical B-tree

MetaFlow uses a logical B-tree to manage the storage clus-
ter. In order to do that, MetaFlow first discovers the physical
storage cluster’s topology through OpenFlow, and then carries
out a mapping operation from the physical topology, which
includes storage servers, SDN-enabled switches, and network
links, to a logical B-tree. This is done in the MetaFlow
Controller via the following steps:
• Storage servers are mapped to the B-tree’s leaf nodes.
• The core switch is mapped to the B-tree’s root node.
• The aggregation and edge switches are mapped to the

inner nodes in the B-tree based on the layers that they
are in.

B-tree
Core

Aggregation
Edge

Tier Tree

Fig. 8. Mapping a three-tier tree network to a logical B-tree.

Core

Aggregation

Edge

B-treeFat Tree

Fig. 9. Mapping a fat tree network to a logical B-tree.

• Network links are mapped to the logical connections
between parent nodes and child nodes in the B-tree.

This mapping strategy works for both the tier tree network
and the fat tree network. It is straightforward to map a tier
tree network to a B-tree as shown in Figure 8, since they are
quite similar in terms of structure. To map a fat tree network
to a B-tree, MetaFlow might need to map multiple switches
to one B-tree node. For example, Figure 9 shows a fat-tree, in
which all switches have 4 switch ports. In this fat tree, a pod
contains 2 aggregation layer switches, 2 edge layer switches
and 4 storage servers. There are 4 core switches. To map this
fat tree to a B-tree, the 4 core layer switches are mapped to
one B-tree root node. The 2 aggregation layer switches in the
same Pod are mapped to one inner node. Edge layer switches
and storage servers are mapped to inner nodes and leaf nodes,
respectively.

MetaFlow uses two states, which are idle and busy states,
to simulate the B-tree node creation operation. The classical
B-tree can create new nodes dynamically for node split op-
erations. MetaFlow uses idle and busy states to simulate this
operation. In the idle state, the physical node, which can be a
storage server or a SDN-enabled switch, contains no data. The
busy state means that the physical node manages some keys.
For example, in Figure 9, there is no data stored in the storage
cluster initially. In this case, all the nodes are in the idle state.
When some key-value pairs are inserted, some nodes’ states
are transformed into busy. When a node is full, the mapped
B-tree activates an idle node to store roughly half of the full
node’s data.

Because of the limitations from the physical components,
the mapped B-tree has the following properties:
• All the key-value pairs are stored in the leaf nodes. The

root node and inner nodes only store keys to partition sub-
trees without associated values. The reason is that most
switches do not have key-value data storage capacity.

• Leaf nodes have much higher storage capacity than the
non-leaf nodes. It is common for a storage server to

8

128.0.0.0

96.0.0.0 192.0.0.0160.0.0.0
Switch

A

Switch
C

1 2 3 4 5

Switch
B

Storage
Servers

0.0.0.0/1
128.0.0.0/1

64.0.0.0/3
0.0.0.0/2

96.0.0.0/3
128.0.0.0/3
160.0.0.0/3
192.0.0.0/3

Fig. 10. Using CIDR blocks to generate flow tables in a logical B-tree.

manage millions of key-value pairs. However, most SDN-
enabled switches can only support a few thousands of
flow entries, which are used to store partition values.

• The mapped B-tree’s depth is a fixed value. In a two-tier
tree, the mapped B-tree’s depth is 3. In a fat tree or a
three-tier tree, the mapped B-tree’s depth is 4.

D. Generating Flow Table
MetaFlow transforms the B-tree’s partition values to SDN-

enabled switches’ flow tables. The key challenge of this
transformation is how to represent the partition values in
a format that can be recognized by SDN-enabled switches.
Since state-of-the-art OpenFlow-enabled switches only support
longest prefix matching algorithm to deal with the destination
IP address field [35], MetaFlow uses Classless Inter-Domain
Routing (CIDR) [38] blocks to represent partition values in
the B-tree.

A CIDR block is a group of IP addresses with
the same routing prefix. For example, the IPv4 CIDR
block 155.69.146.0/24 represents 256 IPv4 addresses from
155.69.146.0 to 155.69.146.255. IPv6 also works under
CIDR. The IPv6 CIDR block 2001:db8::/48 represents
the block of IPv6 addresses from 2001:db8:0:0:0:0:0:0 to
2001:db8:0:ffff:ffff:ffff:ffff:ffff. An OpenFlow-enabled switch
can use a CIDR block as its forwarding table entry. For
example, the entry “155.69.146.0/24 → 192.168.0.1” means
that a packet will be forwarded to 192.168.0.1 if its destination
IP address ranges from 155.69.146.0 to 155.69.146.255.

MetaFlow uses CIDR blocks to map the B-tree’s partition
values to SDN-enabled switches’ flow tables. As shown in
Figure 10, SwitchC splits the set of all metadata objects
into two partitions, which are 0.0.0.0/1 and 128.0.0.0/1,
using 128.0.0.0 as the partition value in IPv4 format. In
this case, SwitchA is responsible for metadata objects with
MetaDataIDs less than 128.0.0.0. SwitchB is responsible for
metadata objects with MetaDataIDs no less than 128.0.0.0.

