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Towards Distributed Machine Learning in Shared
Clusters: A Dynamically-Partitioned Approach

Peng Sun∗, Yonggang Wen∗, Ta Nguyen Binh Duong∗ and Shengen Yan†
∗ Nanyang Technological University, Singapore, † Sensetime Group Limited
{sunp0003, ygwen, donta}@ntu.edu.sg, yanshengen@sensetime.com

Abstract—Many cluster management systems (CMSs) have
been proposed to share a single cluster with multiple distributed
computing systems. However, none of the existing approaches
can handle distributed machine learning (ML) workloads given
the following criteria: high resource utilization, fair resource
allocation and low sharing overhead. To solve this problem, we
propose a new CMS named Dorm, incorporating a dynamically-
partitioned cluster management mechanism and an utilization-
fairness optimizer. Specifically, Dorm uses the container-based
virtualization technique to partition a cluster, runs one appli-
cation per partition, and can dynamically resize each partition
at application runtime for resource efficiency and fairness. Each
application directly launches its tasks on the assigned partition
without petitioning for resources frequently, so Dorm imposes
flat sharing overhead. Extensive performance evaluations showed
that Dorm could simultaneously increase the resource utilization
by a factor of up to 2.32, reduce the fairness loss by a factor of
up to 1.52, and speed up popular distributed ML applications by
a factor of up to 2.72, compared to existing approaches. Dorm’s
sharing overhead is less than 5% in most cases.

Index Terms—Cluster Resource Management, Distributed Ma-
chine Learning, Fairness

I. INTRODUCTION

A diverse array of distributed computing systems (DCSs)
have emerged to handle various big data applications. Promi-
nent examples include Hadoop and Spark. To offer better
performance when training machine learning (ML) models,
a lot of distributed ML systems have been proposed based
on the ParameterServer (PS) framework, such as MxNet [1],
MPI-Caffe [2], TensorFlow [3] and Petuum [4]. These systems
could decompose an application into a set of small tasks and
execute them on multiple nodes in parallel [5].

Many cluster management systems (CMSs) have been pro-
posed to run multiple DCSs in the same cluster for two
reasons. First, users can pick the best DCS for each applica-
tion [6]. Second, cluster sharing could considerably improve
the cluster resource utilization and application performance
[7]. Existing CMSs can be classified into six categories
based on their cluster management strategies. Specifically,
Infrastructure-as-a-Service (IaaS) approaches (e.g., OpenStack
[8]) can share clusters at the level of DCSs. For example, we
can create a set of virtual machines (VMs) for Spark, and run
all Spark applications in this virtual cluster. Monolithic, two-
level, shared-state, fully-distributed and hybrid approaches can
allocate cluster resources at the level of applications and tasks,
such as Yarn [9], Mesos [6], Quasar [7], etc.
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Fig. 1. CDF of distributed ML application and task duration.

In this work, we consider the problem of running multiple
and diverse distributed ML workloads in a single cluster. For
example, Sensetime Group Limited operates several clusters
with thousands of CPUs/GPUs, and uses various distributed
ML systems to train ML models on them. A workload
analysis from one production cluster suggests that distributed
ML applications usually have long application duration and
very short task duration. Figure 1 shows that about 90% of
distributed ML applications run more than 6 hours; and about
50% of distributed ML tasks use less than 1.5s.

However, none of the existing CMSs can efficiently handle
distributed ML workloads in a shared cluster given three
criteria: high resource utilization, low fairness loss1 and low
sharing overhead2. IaaS CMSs cannot handle distributed ML
workloads at the level of DCSs, since popular distributed ML
systems do not have multi-application support. For example,
we need to manually allocate the resources of a TensorFlow
virtual cluster to multiple applications. Monolithic, two-level,
shared-state, fully-distributed and hybrid CMSs can only stati-
cally allocate resources to distributed ML applications, and do
not allow them to dynamically scale up/down or scale out/in
based on the global cluster state, resulting in low resource
utilization and high fairness loss [6].

In this paper, we propose a new CMS named Dorm to han-
dle multiple distributed ML workloads in a shared cluster with
two techniques: a dynamically-partitioned cluster management
mechanism and an utilization-fairness optimizer. Dorm uses
the container-based virtualization technique to partition a
cluster, and runs one application per partition. Each application
places its tasks on the assigned partition without petitioning
for resources, so Dorm imposes low sharing overhead. When
detecting newly submitted or completed applications, Dorm

1Low fairness loss indicates that each applications could receive a fair share
of resources. Its detail definition can be found in Section IV.

