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GraphMP: An Efficient Semi-External-Memory
Big Graph Processing System on a Single Machine

Peng Sun, Yonggang Wen, Ta Nguyen Binh Duong and Xiaokui Xiao
School of Computer Science and Engineering, Nanyang Technological University, Singapore

Email: {sunp0003, ygwen, donta, xkxiao}@ntu.edu.sg

Abstract—Recent studies showed that single-machine graph
processing systems can be as highly competitive as cluster-
based approaches on large-scale problems. While several out-
of-core graph processing systems and computation models have
been proposed, the high disk I/O overhead could significantly
reduce performance in many practical cases. In this paper, we
propose GraphMP to tackle big graph analytics on a single
machine. GraphMP achieves low disk I/O overhead with three
techniques. First, we design a vertex-centric sliding window
(VSW) computation model to avoid reading and writing vertices
on disk. Second, we propose a selective scheduling method to
skip loading and processing unnecessary edge shards on disk.
Third, we use a compressed edge cache mechanism to fully
utilize the available memory of a machine to reduce the amount
of disk accesses for edges. Extensive evaluations have shown
that GraphMP could outperform state-of-the-art systems such
as GraphChi, X-Stream and GridGraph by 31.6x, 54.5x and
23.1x respectively, when running popular graph applications on
a billion-vertex graph.

Index Terms—Graph Processing, Big Data, Parallel Computing

I. INTRODUCTION

In the era of “Big Data”, many real-world problems, such
as social network analytics and collaborative recommendation,
can be represented as graph computing problems [1]. Ana-
lyzing large-scale graphs has attracted considerable interest
in both academia and industry. However, researchers are
facing significant challenges in processing big graphs1 with
popular big data tools like Hadoop [2] and Spark [3], since
these general-purpose frameworks cannot leverage inherent
interdependencies within graph data and common patterns of
iterative graph algorithms for performance optimization [4].

To tackle this challenge, many in-memory graph processing
systems have been proposed over multi-core, heterogeneous
and distributed infrastructures. These systems adopt a vertex-
centric programming model (which allows users to think like a
vertex when designing parallel graph applications), and should
always manage the entire input graph and all intermediate data
in memory. More specifically, Ligra [5], Galois [6], GraphMat
[7] and Polymer [8] could handle generic graphs with 1-4
billion edges on a single multi-core machine. Several systems,
e.g., [9], [10], [11], [12], [13], can scale up the processing
performance with heterogeneous devices like GPU and Xeon
Phi. To handle big graphs, Pregel-like systems, e.g., [14] [15],
[16], [17], scale out in-memory graph processing to a cluster:

1A big graph usually contains billions of vertices and hundreds of billions
of edges.
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Fig. 1: GraphMP is a single-machine semi-external-memory graph processing
system. Compared to in-memory systems like Ligra and GraphMat, GraphMP
can handle big graphs on a single machine, since it does not store all graph
data in memory. Compared to out-of-core systems (e.g., GraphChi, X-Stream,
VENUS and GridGraph), GraphMP could fully utilize available memory of
a typical server to reduce disk I/O overhead.

they assign the input graph’s vertices to multiple machines,
and provide interaction between them using message pass-
ing along out-edges. PowerGraph [18] and PowerLyra [19]
adopt a GAS (Gather-Apply-Scatter) model to improve load
balance when processing power-law graphs: they split a vertex
into multiple replicas, and parallelize the computation for it
using different machines. However, current in-memory graph
processing systems require a costly investment in powerful
computing infrastructure to handle big graphs. For example,
GraphX needs more than 16TB memory to handle a 10-billion-
edge graph [20], [21].

Out-of-core systems provide cost-effective solutions for big
graph analytics. Single-machine approaches, such as GraphChi
[22], X-Stream [23], VENUS [24] and GridGraph [25], breaks
a graph into a set of small shards, each of which contains all
required information to update a number of vertices. During
the iterative computation, one iteration executes all shards. An
out-of-core graph processing system usually uses three steps
to execute a shard:

• loading its associated vertices from disk into memory;
• reading its edges from disk for updating vertices; and
• writing the latest updates to disk.

Therefore, there will be a huge amount of costly disk accesses,
which can be the performance bottleneck [4]. To exploit the
sequential bandwidth of a disk and reduce the amount of disk
accesses, many computation models have been proposed, such
as the parallel sliding window model (PSW) of GraphChi,
the edge-centric scatter-gather (ESG) model of X-Stream, the
vertex-centric streamlined processing (VSP) model of VENUS
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TABLE I: Current approaches in graph processing engines, including their intended scale and performance.