Normally, a B-tree partition value could generate a list
of flow entries. As shown in Figure 10, SwitchA splits the
allocated metadata objects using 96.0.0.0 as the partition
value. In this case, MetaFlow uses block 0.0.0.0/2 and block
64.0.0.0/3 to represent the left partition of SwitchA. Block
96.0.0.0/3 represents the right partition of SwitchA. MetaFlow
then generates three flow entries for SwitchA to represent the
partition value 96.0.0.0 in the B-tree:

Dest Addr Dest Port Action
0.0.0.0 /2 9000 Forward to Server1
64.0.0.0/3 9000 Forward to Server1
96.0.0.0/3 9000 Forward to Server2

96.0.0.0/3
0.0.0.0/2
64.0.0.0/3

96.0.0.0/3
80.0.0.0/4

Server A Server B

Switch D Switch D

Server A Server B Server C

0.0.0.0/2
64.0.0.0/4

Fig. 11. Splitting a B-tree node. In this example, when ServerA is full, the
MetaFlow controller activates ServerC, uses 80.0.0.0 to split ServerA, and
transfers the CIDR block 80.0.0.0/4 from ServerA to ServerC.

VI. METAFLOW: FLOW TABLE MAINTENANCE

In a dynamic network, storage servers and switches can
join and leave the system any time. MetaFlow needs to
update appropriate flow tables in the SDN-enabled switches
to maintain proper lookup operations.

A. Node Joins & Leaves

When a new storage server or a switch is added to the
storage cluster, MetaFlow creates a new node in the existing
B-tree at the appropriate location, and sets its state to idle.
Initially, the new node will not be allocated with metadata
objects immediately when it joins the system. Therefore, there
is no change to the existing flow tables.

If a storage server fails, the corresponding B-tree node
will be deleted. In this case, MetaFlow activates an idle
node having the same parent node to replace the failed node.
MetaFlow identifies the parent switch of the failed node and
the newly activated node. Then, it updates appropriate flow
entries in the parent switch, using the newly activated node
to replace the failed node. If there is no available idle node
to handle the failed node, it means that more storage servers
should be added to the cluster to meet the storage requirement.

B. Node Splits

A B-tree node will be split into two nodes when it is full.
The mapped B-tree in MetaFlow activates an idle node into
the busy state, and transfers part of the metadata objects from
the full node to the newly activated node. Finally, MetaFlow
updates appropriate flow entries to maintain proper lookup
operations. For example, in Figure 11, ServerA is split into
two nodes using 80.0.0.0 as the partition value. Before the
split operation, SwitchD has the following flow table for the
left subtree:

Dest Addr Dest Port Action
0.0.0.0 /2 9000 Forward to ServerA
64.0.0.0/3 9000 Forward to ServerA

After the split, one flow entry is added, and another one is
modified in SwitchD’s flow table:

Dest Addr Dest Port Action
0.0.0.0 /2 9000 Forward to ServerA
64.0.0.0/4 9000 Forward to ServerA
80.0.0.0/4 9000 Forward to ServerC

MetaFlow uses a traversal algorithm to select a partition
value to partition the full B-tree node. Given a full B-tree

9

node, which is allocated with several ordered CIDR blocks
of metadata objects, MetaFlow splits it to two sets: a left set
and a right set. The left set will be left in the existing node;
and the right set will be transfered to the newly activated
node. MetaFlow splits a full node via following steps: Step1.
MetaFlow traverses the ordered CIDR blocks in the full node,
and checks the number of metadata objects for each block.
Step2. During the traversal operation, MetaFlow puts the
incoming CIDR block into the left set, until the left set’s
number of metadata objects exceeds 40% of the full node’s
number of metadata objects. There are two cases:
• The number of metadata objects in the left set is

smaller than 60% of that in the full node. In this case,
MetaFlow puts the rest of CIDR blocks into the right
set. For example, a full node contains three ordered
CIDR blocks: 192.168.100.0/25, 192.168.100.128/25, and
192.168.100.192/26. When putting 192.168.100.0/25 into
the left set, if the left set’s number of metadata objects is
between 40% and 60% of the original node’s number of
metadata objects, MetaFlow puts the rest of CIDR blocks,
which are 192.168.100.128/25 and 192.168.100.192/26,
into the right set.
• The number of metadata objects in the left set is

more than 60% of that in the full node. In this case,
MetaFlow removes the most recently considered CIDR
block from the left set. This CIDR block will be evenly
split into two sub-blocks to replace the original one.
For example, the CIDR block 192.168.100.0/24 will be
split into two ordered sub-blocks: 192.168.100.0/25 and
192.168.100.128/25. MetaFlow uses these two sub-blocks
to replace the original CIDR block 192.168.100.0/24, and
continues the traversal operation. Normally, MetaFlow
will next deal with the CIDR block 192.168.100.0/25
using the same operation in Step 2.

Step3. After the traversal operation, MetaFlow transfers the
CIDR blocks in the right set to the newly activated node, and
updates the appropriate flow entries.

It is essential to reduce the number of flow entries generated
by the node split operation, since most SDN-enabled switches
can only support a few thousands of flow entries. If the right
set contains exactly 50% of the full node’s metadata objects,
our experiments show that the node split operation usually
ends after a few tens of iterations in Step 2, where each
iteration generates a new flow entry for its parent switch. In
real-word systems, the growing size of flow table significantly
limits the system performance and scalability. When we use
a value between 40% to 60%, we find that Step 2 can end
after just several iterations. Compared to the value of 50%,
a value between 40% to 60% can reduce the number of new
flow entries by a factor of up to 10, although in this case
MetaFlow cannot split the full node evenly. As a trade-off
between storage balance and flow table size, MetaFlow uses
a value of 40% to 60% for the node split operation.