2Sharing overhead denotes the percentage of an application’s additional
running time imposed by a CMS.
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Fig. 2. The PS framework’s architecture.

could adjust existing resource allocations to consistently keep
high resource utilization and low fairness loss.

We implement Dorm using Docker and Cloud3dView [10],
and integrate it with four widely used distributed ML sys-
tems: Petuum, MxNet, TensorFlow and MPI-Caffe. Extensive
evaluations on a working testbed showed that Dorm could
simultaneously improve the resource utilization by a factor
of up to 2.32, reduce the fairness loss by a factor of up to
1.52, and speed up popular distributed ML applications by a
factor of up to 2.72, compared to existing approaches. In most
cases, Dorm could limit the sharing overhead within 5%.

II. BACKGROUND AND RELATED WORK

In this section, we introduce distributed ML, review and
analysis existing cluster management systems.

A. Distributed ML: A Primer

The goal of ML is to learn models from training datasets,
and use them to make predictions on new data. To handle
big training datasets and big models, many distributed ML
systems have been proposed based on the PS framework. As
shown in Figure 2, the PS framework can scale to large cluster
deployment by having worker nodes performing data-parallel
computation, and having server nodes maintaining globally
shared parameters of ML models. Each worker node contains
a TaskScheduler to place tasks on the local node based on a
specific policy, such as Bulk Synchronous Parallel (BSP) or
Stale Synchronous Parallel (SSP) [4].

B. Related Work: Cluster Management Systems

CMSs are designed to run multiple DCSs in a single cluster.
As shown in Figure 3, existing CMSs can be classified into
six categories based on their cluster management strategies.
These approaches could perform resource allocation at three
levels: DCS, application and task. Resource allocation refers
to determining the amount of resources offered to applications,
and selecting specific resources from servers to satisfy user-
supplied placement preferences [7].

IaaS CMSs, such as OpenStack [8], use VMs to partition
a cluster, run one DCS per partition, and let each DCS to
manage and schedule submitted applications [11].

Monolithic CMSs, such as Yarn [9], Quasar [7] and Borg
[12], use a centralized resource manager to perform resource
allocation for all applications with cluster-wide visibility.

Two-level CMSs, such as Mesos [6], use a central cluster
resource manager and application-specific schedulers to jointly
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Fig. 3. Taxonomy of existing CMSs. Circles represent tasks; gray boxes
represent cluster servers; and M denotes a distributed resource manager.

perform resource allocation. The central manager gives each
application a set of resource offers, and let the application-
specific scheduler decide whether to accept them.

Shared-state CMSs let each application maintain a copy
of the cluster state, and compete for resources using lock-free
optimistic concurrency control, as in Omega [13] and Apollo
[14]. These approaches could offer high resource allocation
quality without strict fairness guarantees due to the lack of
centralized resource management.

Fully-distributed CMSs, such as Sparrow [15], use many
independent resource managers to serve applications’ resource
requests with local, partial and stale cluster state. This ap-
proach can achieve millisecond scheduling latency per request.

Hybrid CMSs combine distributed resource managers with
a centralized cluster scheduler, as in Hawk [16] and Mercury
[17]. Applications can obtain strong execution guarantees
from the centralized scheduler, or trade strict guarantees for
millisecond scheduling latency from distributed managers.

IaaS CMSs share cluster resources at the level of DCSs. This
approach requires that DCSs could manage and schedule mul-
tiple applications. Monolithic, two-level, shared-state, fully-
distributed and hybrid CMSs support both app-level and task-
level resource allocation. In app-level mode, each application
would reserve all allocated resources until completion. In task-
level mode, applications would use acquired resources to run
a single task, release them as soon as the task completes, and
petition for new resources to launch uncompleted tasks.