Single Machine (Multi-Core) Single Machine (GPU/Xeon Phi) Cluster
Data Storage In-Memory Out-of-Core Semi-External-Memory In-Memory Out-of-Core In-Memory Out-of-Core

Approaches
[5], [6]
[7], [8]

[22], [23]
[24], [25]

GraphMP
(Our Approach)

[9], [10], [11]
[12], [13]

[26], [27]
(Use SSD)

[14], [15], [16]
[17] [18], [19]

[28], [29]

Graph Scale (#edges) 1-4 Billion 5-200 Billion 5-200 Billion 1-4 Billion >1 Trillion 5-1000 Billion >1 Trillion
Performance (#edges/s) 1-2 Billion 5-100 Million 0.5-1.5 Billion 1-7 Billion 1-3 Billion 1-7 Billion 5-200 Million
Infrastructure Cost Medium Low Medium High Medium High Medium

and the dual sliding windows (DSW) model of GridGraph.
However, current out-of-core systems still have much lower
performance (5-100M edges/s) than in-memory approaches
(1-2B edges/s), as shown in Table I. While Chaos [29] and
GraphD [28] scale out-of-core graph processing to multiple
machines, their processing performance could not be signifi-
cantly improved due to the high disk I/O overhead.

In this work, we propose GraphMP, a semi-external-memory
(SEM) graph processing system, to tackle big graph analytics
on a single commodity machine with low disk I/O overhead.
GraphMP is design based on our previous work GraphH [30],
which is a lightweight distributed graph processing framework.
The concept of SEM arose as a functional computing approach
for graphs, in which all vertices of a graph are managed in the
main memory and the edges accessed from disk [31]. Several
graph algorithms have been proposed to run in SEM, such as
graph clustering and graph partitioning [31], [32]. Compared
to these application-specific algorithms, GraphMP provides
general-purpose vertex-centric APIs for common users to
design and implement any parallel graph applications with
performance guarantees. As shown in Figure 1, GraphMP can
be distinguished from other single-machine graph processing
systems as follows:

• Compared to in-memory approaches, GraphMP does not
need to store all edges2 in memory, so that it can handle
big graphs on a single machine with limited memory.

• Compared to out-of-core approaches, GraphMP requires
more memory to store all vertices. Most of the time, this
is not a problem as a single commodity server can easily
fit all vertices of a big graph into memory. Take PageRank
as an example, a graph with 1.1 billion vertices needs
21GB memory to store all rank values and intermediate
results. Meanwhile, a single EC2 M4 instance can have
up to 256GB memory.

• Mosaic [26] and GTS [27] use heterogeneous computa-
tion devices (e.g., GPU and Xeon Phi) and PCIe/NVMe
SSDs to support high performance big graph analytics on
a single machine. In this paper, GraphMP is designed to
run on a commodity multi-core server with HDDs.

GraphMP employs three main techniques. First, we design
a vertex-centric sliding window (VSW) computation model.
GraphMP breaks the input graph’s vertices into disjoint inter-
vals. Each interval is associated with a shard, which contains
all edges that have destination vertex in that interval. During
the computation, GraphMP slides a window on vertices, and

2Real-world graphs usually contain much more edges than vertices [28].

processes edges shard by shard. When processing a specific
shard, GraphMP first loads it into memory, then executes
user-defined functions on it to update corresponding vertices.
GraphMP does not need to read or write vertices on disk
until the end of the program, since all of them are stored
in memory. Second, we use Bloom filters to enable selective
scheduling, so that inactive shards can be skipped to avoid
unnecessary disk accesses and processing. Third, we leverage a
compressed shard cache mechanism to fully utilize available
memory to cache a partition of shards in memory. If a shard
is cached, GraphMP would not access it from disk. GraphMP
supports compressions of cached shards, and maximizes the
number of cached shards with limited memory.

We implement GraphMP3 using C++. Extensive evaluations
on a testbed have shown that GraphMP performs much better
than current single-machine out-of-core graph processing sys-
tems. When running popular graph applications, for example
PageRank, single source shortest path (SSSP) and weakly con-
nected components (WCC), on real-world large-scale graphs,
GraphMP can outperform GraphChi, X-Stream and GridGraph
by up to 31.6x, 54.5x, and 23.1x, respectively.

The rest of the paper is structured as follows. In section 2,
we present the system design of GraphMP, including the VSW
computation model, selective scheduling and compressed edge
caching. Section 3 gives quantitative comparison between our
approach with other single-machine graph processing systems.
The evaluation results are detailed in Section 4. We conclude
the paper in section 5.