VII. NUMERICAL RESULTS AND ANALYSIS

In this section, we evaluate MetaFlow performance using
both a large scale simulation and a testbed. In particular, we

OpenFlow
Controller

MetaFlow
Controller

...

5 Servers
20 Containers

Open
VSwitch

Linux
Container

Linux
Container

20 Containers

Open
VSwitch

Linux
Container

Linux
Container

5 Servers

MetaData
Server

MetaData
Server

Fig. 12. Testbed architecture.

investigate MetaFlow’s performance in terms of throughput
and latency using extensive experiments with realistic meta-
data workload models.

A. Experiments’ Parameters and Configurations

1) Performance Measures: We evaluate the performance of
a MetaFlow-based metadata management system, and compare
it to existing DHT-based approaches like Chord and One-
Hop. (i) Throughput. We measure the system throughput
with increasing cluster size in both the simulator and the
testbed. In the experiments, we define system throughput as
the maximum number of metadata operations that a metadata
cluster can deal with. (ii) Latency. We measure the system
latency with increasing cluster size in both the simulator and
the testbed. In the experiments, we define system latency as the
average time used to complete a metadata operation. (iii) SDN
Overhead. We evaluate the SDN-enabled switch’s overhead.
The flow table size of the SDN-enabled switch can be a
potential performance bottleneck for MetaFlow, since most
SDN-enabled switches can only support a few thousands of
flow entries. (iv) NAT Agent Overhead. We also investigate the
NAT agents’ overhead in the storage servers. MetaFlow uses
NAT agents to replace the destination and source IP addresses.
This operation consumes CPU cycles and is the main source
of the overhead in MetaFlow’s current implementation.

2) System Configurations: We implement a MetaFlow-
based metadata management system for distributed file sys-
tems in both a simulator and a testbed. (i) Simulation Setup.
The simulator has up to 2000 servers, forming a storage cluster
based on the fat tree topology. In the cluster, each switch
has 32 ports. Thus, 16 edge layer switches, 16 aggregation
layer switches, and 256 servers form a pod in the fat tree.
There are 32 core layer switches in total. All the network
connections between switches and servers are 10-Gbps links.
The simulator uses 500 clients to form an application cluster
for generating metadata workload. (ii) Testbed Setup. The
testbed has up to 200 Linux containers, forming a storage
cluster based on a three-tier tree topology as shown in Figure
12. More specifically, in the testbed, we use a Extreme Summit
x670c switch (which has OpenFlow 1.0.0 support) as the core
layer switch, use two Extreme Summit x670c switches as the
aggregation layer switches, and use OpenVSwitch [39] (which
have OpenFlow 1.0.0 support) as the edge layer switch to

10

connect Linux containers. There are 5 Dell R720 servers,
each of which contains up to 20 Linux containers. Each
Linux container is allocated with a 2 GHz CPU core and 4
GB memory. All the network connections between switches
and servers are 10-Gbps links. The testbed uses 50 Linux
containers as an application cluster for generating metadata
workload. Two Linux containers are set up to manage the
switches’ flow tables. One is the OpenFlow Controller, which
manages flow tables for switches using OpenFlow protocols.
The other one is the MetaFlow Controller, which generates
and maintains flow tables for proper lookup operations using
B-tree.

3) Workload Model: In the experiments, we use a metadata
workload in which 20% are get and 80% are put operations.
This is similar to real-world metadata workloads [24]. In the
get operation, a client retrieves a metadata object using the
given MetaDataID. In the put operation, a client writes new
data into a metadata object. Each metadata object for a file
and directory is a key-value pair with the size of 250 and 290
bytes, respectively. This is similar to the metadata object size
in HDFS [10].

4) Experiment Configurations: We use different types of
storage subsystems in the experiments to measure the system
throughput and latency. (i) Simulator. We conduct several tests
to find the appropriate throughput and latency parameters
to be used in the simulations. In these tests, we measure
the performance of a lookup subsystem and four different
storage subsystems, namely Redis, LevelDB (SSD), LevelDB
(HDD), and MySQL, on a single CPU core. Based on these
results, we define a throughput and a latency ratio to be used
in the simulations. More specifically, the throughput ratio is
obtained by dividing the throughput of the lookup subsystem
to that of a storage subsystem. Similarly, the latency ratio
is obtained by dividing the latency of the lookup subsystem
to that of a storage subsystem. Therefore, in the simulations,
we use the following throughput ratios: 1, 1.5, 2, and 100 to
reflect the throughput performance of Redis, LevelDB (SSD),
LevelDB (HDD), and MySQL, respectively. Similarly, the
following latency ratios are used: 1, 0.7, 0.5, and 0.001.
These ratios reflect the latency performance of Redis, LevelDB
(SSD), LevelDB (HDD), and MySQL. (ii) Testbed. We test the
MetaFlow-based system’s throughput and latency using Redis,
LevelDB (SSD), LevelDB (HDD), and MySQL as the storage
subsystem.