C. Performance Analysis

Existing approaches cannot simultaneously achieve high
resource utilization, low fairness loss and low sharing overhead
when handling distributed ML workloads. IaaS CMSs cannot
work in conjunction with popular distributed ML systems
(e.g., TensorFlow), which have no multi-application support.
In app-level sharing mode, monolithic, two-level, shared-state,
fully-distributed and hybrid CMSs cannot dynamically adjust



existing resource allocations to consistently keep high resource
utilization and low fairness loss. In task-level sharing mode,
monolithic and two-level CMSs impose high sharing overhead,
since each task must wait until receiving suitable resources.
For example, in a 100-node Mesos cluster, our experiments
showed that the average scheduling latency per task is about
430ms, which represents significant sharing overhead for short
distributed ML tasks. Shared-state, fully-distributed and hybrid
CMSs introduce concurrency control and distributed schedul-
ing to reduce the sharing overhead at the cost of high fairness
loss, due to the lack of centralized resource management.

In practices, existing CMSs could only statically allocate
user-specified resources to distributed ML applications, as in
TensorFlow-on-Mesos and MxNet-on-Yarn. When submitting
a new application, users must manually specify its resource
demands, including the number of worker nodes, and the
amount of CPUs, GPUs and RAM per worker node.

III. DORM: A DYNAMICALLY-PARTITIONED APPROACH

We propose a new CMS named Dorm to efficiently handle
multiple and diverse distributed ML workloads in a single
cluster using two techniques: a dynamically-partitioned cluster
management mechanism and an utilization-fairness optimizer.
In this section, we focus on the first technique.

A. System Architecture

Figure 4 shows Dorm’s system architecture. Dorm is a type
of the monolithic CMS, which contains a central DormMaster
and a set of DormSlaves.

1) DormMaster: The DormMaster centrally manages all
cluster resources, and exposes them to applications. It uses
containers3 to partition a cluster, and gives each application a
partition. The utilization-fairness optimizer is a module of the
DormMaster to make resource allocation decisions.

2) DormSlave: The DormSlave manages local resources of
a cluster server. It reports the amount of available resources
of a cluster server to the DormMaster, and uses containers to
share a cluster server with multiple applications.

3) Application: Dorm is designed to host distributed ML
applications. Since modern distributed ML systems usually
use distributed scheduling mechanisms as shown in Section II,
Dorm deploys a TaskExecutor and a TaskScheduler on each
container. The TaskExecutor is the basic unit to execute tasks.
The TaskScheduler is charge of placing tasks of an application
on the local TaskExecutor.

4) Container: Containers of the same application would
have uniform, constant resource demands for two reasons.
First, distributed ML applications could balance the workloads
across all TaskExecutors by equally partitioning the training
datasets. Second, distributed ML applications usually use
iterative methods to train models without changing resource
demands during application runtime.

3The container is a logical bundle of resources on a server, for example
〈2 CPUs, 1 GPU, 8GB RAM〉.
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Fig. 4. Dorm’s system architecture. In this example, a MxNet-based appli-
cation and a TensorFlow-based application share a cluster with 3 servers.

B. Application Submission

To submit a new distributed ML application to Dorm, users
need to provide a 6-tuple as follows:

(executor,d, w, nmax, nmin, cmd),

where executor is a string (e.g., “MxNet”) to indicate the
required computation engine; d is the resource demand vector
(e.g., 〈2 CPUs, 1 GPU, 8GB RAM〉) per container; w is an
integer to show this application’s weight; nmax and nmin

represent the maximum and minimum numbers of containers
this application could have; cmd specifies the scripts used to
start and resume this application.

C. Dynamically-Partitioned Resource Management

Dorm performs resource allocation in a dynamic manner at
the level of applications. In a nutshell, it gives each application
a partitioned cluster, and can dynamically resize each partition.

1) Making Resource Allocation Decisions: When detect-
ing newly submitted or completed applications, the utilization-
fairness optimizer determines new resource allocations for re-
source efficiency and fairness based on the algorithm detailed
in Section IV.

2) Adjusting Existing Resource Allocations: Dorm could
enforce new resource allocations by adjusting existing ones:
creating and destroying containers on particular servers. How-
ever, popular distributed ML applications cannot automati-
cally take advantage of newly acquired resources, or keep
running with revoked resources. To address this problem,
we propose a checkpoint-based resource adjustment protocol.
Specifically, when adjusting an application’s resources, Dorm
would firstly save its state to a reliable storage system (e.g.,
the Lustre file system). Then, Dorm kills this application, and
creates/destroys containers on corresponding servers. Finally,
Dorm resumes the killed application from the saved state with
new resource allocations. In this way, distributed ML applica-
tions can dynamically scale up or down without recomputing
from the first iteration.