II. SYSTEM DESIGN

In this section, we introduce the system design of GraphMP,
including the vertex-centric sliding window (VSW) model,
selective scheduling and compressed edge caching.

A. Notations

Given a graph G = (V,E), it contains |V | vertices and |E|
edges. Each vertex v ∈ V has a unique ID id(v), an incoming
adjacency list Γin(v), an outgoing adjacency list Γout(v), a
value val(v) (which may be updated during the computation),
and a boolean field active(v) (which indicates whether val(v)
is updated in the last iteration). The in-degree and out-degree
of v are denoted by din(v) and dout(v). If vertex u ∈ Γin(v),
there is an edge (u, v) ∈ E. In this case, u is an incoming
neighbor of v, and (u, v) is an in-edge of v. If u ∈ Γout(v),
u is an outgoing neighbor of v, and (v, u) is an out-edge of

3GraphMP is available at https://github.com/cap-ntu/GraphMP.
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Fig. 2: The input graph’s vertices are divided into P intervals. Each interval
is associated with a shard, which stores all edges that have destination vertex
in that interval. GraphMP structures all edges of a shard in key-value pairs
(id(v),Γout(v)), and stores them in the Compressed Sparse Row format.

v. Let val(u, v) denote the edge value of (v, u). In this paper,
G is a unweighted graph, where val(u, v) = 1,∀(u, v) ∈ E.

B. Graph Sharding and Data Storage

GraphMP partitions the input graph’s edges into P shards.
We use a similar graph sharing strategy like GraphChi [22].
As shown in Figure 2, the vertices of graph G = (V,E) are
divided into P disjoint intervals. Each interval is associated
with a shard, which stores all the edges that have destination
vertex in that interval. In GraphChi, all edges in each shard
are ordered by their source vertex. As a comparison, GraphMP
groups edges in a shard by their destination, and stores them in
key-values pairs (id(v),Γin(v)). The number of shards, P , and
vertex intervals are chosen with two policies: 1) any shard can
be completely loaded into the main memory; 2) the number
of edges in each shard is balanced. In this work, each shard
approximately contains 18-22M edges, so that a single shard
roughly needs 80MB memory. Users can select other vertex
intervals during the preprocessing phase.

Each shard manages its assigned key-values pairs as a sparse
matrix in the Compressed Sparse Row (CSR) format. One
edge is treated as a non-zero entry of the sparse matrix. The
CSR format of a shard contains a row array and a col array.
The col array stores all edges’ column indices in row-major
order, and the row array records each vertex’s adjacency list
distribution. Each shard also stores the endpoints of its vertex
interval. For example, given a shard, the incoming adjacency
list of vertex v (v1 ≤ v < v2) can be accessed from:

Γin(v) = {col[row[v − v1]], · · · , col[row[v − v1]− 1]}.

Since all input graphs are unweighted in this paper, we do not
need additional space to store edge values in the CSR format.

In addition to edge shards, GraphMP creates two metadata
files. First, a property file contains the global information
of the represented graph, including the number of vertices,
edges and shards, and the vertex intervals. Second, a vertex
information file stores several arrays to record the information
of all vertices. It contains an array to record all vertex values
(which can be the initial or updated values), an in-degree array
and an out-degree array to store each vertex’s in-degree and
out-degree, respectively.

CPU Core 0 CPU Core 1 CPU Core 2 CPU Core 3

Shard(0) Shard(1) Shard(2) Shard(3)

Source Vertex Array Destination Vertex Array

shard(0) shard(1) shard(2) shard(P-1)

Fig. 3: The VSW computation model. GraphMP slides a window on vertices,
and makes each CPU core process a shard at a time. When processing a shard,
a CPU core continually pulls required vertex values from memory, and pushes
updated ones to another array in memory.

Algorithm 1: Vertex-Centric Sliding Window Model

1 init (src vertex array, dst vertex array)
2 while active vertex ratio > 0 do
3 # pragma omp parallel for num threads(N)
4 for shard ∈ all shards do
5 if active vertex ratio > 1/1000 or

Bloom filter[shard.id].has(active vertices) then
6 load to memory(shard)
7 for v ∈ shard.associated vertices do
8 dst vertex array[v.id] ← update(v,

src vertex array)

9 active vertices = {vertices that update their value}
10 src vertex array ← dst vertex array
11 active vertex ratio ← |active vertices| / vertex num

GraphMP uses following four steps to preprocess an input
graph, and generates all edge shards and metadata files.