B. MetaFlow: Throughput

Figure 13 shows the system throughputs in our simulations.
In these experiments, we compare the throughputs of the
MetaFlow-based system and DHT-based systems to those of
an ideal system, which has linear performance (i.e., the ideal
throughput increase linearly with respect to the cluster size).
We observe that MetaFlow consistently performs better than
Chord and One-Hop in all situations. In particular, when the
throughput ratio is 1 (which means the metadata management
system has similar I/O and lookup throughputs), MetaFlow has
a throughput reduction of 12% to 20% compared to the ideal
system. In contrast, Chord and One-Hop have 80% to 85% and

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00
1 E 4
2 E 4
3 E 4
4 E 4
5 E 4

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(a) 100

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00
2 E 5
4 E 5
6 E 5
8 E 5
1 E 6

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(b) 2

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00
2 E 5
4 E 5
6 E 5
8 E 5
1 E 6

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(c) 1.5

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 00
2 E 5
4 E 5
6 E 5
8 E 5
1 E 6

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(d) 1

Fig. 13. Throughput comparison between the MetaFlow-based system and
two DHT-based systems (Chord and One-Hop) using the simulation with 4
lookup/storage throughput ratios: 100, 2, 1.5, and 1.

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00
1 E 5
2 E 5
3 E 5
4 E 5

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(a) MySQL

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00

1 E 7

2 E 7

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(b) LevelDB (HDD)

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00

1 E 7

2 E 7

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(c) LevelDB (SSD)

 L i n e a r
 M e t a F l o w
 C h o r d
 O n e - H o p

0 5 0 1 0 0 1 5 0 2 0 00

1 E 7

2 E 7

Ma
x T

hro
ug

hp
ut

(op
s/s

)

C l u s t e r S i z e
(d) Redis

Fig. 14. Throughput comparison between the MetaFlow-based system and
two DHT-based systems (Chord and One-Hop) using the testbed with 4 types
of storage subsystems.

45% to 50% throughput reduction, respectively. In particular,
when there are 2000 servers in the cluster, MetaFlow could
process 8.0 × 105 requests per second. The corresponding
values for Chord and One-Hop are 2.5 × 105 and 4.0 × 105,
respectively. In this case, MetaFlow could increase system
throughput by a factor of 3.2 and 2.0 when comparing to
Chord and One-Hop, respectively.

When using other throughput ratios such as 2, MetaFlow has
about 12% to 17% throughput reduction, as shown in Figure
13 (b). The corresponding measures for Chord and One-Hop
are 75% to 80% and 30% to 36%, respectively. Even in a low-
throughput storage system such as MySQL, MetaFlow is still
better, but not by much as shown in Figure 13 (a). The reason
is that the limiting factor in MySQL-based systems is actually
the I/O throughput, not lookup. We should note that such low-
throughput systems are not suitable for large-scale metadata
management in practice. The results for MySQL provided here
are mainly for highlighting the lower bound of MetaFlow’s
performance.

Results obtained using the real testbed, as shown in Figure
14, confirm performance improvement demonstrated in the

11

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

1 . 0

2 . 0

La
ten

cy
(m

s)

C l u s t e r S i z e

(a) 0.001

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

1 . 0

2 . 0

La
ten

cy
(m

s)

C l u s t e r S i z e

(b) 0.5

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

1 . 0

2 . 0

La
ten

cy
(m

s)

C l u s t e r S i z e

(c) 0.7

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 0 1 0 0 0 1 5 0 0 2 0 0 00 . 0

1 . 0

2 . 0

La
ten

cy
(m

s)

C l u s t e r S i z e

(d) 1

Fig. 15. Latency comparison in the simulation between the MetaFlow-
based system and two DHT-based systems (Chord and One-Hop) with 4
lookup/storage latency ratios: 0.001, 0.5, 0.7, and 1.

simulations. In Figure 14 (d), we observe that MetaFlow
has roughly 15% of throughput reduction compared to the
ideal system when using 200 Redis servers. On the contrary,
Chord and One-Hop have throughput reductions of nearly 70%
and 45%, respectively. As shown in Figure 14 (b) and (c),
MetaFlow has about 8% and 15% throughput reduction for
LevelDB (HDD) and LevelDB (SSD), respectively. In contrast,
One-Hop suffers roughly 20% and 40% performance reduction
in the same cluster. At the same time, Chord has even more
performance reduction, about 50% and 65%.

C. MetaFlow: Latency

In this set of experiments, we compare the request latency
of the MetaFlow-based system and other DHT-based systems
with respect to a hash-based system, which has no metadata
lookup latency. Figure 15 shows that the MetaFlow-based
system consistently has lower latency than Chord and One-
Hop in the simulations. In particular, when the latency ratio is
1, MetaFlow’s latency is about up to 1.4 times higher than the
hash-based system. In contrast, Chord and One-Hop’s latency
are roughly 7.0 and 2.0 times higher than the hash-based
system. MetaFlow could reduce system latency by a factor
of up to 5 in this case.

When using other lookup/storage latency ratios like 0.7
and 0.5, MetaFlow has up to 5% more latency than the
hash-based system. At the same time, Chord and One-Hop
have at least 50% and 20% more latency using the same
setting, respectively as shown in Figure 15 (b) and (c). In the
system with lookup/storage latency ratio of 0.001, as shown in
Figure 15 (a), MetaFlow and One-Hop have nearly the same
latency performance with the hash-based system. The reason
is that the high I/O latency in such systems renders lookup
latency insignificant. However, we should note that such high
latency systems are not suitable for metadata management in
distributed file systems.