3) An Example: Figure 5 shows an example of how Dorm
allocates resources to applications. In step (1), an user submits
a new application to Dorm with following information:

executor = “MPI-Caffe”,d = 〈1 CPU, 1 GPU, 8GB RAM〉 ,
w = 2, nmax = 5, nmin = 1, cmd = [“start.sh”, “resume.sh”].
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Fig. 5. An example to show how Dorm allocates resources to applications.

In step (2), the utilization-fairness optimizer determines that
all applications should have 2 containers on DormSlave 1. In
step (3), the DormMaster enforces new resource allocations
by destroying 2 containers of App2 and creating 2 containers
for APP3 on DormSlave 1. In this step, Dorm saves App2’s
state to a reliable storage system and kill it. In step (4), the
DormMaster configures TaskExecutors and TaskSchedulers on
new containers, starts APP3, and resumes APP2. In step (5),
the DormMaster returns APP3’s status to the user.

D. Task Placement

Dorm uses application-specific schedulers to place applica-
tions’ tasks on assigned partitions. Since modern distributed
ML systems use distributed scheduling mechanisms, Dorm
deploys a TaskScheduler and a TaskExecutor per container.
During application runtime, each TaskScheduler is in charge
of placing tasks of an application on the local TaskExecutor.
Therefore, application-specific schedulers would not request
for resources to launch individual tasks, leading to low
scheduling latency and low sharing overhead.

IV. UTILIZATION-FAIRNESS OPTIMIZER

In this section, we show how the utilization-fairness opti-
mizer makes resource allocation decisions. Table I shows used
symbols and their definitions in this section.

A. Objectives

We consider a cluster with m types of hardware resources.
When allocating cluster resources to the running application
set At at time t, we aim to achieve high resource utilization
and low fairness loss with low resource adjustment overhead.

1) Resource Utilization: The cluster’s resource utilization
is defined as the sum of all m types of hardware resources’
utilization, which can be represented as follows:

ResourceUtilization(t) =
∑

k∈M
utk, (1)

where utk =
∑

i∈At

∑
j∈B

xt
i,jdi,k∑
h∈B ch,k

denotes resource k’s
utilization at time t.

2) Fairness Loss: Fairness indicates that each application
could receive a fair share of resources based on a particular
fairness policy. In this paper, we use dominant resource fair-
ness (DRF) [18] as the fairness policy. DRF seeks to maximize
the minimum dominant share4 across all applications. Let ŝti

4Dominant resource is the mostly heavily demanded resource required by
an application, and dominant share is the share of the dominant resource.

TABLE I
SUMMARY OF NOTATIONS USED.

xti,j application i’s container number on DormSlave j at time t.
lti application i’s fairness loss at time t.
rti application i’s resources are adjusted at time t.
uti resource i’s utilization at time t
nmax
i application i’s maximum container number
nmin
i application i’s minimum container number
θ1 threshold of fairness loss
θ2 threshold of resource adjustment overhead
ŝti application i’s theoretical resource share based on DRF at time t
sti application i’s actual resource share at time t
di,j application i’s resource demand on resource j
ci,j DormSlaves i’s resource capacity on resource j
B set of DormSlaves, B = {1, 2, . . . , b}
M set of resource types, M = {1, 2, . . . ,m}
At set of applications running at time t

denote application i’s theoretical dominant share derived from
DRF based on the algorithms proposed in [18]. Let sti denote
application i’s actual dominant share. The cluster’s fairness
loss is defined as the sum of all applications’ fairness loss,
which can be represented as follows:

FairnessLoss(t) =
∑

i∈At
li =

∑
i∈At

∣∣sti − ŝti∣∣, (2)

where sti = max
k∈M

(
di,k

∑
j∈B xt

i,j∑
h∈B ch,k

).
3) Resource Adjustment Overhead: The cluster’s resource

adjustment overhead is measured by the number of affected ap-
plications, which would be killed and resumed, to enforce the
newly computed resource allocations. Let rti denote whether
Dorm would adjust application i’s resources:

rti =

{
0, if xt−1i,j = xti,j , ∀j ∈ B
1, if xt−1i,j 6= xti,j , ∃j ∈ B

. (3)

If rti = 0, Dorm would not create or destroy containers on
any cluster servers for application i, and vice versa. It should
be noted that the newly launched and completed applications
at time t would not be considered as the affected applications
due to resource adjustment. Therefore, the cluster’s resource
adjustment overhead can be represented as follows:

ResourceAdjustmentOverhead(t) =
∑

i∈At∩At−1
rti , (4)

where At ∩ At−1 is the set of applications running at both
time t− 1 and t.