1) Scan the whole graph to get its basic information, and
record the in-degree and out-degree of each vertex.

2) Compute vertex intervals to guarantee that, (1) each shard
is small enough to be loaded into memory, (2) the number
of edges in each shard is balanced.

3) Read the graph data sequentially, and append each edge to
a shard file based on its destination and vertex intervals.

4) Transform all shard files to the CSR format, and persist
the metadata files on disk.

After the preprocessing phase, GraphMP is ready to do vertex-
centric computation based on the VSW model.

C. The Vertex-Centric Sliding Window Computation Model

1) Overview: GraphMP slides a window on vertices, and
processes edges shard by shard on a single server with N
CPU cores, as shown in Figure 3 and Algorithm 1. During the
computation, GraphMP maintains two vertex arrays in mem-
ory until the end of the program: SrcVertexArray and
DstVertexArray. The SrcVertexArray stores latest
vertex values, which are the input of the current iteration. Up-
dated vertex values are written into the DstVertexArray,
which are used as the input of the next iteration. GraphMP uses



Algorithm 2: PageRank SSSP and WCC in GraphMP

1 Function PR Update(Vertex v, Array src vertex array)
2 for e ∈ v.incoming neighbours do
3 s += src vertex array[e.source] / e.source.out deg

4 updated value = 0.15 / num vertex + 0.85 * s
5 return updated value, (updated value == v.value)

6 Function SSSP Update(Vertex v, Array src vertex array)
7 for e ∈ v.incoming neighbours do
8 d = min (src vertex array[e.source] + (e,u).val, d)

9 updated value = min (d, v.value)
10 return updated value, (updated value == v.value)

11 Function WCC Update(Vertex v, Array src vertex array)
12 for e ∈ v.incoming neighbours do
13 group = min (src vertex array[e.source], group)

14 updated value = min (group, v.value)
15 return updated value , (updated value == v.value)

OpenMP to parallelize the computation (line 3 of Algorithm
1): each CPU core processes a shard at a time. When pro-
cessing a specific shard, GraphMP first loads it into memory
(line 6), then executes user-defined vertex-centric functions,
and writes the results to the DstVertexArray (line 7-8).
Given a vertex, if its values is updated, we call it an active
vertex. Otherwise, it is inactive. After processing all shards,
GraphMP records all active vertices in a list (line 9). This
list could help GraphMP to avoid loading and processing
inactive shards in the next iteration (line 5), which would not
generate any updates (detailed in Section II-D). The values
of DstVertexArray are used as the input of next iteration
(line 10). The program terminates if it does not generate any
active vertices (line 2).

2) Vertex-Centric Interface: Users only need to define an
Update function for a particular application. The Update
function accepts a vertex and SrcVertexArray as inputs,

Update(InputVertex, SrcVertexArray),

and should return two results: an updated vertex value which
should be stored in DstVertexArray, and a boolean value
to indicate whether the input vertex updates its value. Specif-
ically, this function allows the input vertex to pull the values
of its incoming neighbours from SrcVertexArray along
the in-edges, and uses them to update its value.

We implement three graph applications, PageRank, SSSP
and WCC, using the Update function in Algorithm 2. In
PageRank, the input vertex accumulates all rank values along
its in-edges (line 2-3), and uses it to its rank value accordingly
(line 4). In SSSP, each input vertex tries to connect the source
vertex (for example, vertex 0) along its in-edges (line 8), and
finds the shortest path (line 9). In WCC, each vertex pulls
the component ids of its neighbours (line 14), and selects the
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Fig. 4: This example illustrates the first iteration of PageRank on GraphMP.

smallest one (including its current component id) as its newest
component id (line 15).

3) Lock-Free Processing: GraphMP does not require any
logical locks or atomic operations for graph processing using
multiple CPU cores in parallel. This property could improve
the processing performance considerably. As shown in Figure
3, GraphMP only uses one CPU core to process a shard for up-
dating its associated vertices in each iteration. Given a vertex
v, DstVertexArray[v.id], is computed and written by
a single CPU core. Therefore, there is no need to use logical
locks or atomic operations to avoid data inconsistency issues
on DstVertexArray. Many graph processing systems, such
as GridGraph, use multiple threads to compute the updates for
a single vertex in parallel. In this case, they should use costly
logical locks or atomic operations to guarantee correctness.