Test-bed results are similar to simulation results with regard
to the system latency. Figure 16 (d) shows that MetaFlow’s
latency is roughly 1.6 times higher than the hash-based system
when using 200 Redis servers. On the contrary, Chord and

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 1 0 0 1 5 0 2 0 00 . 0
1 . 0
2 . 0
3 . 0
4 . 0

La
ten

cy
(m

s)

C l u s t e r S i z e

(a) MySQL

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 1 0 0 1 5 0 2 0 00 . 0

0 . 5

1 . 0

1 . 5

La
ten

cy
(m

s)

C l u s t e r S i z e

(b) LevelDB (HDD)

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 1 0 0 1 5 0 2 0 00 . 0

0 . 5

1 . 0

1 . 5

La
ten

cy
(m

s)

C l u s t e r S i z e

(c) LevelDB (SSD)

 H a s h M e t a F l o w C h o r d O n e - H o p

5 0 1 0 0 1 5 0 2 0 00 . 0

0 . 5

1 . 0

1 . 5

La
ten

cy
(m

s)

C l u s t e r S i z e

(d) Redis

Fig. 16. Latency comparison between the MetaFlow-based system and two
DHT-based systems (Chord and One-Hop) using the testbed with 4 types of
storage subsystems.

E d g e A g g r e g a t i o n C o r e C a p a c i t y0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0

Flo
w T

ab
le

Siz
e

S w i t c h L a y e r

 F a t T r e e

(a) Fat Tree (Simulation)

E d g e A g g r e g a t i o n C o r e C a p a c i t y0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0

Flo
w T

ab
le

Siz
e

S w i t c h L a y e r

 T h r e e - t i e r T r e e

(b) Three-tier Tree (Testbed)

Fig. 17. SDN’s flow table overhead. We measure the switches’ flow table size
in different layers using both a simulation and a testbed. The simulator has
2000 servers in a fat tree topology. The testbed contains 200 Linux containers
constructed with a three-tier tree topology.

One-Hop suffer up to 6.7 and 2.1 times more latency than the
hash-based system, respectively. If the storage subsystem is
LevelDB (SSD), MetaFlow has similar latency performance
with the hash-based system. Meanwhile, Chord and One-
Hop have latencies that are up to 5.5 and 1.6 times higher
than the hash-based system. When the metadata management
system is deployed over a HDD-based storage system like
LevelDB(HDD) and MySQL, MetaFlow and One-Hop have
similar latency with the hash-based system as shown in Figure
16 (a) and (b). This is mainly because I/O operations on HDD
constitute a large part of the system latency.

D. SDN Overhead

Figure 17 shows the flow table size of the SDN-enabled
switches in MetaFlow. In these experiments, we measure
the flow table size of the SDN-enabled switches in edge
layer, aggregation layer, and core layer using the simulation
with a fat tree topology, and the testbed with a three-tier
tree topology. We observe that the flow table size is hard
to limit the system performance and scalability. As shown
in Figure 17, each SDN-enabled switch can maintain up to
2048 flow entries. In the fat tree network, each edge layer
switch maintains roughly 360 flow entries on average for
the connected 16 servers. The corresponding measure for the
aggregation layer switch and the core layer switch are 395
and 278, respectively. In the three-tier tree network, each edge
layer switch (which is an OpenVSwitch daemon on the server)
maintains roughly 615 flow entries for the connected 20 Linux

12

0 5 0 1 0 0 1 5 0 2 0 00
2
4
6
8

1 0
1 2
1 4

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(a) MySQL

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(b) LevelDB (HDD)

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(c) LevelDB (SSD)

0 5 0 1 0 0 1 5 0 2 0 00
2 0
4 0
6 0
8 0

CP
U U

tiliz
ati

on
 (%

)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(d) Redis

Fig. 18. CPU overhead on the storage server. MetaFlow-based system’s NAT
agent consumes CPU cycles. In Chord and One-Hop-based systems, their
lookup subsystems consume CPU cycles.

containers. The corresponding measure for the aggregation
layer switch and the core layer switch in the testbed are 190
and 72, respectively. Compared to the flow table capacity
(which is 2048 in our experiments), MetaFlow only needs a
few hundreds of flow entries for each SDN-enabled switch.
Therefore, the flow table size will not be the performance
bottleneck in MetaFlow. The reason is that our node split
algorithm uses a value between 40% to 60% instead of 50%
to split a full node, reducing the flow table size.

E. NAT Agent Overhead

1) CPU Overhead: We observe that the MetaFlow-based
system consumes much lower CPU cycles on storage servers
than DHT-based systems like Chord and One-Hop as shown
in Figure 18. This is because MetaFlow places the lookup
workload on network components. However, it still needs
to set up NAT agents on storage servers to replace source
and destination IP addresses for MetaFlow packets. These
NAT agents are the main source of performance overhead in
MetaFlow. In particular, when the storage subsystem is Redis,
the NAT agent has up to 15% of CPU utilization. This is
still reasonable, considering that in the same setting Chord
and One-Hop take up to 80% and 40% of CPU utilization,
respectively. When using LevelDB (HDD) and LevelDB (SSD)
as the storage subsystems, MetaFlow consumes less than 10%
of CPU cycles. The corresponding measures for the One-Hop-
based approach are 20% and 30%. MetaFlow also consumes
less CPU cycles than DHT when using MySQL as the storage
subsystem. Such low CPU overhead is the main reason for the
higher throughput in MetaFlow.