B. Problem Formulation

Dorm determines the number of containers offered to appli-
cations, and the location of each container. We formulate this
problem as a multi-objective optimization problem as follows:

P1: max

[∑
i∈M

ui,−
∑

i∈At
li,−

∑
i∈At

ri

]
(5)

s.t.
∑

i∈At
xti,jdi,k ≤ cj,k, ∀k ∈M,∀j ∈ B (6)∑

j∈B
xti,j ≤ nmax

i , ∀i ∈ At (7)∑
j∈B

xti,j ≥ nmin
i , ∀i ∈ At (8)

xti,j ∈ Z+
0 , ∀i ∈ At,∀j ∈ B (9)



Equation 5 is the objective function, which shows that we
want to maximize resource utilization, minimize fairness loss
and minimize resource adjustment overhead. We have several
constraints. Equation 6 indicates that each cluster server cannot
exceed its resource capacity. Equation 7 and 8 constraint the
maximum and minimum numbers of containers an application
can have. Equation 9 shows that xti,j is an integer variable.

We then transform P1 into a MILP problem as follows:

P2: max
∑

k∈M

∑
i∈At

∑
j∈B

xti,jdi,k∑
h∈B ch,k

(10)

s.t. lti ≥ sti − ŝti, ∀i ∈ At (11)
lti ≥ ŝti − sti, ∀i ∈ At (12)

Mrti ≥ xt−1i,j − x
t
i,j ,∀j ∈ B,∀i ∈ At ∩ At−1 (13)

Mrti ≥ xti,j − xt−1i,j ,∀j ∈ B,∀i ∈ A
t ∩ At−1 (14)∑

i∈At
r

lti ≤
⌈
θ1 × 2m

⌉
, (15)∑

i∈At
r

rti ≤ dθ2 × |At ∩ At−1|e, (16)

lti ∈ R+
0 , ∀i ∈ At (17)

rti ∈ {0, 1}, ∀i ∈ At (18)
(6), (7), (8), (9).

In this formulation, we choose resource utilization as the
objective to be maximized; fairness loss and resource adjust-
ment overhead are constrained to be no greater than some
given thresholds. Equation 11 and 12 are used to linearize
lti . Equation 13 and 14 are used to linearize rti with a big
number M . Equation 15 and 16 are the constraints for fairness
loss and adjustment overhead with threshold θ1 and θ2, where
θ1 ∈ [0, 1], θ2 ∈ [0, 1]. We can see that P2 is a typical MILP
problem, which can be efficiently solved by standard MILP
solves such as CPLEX. If there is no feasible solutions, Dorm
would keep existing resource allocations until more running
applications finish and release their resources.

V. NUMERICAL RESULTS AND ANALYSIS

In this section we investigate Dorm’s performance using a
testbed and popular distributed ML systems and applications.

A. Experiments’ Parameters and Configurations

1) Testbed Setup: The testbed contains 21 computation
servers (1 DormMaster and 20 DormSlaves) and 2 storage
servers connected by 10Gbps Ethernet. All training datasets
are stored on the two storage servers. The DormMaster man-
ages 240 CPU cores, 5 GPUs and 2.5TB RAM in total.

2) Configurations: We use following thresholds for fairness
loss and resource adjustment overhead in Dorm:

Dorm-1 θ1 = 0.2 θ2 = 0.1
Dorm-2 θ1 = 0.1 θ2 = 0.2
Dorm-3 θ1 = 0.1 θ2 = 0.1

3) Workloads: We generate an online workload based on
the workload model of a production cluster in Sensetime. As
shown in Table II, the workload comprises 50 applications,
which train 7 ML models on public datasets. We randomly
submit them to Dorm with a mean interval time of 20 minutes.

TABLE II
SYNTHETIC WORKLOADS.