4) Example: Figure 4 shows an example of how GraphMP
run PageRank. The input graph is partitioned into three shards,
each of which contains two vertices and their adjacency lists.
At the beginning of PageRank, all vertex values are initiated
to be 1/num vertex = 0.14. GraphMP slides a window on
vertices, and lets each CPU core process a shard at a time.
When processing shard 0 on a CPU core, GraphMP pulls
the values of vertex 1, 3 from SrcVertexArray, then use
them to compute the updated value for vertex 0, and writes
it to DstVertexArray[0]. After processing all 3 shards,
GraphMP uses the values of DstVertexArray to replace
the values of SrcVertexArray, and starts the next iteration
if there are any active vertices.

D. System Optimizations

1) Selective Scheduling: For many graph applications,
such as PageRank, SSSP and WCC, a lot of vertices converge
quickly and would not update their values in the rest iterations.
Given a shard, if all source vertices of its associated edges are
inactive, it is an inactive shard. An inactive shard would not
generate any updates in the following iteration. Therefore, it
is unnecessary to load and process these inactive shards.

To solve the above problem, we use Bloom filters to detect
inactive shards, so that GraphMP could avoid unnecessary disk
accesses and processing. More specifically, for each shard,
GraphMP manages a Bloom filter to record the source vertices
of its edges. When processing a shard, GraphMP uses the
corresponding Bloom filter to check whether it contains any
active vertices. If yes, GraphMP would continue to load and



TABLE II: Analysis of graph computation models. C is the size of a vertex value, D is the size of one edge, δ ≈ (1− e−davg/P )P , and 0 ≤ θ ≤ 1.

Category PSW (GraphChi) ESG (X-Stream) VSP (VENUS) DSW (GridGraph) VSW (GraphMP)

Data Read C|V |+ 2(C +D)|E| C|V |+ (C +D)|E| C(1 + δ)|V |+D|E| C
√
P |V |+D|E| θD|E|

Data Write C|V |+ 2(C +D)|E| C|V |+ C|E| C|V | C
√
P |V | 0

Memory Usage (C|V |+2(C+D)|E|)/P C|V |/P C(2 + δ)|V |/P 2C|V |/
√
P 2C|V |+ND|E|/P

process the shard. Otherwise, GraphMP would skip it. For
example, in Figure 4, when the sliding window is moved to
shard 2, its Bloom filter could tell GraphMP whether vertex
4, 6 have changed their values in the last iteration. If there
are no active vertices, the sliding window would skip shard 2,
since it cannot not update vertex 5 or 6 after the processing.

GraphMP only enables selective scheduling when the ratio
of active vertices is lower than a threshold. If the active vertex
ratio is high, nearly all shards contain at least one active
vertex. In this case, GraphMP wastes a lot of time on detecting
inactive shards, and would not reduce any unnecessary disk
accesses. As shown in Algorithm 1 Line 5, GraphMP starts
to detect inactive shards when the active vertex ratio is low
than a threshold. In this paper, we use 0.001 as the threshold.
Users can choose a better value for specific applications.

2) Compressed Edge Caching: We design a cache system
in GraphMP to reduce the amount of disk accesses for edges.
The VSW computation model requires storing all vertices
and edges under processing in the main memory. These data
would not consume all available memory resources of a single
machine. For example, given a server with 24 CPU cores and
128GB memory, when running PageRank on a graph with 1.1
billion vertices, GraphMP uses 21GB memory to store all data,
including SrcVertexArray, DstVertexArray, the out-
degree array, Bloom filters, and the shards under processing.
It motivates us to build an in-application cache system to
fully utilize available memory to reduce the disk I/O overhead.
Specifically, when GraphMP needs to process a shard, it first
searches the cache system. If there is a cache hit, GraphMP can
process the shard without disk accesses. Otherwise, GraphMP
loads the target shard from disk, and leaves it in the cache
system if the cache system is not full.

To improve the amount of cached shards and further reduce
disk I/O overhead, GraphMP can compress cached shards. In
this work, we use two compressors (snappy and zlib), and four
modes: mode-1 caches uncompressed shards; mode-2 caches
snappy compressed shards; mode-3 caches zlib-1 compressed
shards; mode-4 caches zlib-3 compressed shards. In zlib-N , N
denotes the compression level of zlib. From mode-1 to mode-
4, the cache system provides higher compression ratio (which
can increase the amount of cached shards) at the cost of longer
decompressing time. To minimize disk I/O overhead as well
as decompression overhead, GraphMP should select the most
suitable cache mode. More details on selecting the appropriate
cache mode can be found in our previous work, GraphH [30].