2) Latency Overhead: The NAT agents on storage servers
take time to translate source/destination IP addresses for
MetaFlow packets. However, Figure 19 shows that MetaFlow
consumes much less time for the lookup service than both
Chord and One-Hop. In particular, when the storage subsystem
is Redis or LevelDB (SSD), MetaFlow is responsible for less
than 20% of total system latency. In contrast, Chord and One-
Hop take up to 60% and 30% of total system latency. When
using LevelDB (HDD) and MySQL, MetaFlow still uses less

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00

1 0

2 0

3 0

Tim
e P

erc
en

tag
e (

%)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(a) Mysql

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

Tim
e P

erc
en

tag
e (

%)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(b) LevelDB (HDD)

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

Tim
e P

erc
en

tag
e (

%)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(c) LevelDB (SSD)

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 00
2 0
4 0
6 0
8 0

1 0 0

Tim
e P

erc
en

tag
e (

%)

C l u s t e r S i z e

 M e t a F l o w C h o r d O n e - H o p

(d) Redis

Fig. 19. Latency overhead on the storage server. MetaFlow-based system’s
NAT agent takes time to translate IP addresses for MetaFlow packets. In
Chord and One-Hop-based systems, their lookup subsystems take time to
locate metadata objects.

1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

Tim
e (

se
co

nd
)

B a c k g r o u n d W o r k l o a d (o p s / s)

 M e t a F l o w
 O n e - H o p
 C h o r d

(a) 64 KB

1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k4 2 0 0
4 4 0 0
4 6 0 0
4 8 0 0
5 0 0 0

Tim
e (

se
co

nd
)

B a c k g r o u n d W o r k l o a d (o p s / s)

 M e t a F l o w
 O n e - H o p
 C h o r d

(b) 256 KB

1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k1 7 5 0
1 8 0 0
1 8 5 0
1 9 0 0
1 9 5 0 M e t a F l o w

 O n e - H o p
 C h o r d

Tim
e (

se
co

nd
)

B a c k g r o u n d W o r k l o a d (o p s / s)
(c) 16 MB

1 0 0 k 2 0 0 k 3 0 0 k 4 0 0 k 5 0 0 k1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0

Tim
e (

se
co

nd
)

B a c k g r o u n d W o r k l o a d (o p s / s)

 M e t a F l o w
 O n e - H o p
 C h o r d

(d) 64 MB

Fig. 20. Distributed file system’s performance comparison between MetaFlow
and DHT-based approaches. We measure the time for a client to write 100
GB of files into the distributed file system with different file sizes: 64 KB,
256 KB, 16 MB, and 64 MB.

time for the lookup service compared to One-Hop. These low
overheads are the main reason for better latency performance
in MetaFlow.

F. Real-world Application: Distributed File System

We investigate the performance of a distributed file system,
which uses MetaFlow for managing its metadata. The testbed
contains 100 storage servers, and 10 metadata servers. 50
clients are set up to generate background metadata workloads
in which 20% are get and 80% are put operations. We
measure the completion time when writing 100 GB of files.
To investigate the impact of file sizes, we run the experiment
with 4 different file sizes, which are 64KB, 256KB, 16MB,
and 64MB.

The results in Figure 20 show that applications using a lot
of small files (e.g., the Convolutional Neural Network (CNN)
[40] used for image classification with a large set of small
images) in the distributed file system could benefit greatly
from MetaFlow. In our experiment, if the file size is 64 KB,
the MetaFlow-based distributed file system consistently takes

13

the least time to write 100 GB of files, regardless of the
background metadata workload. Specifically, if we generate
500 thousands of metadata-related requests every second, the
MetaFlow-based distributed file system uses roughly 6, 800
seconds to write all 64 KB files. In contrast, Chord and One-
Hop take 8, 500 and 7, 500 seconds, which are roughly 25%
and 10% longer than the MetaFlow-based file system. The
reason for the performance improvement is that MetaFlow
reduces the metadata operation time, which constitutes a large
part of the total file operation time for small files.

However, if the file size is large such as 16 MB and 64 MB,
there are not much difference between MetaFlow and other
approaches. As shown in Figure 20 (c) and (d), MetaFlow
takes roughly 1820 and 1320 seconds to complete the write
operation, which is similar to Chord and One-Hop. The reason
is that the data writing operation takes much more time than
metadata operation for large files.

VIII. RELATED WORK

The emerging information centric networking (ICN) re-
search also aims to eliminate separate lookup operations for
network-based applications. Named Data Networking (NDN)
[41] [42] is one of the pioneering fully-fledged ICN architec-
tures. NDN enables named-based forwarding using two types
of packets, which are Interest and Data, to replace current IP
packets. More specifically, the Interest packet is the request
packet sent by a client; and the Data packet is the returned
packet containing the requested content. Both of these two
packets are identified by a resource name. Names in NDN are
hierarchical and may be similar to URLs. For example, a NDN
name could be /ntu.edu.sg/scse/cap. However, compared to a
normal URL, its first part (i.e., “ntu.edu.sg” in this example) is
not an IP address, or a DNS name, which can be parsed to an
IP address. The NDN-enabled router and switch can forward
an Interest packet with the resource name to a node, which
contain the target resource. Therefore, it is not needed to do
a DNS lookup.

However, it is very complex to deploy NDN in real systems
for two reasons. First, most existing network components work
with IP packets rather than the Interest or the Data packets
in NDN. Second, current network-based applications such as
Redis are implemented using IP rather than the NDN-based
protocol. Therefore, to deploy an application using NDN, we
have to redesign both the hardware such as switches, and the
software such as key-value storage systems.