Dependent
System

Training
Datasets

Trained
Model∗

Resource
Demand†

Weight Max Min Num

MxNet Criteo-Log LR 2, 0, 8 1 32 1 20
TensorFlow MovieLens MF 2, 0, 6 2 32 1 20
MPI-Caffe CIFAR-10 CaffeNet 4, 0, 6 4 8 1 6
MxNet ImageNet VGG-16 4, 1, 32 1 5 1 1
TensorFlow ImageNet GoogLeNet 6, 1, 16 1 5 1 1
Petuum ImageNet AlexNet 6, 1, 16 2 5 1 1
MPI-Caffe ImageNet ResNet-50 4, 1, 32 4 5 1 1

∗ LR: Logistic Regression; MF: Matrix Factorization.
† Number of CPUs, number of GPUs and RAM size (GB).
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Fig. 6. Resource utilization of the testbed. The red line represents the overall
resource utilization of the baseline system.

4) Baseline System: We use Swarm as the baseline system.
In the experiments, Swarm would statically create 8, 8, 4, 2,
2, 2, 3 containers for the 7 types of applications in Table II.

B. Cluster Performance

1) Resource Utilization: Dorm could considerably improve
the resource utilization, as shown in Figure 6. In the first 5
hours, the baseline system has quite low resource utilization
(which is up to 1.8), since it can only handle the first 15
submitted applications based on their fixed resource require-
ments. In contrast, these applications could dynamically scale
up to take advantage of more resources on Dorm. As a result,
compared to the baseline system, Dorm-1, Dorm-2 and Dorm-
3 can increase the resource utilization by a factor of 2.55, 2.46
and 2.32 on average in the first 5 hours, respectively.

2) Fairness Loss: As shown in Figure 7, Dorm limits the
fairness loss within a threshold, and can tolerate higher fairness
loss with a larger θ1. Dorm-1 and Dorm-3, which set θ1 to 0.2
and 0.1 with the same θ2, can limit the fairness loss within
1.5 and 0.6, respectively. Though Dorm-1 provides higher
resource utilization than Dorm-3, its fairness loss is up to 1.78
times higher than the baseline system. In contrast, Dorm-3
could reduce the fairness loss by a factor of 1.52 on average,
compared to the baseline system.

3) Resource Adjustment Overhead: Figure 8 shows that
Dorm can limit the resource adjustment overhead within a
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Fig. 7. Fairness loss of the testbed.
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Fig. 8. Resource adjustment overhead of the testbed.

threshold, and can tolerate higher resource adjustment over-
head with a larger θ2. Dorm-2 and Dorm-3, which set θ2 to 0.2
and 0.1 with the same θ1, would kill and resume 2 applications
at most per resource adjustment operation, and affect 80 and
76 applications in total in 24 hours, respectively.

4) Speedup Ratio: Distributed ML applications running on
Dorm consistently perform better than those running on the
baseline system. Figure 9(a) shows that Dorm-1, Dorm-2 and
Dorm-3 can speed up distributed ML applications by a factor
of 2.79, 2.73 and 2.72 on average, respectively.

5) Sharing Overhead: To measure Dorm’s sharing over-
head, we compare applications’ performances in two cases.
First, we set up a dedicated MxNet cluster on 10 worker nodes
(each node has 4 CPUs and 16GB RAM), and run a set of
applications on it. We then submit same applications to Dorm
with the same amount of resources (i.e., nmax = nmin = 10,
and each container has 4 CPUs and 16GB RAM). During the
application running time, our tested MxNet-based applications
are randomly killed and resumed 2 times on Dorm.

Dorm’s sharing overhead is not significant for distributed
ML applications. As shown in Figure 9(b), when the appli-
cation duration is longer than 3 hours, Dorm would roughly
increase the application duration by a factor of 1.05 (i.e., the
sharing overhead of Dorm is about 5%). Compared to the
performance gain, Dorm’s sharing overhead is acceptable.
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Fig. 9. Application speedup ratio and Dorm’s sharing overhead.

VI. SUMMARY

We propose a novel cluster management system named
Dorm to efficiently and fairly share a single cluster among
distributed ML applications with low sharing overhead. To
achieve this goal, Dorm employs a dynamically-partitioned
sharing model and an utilization-fairness optimizer. We have
implemented Dorm and enabled it to work with Petuum,
MxNet, TensorFlow and MPI-Caffe. In the future, we plan to
integrate it with more distributed ML systems and applications.
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