III. QUANTITATIVE COMPARISON

We compare our proposed VSW model with four popular
graph computation models: the parallel sliding window model

(PSW) of GraphChi, the edge-centric scatter-gather (ESG)
model of X-Stream, the vertex-centric streamlined processing
(VSP) model of VENUS and the dual sliding windows (DSW)
model of GridGraph. All systems partition the input graph into
P shards or blocks, and run applications using N CPU cores.
Let C denote the size of a vertex record, and D is the size
of one edge record. For fair comparison and simplicity, we
assume that the neighbors of a vertex are randomly chosen,
and the average degree is davg = |E|/|V |. We disable selective
scheduling, so that all system should process all edge shards
or blocks in each iteration. We use the amount of data read
and write on disk per iteration, and the memory usage as the
evaluation criteria. Table II summarizes the analysis results.

A. The PSW Model of GraphChi

Unlike GraphMP where each vertex can access the values of
its neighbours from SrcVertexArray, GraphChi accesses
such values from the edges. Thus, the data size of each edge in
GraphChi is (C+D). For each iteration, GraphChi uses three
steps to processes one shard: (1) loading its associated vertices,
in-edges and out-edges from disk into memory; (2) updating
the vertex values; and (3) writing the updated vertices (which
are stored with edges) to disk. In step (1), GraphChi loads
each vertex once (which incurs C|V | data read), and accesses
each edge twice (which incurs 2(C+D)|E| data read). In step
(3), GraphChi writes each vertex into the disk (which incurs
C|V | data write), and writes each edge twice in two directions
(which incurs 2(C+D)|E| data write). With the PSW model,
the data read and write in total are both C|V |+ 2(C+D)|E|.
In step (2), GraphChi needs to keep |V |/P vertices and their
in-edges, out-edges in memory for computation. The memory
usage is (C|V |+ 2(C +D)|E|)/P .

B. The ESG Model of X-Stream

X-Stream divides one iteration into two phases. In phase
(1), when processing a graph partition, X-Stream first loads its
associated vertices into memory, and processes its out-edges
in a streaming fashion: generating and propagating updates
(the size of an update is C) to corresponding values on disk.
In this phase, the size of data read is C|V | + D|E|, and the
size of data write is C|E|. In phase (2), X-Stream processes
all updates and uses them to update vertex values on disk. In
this phase, the size of data read is C|E|, and the size of data
write is C|V |. With the ESG model, the data read and write in
total are C|V |+ (C +D)|E| and C|V |+C|E|, respectively.
X-Stream only needs to keep the vertices of a partition in
memory, so the memory usage is C|V |/P .



C. The VSP Model of VENUS

VENUS splits |V | vertices into P disjoint intervals, each
interval is associated with a g-shard (which stores all edges
with destination vertex in that interval), and a v-shard (which
contains all vertices appear in that g-shard). For each iteration,
VENUS processes g-shards and v-shards sequentially in three
steps: (1) loading a v-shard into the main memory, (2) pro-
cessing its corresponding g-shard in a streaming fashion, (3)
writing updated vertices to disk. In step (1), VENUS needs
to process all edges once, which incurs D|E| data read. In
step (3), all updated vertices are written to disk, so the data
write is C|V |. According to Theorem 2 in [33], each vertex
interval contains |V |/P vertices, and each v-shard contains
up to |V |/P + (1− e−davg/P )|V | entries. Therefore, the data
read and write are C(1+δ)|V |+D|E| and C|V | respectively,
where δ ≈ (1−e−davg/P )P . VENUS needs to keep a v-shard
and its updated vertices in memory, so the memory usage is
C(2 + δ)|V |/P .

D. The DSW Model of GridGraph

GridGraph group the input graph’s |E| edges into a “grid”
representation. More specifically, the |V | vertices are divided
into
√
P equalized vertex chunks and |E| edges are partitioned

into
√
P ×
√
P blocks according to the source and destination

vertices. Each edge is placed into a block using the following
rule: the source vertex determines the row of the block, and
the destination vertex determines the column of the block.
GridGraph processes edges block by block. GridGraph uses 3
steps to process a block in the i-th row and j-th column: (1)
loading the i-th source vertex chunk and the j-th destination
vertex chunk into memory; (2) processing edges in a streaming
fashion for updating the destination vertices; and (3) writing
the destination vertex chunk to disk if it is not required by the
next block. After processing a column of blocks, GridGraph
reads |E|/

√
P edges and |V | vertices, and writes |V |/

√
P ver-

tices to disk. The data read and write are C
√
P |V |+D|E| and

C
√
P |V |, respectively. During the computation, GridGraph

needs to keep two vertex chunks in memory, so the memory
usage is 2C|V |/

√
P .