Compared to NDN, MetaFlow is another solution for in-
network lookup, which has been designed to use conventional
IP-based networking. It is straightforward to deploy applica-
tions using MetaFlow for two reasons. First, SDN capabilities
provide enough hardware support to forward MetaFlow pack-
ets using just the MetaDataID. Second, existing applications
can be easily modified to support MetaFlow: using Meta-
DataID instead of destination IP address to create network
connections. In this paper, we only focus on using MetaFlow
to optimize distributed metadata lookup.

IX. SUMMARY

In this paper, we propose a lookup service for metadata
management. Popular DHT-based systems place the lookup
subsystem and storage subsystem in the same server. These
two subsystems may compete for CPU resources, which
leads to reduced throughput and high latency. MetaFlow
solves this problem by transferring the lookup service to
the network layer. MetaFlow implements this approach by
utilizing the SDN technique to forward network packets based
on their MetaDataIDs instead of conventional MAC/IP ad-
dresses. To generate and update the flow tables for the SDN-
enabled switches, MetaFlow maps a data center’s physical
topology to a logical B-tree, and manages the flow tables
using B-tree’s properties. Compared to existing DHT-based
approaches, MetaFlow has three key features: In-Network
Lookup, Compatibility, and Zero-Hop. Experiments show that
MetaFlow could increase the system throughput by a factor
of up to 3.2, and reduce the system latency by a factor of
up to 5 for the metadata management compared to existing
DHT-based approaches. We believe that MetaFlow will be a
valuable component in many distributed metadata management
systems. In the future, we plan to use it in more real-word
applications, such as distributed parameter management for
machine learning applications.

REFERENCES

[1] R. B. Ross and R. Thakur, “PVFS: A parallel file system for Linux
clusters,” in in Proceedings of the 4th Annual Linux Showcase and
Conference, 2000, pp. 391–430.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Mass Storage Systems and Technologies, 2010
IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in ACM SIGOPS Operating Systems Review, vol. 37, no. 5. ACM,
2003, pp. 29–43.

[4] P. Schwan, “Lustre: Building a file system for 1000-node clusters,” in
Proceedings of the 2003 Linux Symposium, vol. 2003, 2003.

[5] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 2006, pp. 307–320.

[6] C. ABAD, H. Luu, Y. Lu, and R. CAMPBELL, “Metadata workloads for
testing Big storage systems,” Tech. rep., UIUC, 2012. http://hdl. handle.
net/2142/30013, Tech. Rep.

[7] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig,
“Small-file access in parallel file systems,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1–11.

[8] D. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file system
workloads,” in Proceedings of the 2000 USENIX Annual Technical
Conference, vol. 55. San Diego, CA, 2000, p. 58.

[9] V. Meshram, X. Besseron, X. Ouyang, R. Rajachandrasekar, R. P.
Darbha, and D. K. Panda, “Can a decentralized metadata service
layer benefit parallel filesystems?” in Cluster Computing, 2011 IEEE
International Conference on. IEEE, 2011, pp. 484–493.

[10] K. V. Shvachko, “HDFS Scalability: The limits to growth,” login: The
Magazine of USENIX, vol. 35, no. 2, pp. 6–16, 2010.

[11] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed B-tree,” Proceedings of the VLDB Endowment, vol. 1, no. 1,
pp. 598–609, 2008.

[12] W. Li, W. Xue, J. Shu, and W. Zheng, “Dynamic hashing: adaptive
metadata management for petabyte-scale file systems,” in Proceedings
of the 23 st IEEE/14 th NASA Goddard Conference on Mass Storage
Systems and Technologies, 2006.

[13] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, and D. Hitz,
“Nfs version 3: Design and implementation.” in USENIX Summer.
Boston, MA, 1994, pp. 137–152.

14

[14] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: Distributed metadata
management for large cluster-based storage systems,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 19, no. 6, pp. 750–763,
2008.

[15] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, “Dynamic
metadata management for petabyte-scale file systems,” in Proceedings
of the 2004 ACM/IEEE conference on Supercomputing. IEEE Computer
Society, 2004, p. 4.

[16] S. A. Brandt, E. L. Miller, D. D. Long, and L. Xue, “Efficient metadata
management in large distributed storage systems,” in Mass Storage
Systems and Technologies, 2003. Proceedings. 20th IEEE/11th NASA
Goddard Conference on. IEEE, 2003, pp. 290–298.

[17] V. Abhishek, V. Shivaram, C. Matthew, and C. Roy, “Efficient metadata
management for cloud computing applications,” http://hdl.handle.net/
2142/14820, 2010.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
scalable content-addressable network. ACM, 2001, vol. 31, no. 4.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in ACM SIGCOMM Computer Communication Review, vol. 31, no. 4.
ACM, 2001, pp. 149–160.

[20] A. T. Clements, D. R. Ports, and D. R. Karger, “Arpeggio: Metadata
searching and content sharing with chord,” in Peer-to-Peer Systems IV.
Springer, 2005, pp. 58–68.

[21] A. Gupta, B. Liskov, and R. Rodrigues, “One hop lookups for peer-to-
peer overlays.” in HotOS, 2003, pp. 7–12.

[22] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[23] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” Communications
Surveys & Tutorials, IEEE, vol. 7, no. 2, pp. 72–93, 2005.

[24] W. Dandong and F. Yu, “Decentralized metadata management research
based on distributed hash table technology,” in Industrial Control and
Electronics Engineering (ICICEE), 2012 International Conference on.
IEEE, 2012, pp. 1892–1895.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[26] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[27] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” technology,
vol. 28, p. 32, 2014.