E. The VSW Model of GraphMP

GraphMP keeps all source and destination vertices in the
main memory during the vertex-centric computation. There-
fore, GraphMP would not incur any disk write for vertices in
each iteration until the end of the program. In each iteration,
GraphMP should use N CPU cores to process P edge shards
in parallel, which incurs D|E| data read. Since GraphMP uses
a compressed edge cache mechanism, the actual size of data
read of GraphMP is θD|E|, where 0 ≤ θ ≤ 1 is the cache miss
ratio. During the computation, GraphMP manages |V | source
vertices (which are the input of the current iteration) and |V |
destination vertices (which are the output the current iteration
and the input of the next iteration) in memory, and each CPU
core loads |E|/P edges in memory. The total memory usage
is 2C|V |+ND|E|/P .

As shown in Table II, the VSW model of GraphMP could
achieve lower disk I/O overhead than other computation mod-
els, at the cost of higher memory usage. In Section IV, we use
experiments to show that a single commodity machine could
provide sufficient memory for processing big graphs with the
VSW model.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluate GraphMP’s performance using
a physical server with three applications (PageRank, SSSP,
WCC) and four datasets (Twitter, UK-2007, UK-2014 and EU-
2015). The physical server contains two Intel Xeon E5-2620
CPUs, 128GB memory, 4x4TB HDDs (RAID5). Following
table shows the basic information of used datasets. All datasets
are real-word power-law graphs, and can be downloaded from
http://law.di.unimi.it/datasets.php.

Dataset Vertex
Num

Edge
Num

Avg
Deg

Max
Indeg

Max
Outdeg

Size
(CSV)

Twitter 42M 1.5B 35.3 0.7M 770K 25GB
UK-2007 134M 5.5B 41.2 6.3M 22.4K 93GB
UK-2014 788M 47.6B 60.4 8.6M 16.3K 0.9TB
EU-2015 1.1B 91.8B 85.7 20M 35.3K 1.7TB

We first evaluate GraphMP’s selective scheduling mecha-
nism. Then, we compare the performance of GraphMP with
an in-memory graph processing system, GraphMat. Next, we
compare the performance of GraphMP with three out-of-core
systems: GraphChi, X-Stream and GridGraph.

A. Effect of GraphMP’s Selective Scheduling Mechanism

To see the effect of GraphMP’s selective scheduling mech-
anism, we run PageRank, SSP and WCC on UK-2007 using
GraphMP-SS and GraphMP-NSS, and compare their perfor-
mance. Specifically, GraphMP-SS enables selective schedul-
ing, so that it can use Bloom filters to detect and skip inactive
shards. In GraphMP-NSS, we disable selective scheduling, so
that it should process all shards in each iteration. Figure 5
shows that GraphMP’s selective scheduling mechanism could
improve the processing performance for all three applications.

As shown in Figure 5 (a1), many vertices converge quickly
when running PageRank on UK-2007. Specifically, after the
110-th iteration, less than 0.1% of vertices update their values
in an iteration (i.e., the vertex activation ratio is less than
0.1%). After that iteration, GraphMP-SS enables its selective
scheduling mechanism, and it continually reduces the exe-
cution time of an iteration. In particular, GraphMP-SS only
uses 1.2s to execute the 200-th iteration. As a comparison,
GraphMP-NSS roughly uses 2s per iteration after the 110-
th iteration. In this case, the selective scheduling mechanism
could improve the processing performance of a single iteration
by a factor of up to 1.67, and improve the overall performance
of PageRank by 5.8%.

From Figure 5 (b1) and (b2), we can find that SSSP benefits
a lot from GraphMP’s selective scheduling mechanism. In this
experiment, GraphMP updates more than 0.1% of vertices in
a few iterations. Therefore, GraphMP-SS continuously reduce

http://law.di.unimi.it/datasets.php
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Fig. 5: Effect of the selective scheduling mechanism. GraphMP-SS enables
the selective scheduling mechanism. GraphMP-NSS disables the selective
scheduling mechanism. We use UK-2007 as the input of all three experiments.
The vertex activation ratio denotes the number of active vertices of an iteration.

the computation time from the 15-th iteration, and uses 0.4s in
the 200-th iteration. As a comparison, GraphMP-NSS roughly
uses 1.4s per iteration. In this case, GraphMP’s selective
scheduling mechanism could speed up the computation of an
iteration by a factor of up to 2.86, and improve the overall
performance of SSSP by 50.1%.