[28] http://redis.io, 2015.
[29] https://github.com/google/leveldb, 2014.
[30] K. Ren and G. A. Gibson, “Tablefs: enhancing metadata efficiency in

the local file system.” in USENIX Annual Technical Conference, 2013,
pp. 145–156.

[31] http://valgrind.org, 2015.
[32] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer,

“Interfaces, attributes, and use cases: A compass for sdn,” IEEE Com-
munications Magazine, vol. 52, no. 6, pp. 210–217, 2014.

[33] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey
on software-defined networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 27–51, 2015.

[34] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” Communications Surveys & Tutorials, IEEE, vol. 15, no. 2,
pp. 909–928, 2013.

[35] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 1, pp. 493–512, 2014.

[36] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[37] D. Comer, “Ubiquitous B-tree,” ACM Computing Surveys (CSUR),
vol. 11, no. 2, pp. 121–137, 1979.

[38] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing
(cidr): an address assignment and aggregation strategy,” https://tools.ietf.
org/rfc/rfc1519.txt, Tech. Rep., 1993.

[39] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th USENIX Symposium on
Networked Systems Design and Implementation, 2015.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[41] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[42] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos et al.,
“Named data networking (ndn) project,” Relatório Técnico NDN-0001,
Xerox Palo Alto Research Center-PARC, 2010.

Peng Sun received his BEng degree in automation
engineering from Shandong University (SDU) in
2012. He is currently a Ph.D. student in the En-
ergy Research Institute, Interdisciplinary Graduate
School at Nanyang Technological University (NTU)
in Singapore. His research interests include cloud
computing, and big data processing systems.

Yonggang Wen (S’99-M’08-SM’14)) received his
PhD degree in Electrical Engineering and Com-
puter Science (minor in Western Literature) from
Massachusetts Institute of Technology (MIT), Cam-
bridge, USA. Currently, Dr. Wen is an associate
professor with school of computer engineering at
Nanyang Technological University, Singapore. Pre-
viously he has worked in Cisco to lead product de-
velopment in content delivery network, which had a
revenue impact of 3 Billion US dollars globally. His
research interests include cloud computing, green

data center, big data analytics, multimedia network and mobile computing.

Ta Nguyen Binh Duong received a BEng degree
from the Faculty of Information Technology, Ho Chi
Minh City University of Technology, Vietnam, and
a PhD degree in computer science from Nanyang
Technological University, Singapore. He is currently
a lecturer in the School of Computer Engineering,
Nanyang Technological University. Previously he
worked as a scientist in the Computing Science
Department, A*STAR Institute of High Performance
Computing, Singapore. His current research interests
include distributed virtual environments, computer

networking, and cloud computing.

Haiyong Xie (S’05-M’09) received the Ph.D. and
M.S. degrees in computer science from Yale Uni-
versity, New Haven, CT, USA in 2005 and 2008,
and the B.S. degree from the University of Science
and Technology of China, Hefei, China, in 1997,
respectively. He is currently the Executive Director
of the CAEIT Cyberspace and Data Science Labo-
ratory and a Professor with the School of Computer
Science and Technology, University of Science and
Technology of China (USTC). His research interest
includes contentcentric networking, software-defined

networking, future Internet architecture, and network traffic engineering.

http://hdl.handle.net/2142/14820
http://hdl.handle.net/2142/14820
http://redis.io
https://github.com/google/leveldb
http://valgrind.org
https://tools.ietf.org/rfc/rfc1519.txt
https://tools.ietf.org/rfc/rfc1519.txt

	Metaflow: a scalable metadata lookup service for distributed file systems in data centers
	Citation

	I Introduction
	II Existing Approaches
	II-A Subtree Partitioning
	II-B Hash-based Mapping
	II-C Distributed Hash Table

	III Problem Identification
	III-A Experiment Configurations
	III-B DHT: Throughput
	III-C DHT: Latency

	IV MetaFlow: Objective and Design
	IV-A Objective
	IV-B System Design
	IV-B1 Storage Cluster
	IV-B2 Application Cluster
	IV-B3 SDN-based Networking
	IV-B4 MetaFlow Controller

	IV-C MetaFlow Packets Forwarding
	IV-C1 Forward MetaFlow Requests
	IV-C2 Forward MetaFlow Responses

	V MetaFlow: Flow Table Generation
	V-A Physical Tree Topology
	V-B Logical B-tree
	V-C Mapping Physical Tree Topology to Logical B-tree
	V-D Generating Flow Table

	VI MetaFlow: Flow Table Maintenance
	VI-A Node Joins & Leaves
	VI-B Node Splits

	VII Numerical Results and Analysis
	VII-A Experiments' Parameters and Configurations
	VII-A1 Performance Measures
	VII-A2 System Configurations
	VII-A3 Workload Model
	VII-A4 Experiment Configurations

	VII-B MetaFlow: Throughput
	VII-C MetaFlow: Latency
	VII-D SDN Overhead
	VII-E NAT Agent Overhead
	VII-E1 CPU Overhead
	VII-E2 Latency Overhead

	VII-F Real-world Application: Distributed File System

	VIII Related Work
	IX Summary
	References
	Biographies
	Peng Sun
	Yonggang Wen
	Ta Nguyen Binh Duong
	Haiyong Xie