GraphMP’s selective scheduling mechanism is enabled after
the 31-th iteration of WCC, as shown in Figure 5 (c1) and (c2).
GraphMP-SS begins to outperform GraphMP-NSS from that
iteration. In particularly, GraphMP-SS uses 0.8s in the 200-th
iteration, and GraphMP-SS uses 1.4. In this case, GraphMP’s
selective scheduling mechanism could reduce the computation
time of an iteration by a factor of up to 1.75, and improve the
overall performance of WCC by 9.5%.
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Fig. 6: Performance comparison between GraphMP and GraphMat. In this
experiment, we run PageRank on the Twitter dataset.
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Fig. 7: Performance comparison between GraphMP and GraphMat to run
PageRank, SSSP and WCC on Twitter. We do not consider the data loading
time in these experiments. The vertex activation ratio denotes the number of
active vertices of an iteration.

B. GraphMP vs. GraphMat

We compare the performance of GraphMP with GraphMat,
which is an in-memory graph processing system. GraphMat
maps vertex-centric programs to sparse vector-matrix multipli-
cation (SpMV) operations, and leverages sparse linear algebra
techniques to improve the performance of graph computation.

GraphMat cannot handle big graph analytics in our testbed
with 128GB memory. At the beginning of each application,
GraphMat should load the entire graph into memory, and
constructs required data structures. When running PageRank
on the Twitter dataset, GraphMat uses up to 122GB memory
for data loading, as shown in Figure 6. GraphMat cannot
process UK-2007, UK-2014 and EU-2015 in our testbed, since
the program can easily crash during the data loading phase
caused by the out-of-memory (OOM) problem. Also, the data
loading of GraphMat is costly: it uses 390s for data loading
before running PageRank. As a comparison, GraphMP uses
7.3GB memory (including Bloom filters and compressed edge
cache) to run PageRank on Twitter, and takes 30s for data
loading. During the data loading phase, GraphMP scans all
edges to construct Bloom filters, and places processed shards
in the cache if possible. Compared to GraphMat, GraphMP
could speed up PageRank on Twitter by a factor of 2.7 when
considering both data loading and processing time.

Figure 7 shows the ratio of active vertices and the execution
time per iteration when running PageRank, SSSP and WCC
on the Twitter dataset with GraphMat and GraphMP. If we
do not consider the data loading overhead, GraphMP can
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Fig. 8: The execution time of GraphChi, X-Stream, GridGraph and GraphMP to run PageRank on Twitter, UK-2007, UK-2014 and EU-2015.
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Fig. 9: The execution time of GraphChi, X-Stream, GridGraph and GraphMP to run SSSP on Twitter, UK-2007, UK-2014 and EU-2015.
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Fig. 10: The execution time of GraphChi, X-Stream, GridGraph and GraphMP to run WCC on Twitter, UK-2007, UK-2014 and EU-2015.

outperform GraphMat for PageRank, and GraphMat outper-
forms GraphMP for SSSP and WCC, since GraphMP em-
ploys many sparse linear algebra techniques to improve the
performance of SpMV. Specifically, GraphMat takes 28s to
run PageRank, and GraphMP uses 22s. For SSSP, GraphMat
uses 1.3s, while GraphMP needs 9.9s. The corresponding
values of WCC for GraphMat and GraphMP are 1.5s and 2.1s,
respectively. However, running times without loading times are
in seconds, which do not really matter. When considering the
combined running time, GraphMP could provide much higher
performance than GraphMat for all three applications.

C. GraphMP vs. GraphChi, X-Stream and GridGraph

In this set of experiments, we compare the performance
of GraphMP with three out-of-core graph processing systems:
GraphChi, X-Stream and GridGraph. We do not use VENUS,
since it is not open source. We run PageRank, SSSP and WCC
on Twitter, UK-2007, UK-2014 and EU-2015, and record their
processing time of 10 iterations and memory usage. To see the
effect of GraphMP’s compressed cache mechanism, we disable
it in GraphMP-NC, enable it in GraphMP-C, and measure their
performance separately. For fair comparison and simplicity, the
first iteration’s execution time of each application includes the
data loading time.

TABLE III: Performance speedup ratios compared to GraphMP-C.

Dataset GraphChi X-Stream GridGraph GraphMP-NC

Pa
ge

R
an

k Twitter 11.0 33.8 4.1 1.1
UK-2007 6.4 51.1 2.6 1.0
UK-2014 15.7 47.6 22.8 6.8
EU-2015 12.5 54.5 23.1 7.4

SS
SP

Twitter 39.9 15.0 28.4 1.2
UK-2007 27.4 13.3 15.5 1.1
UK-2014 22.6 24.3 17.7 9.1
EU-2015 31.6 28.8 10.0 6.3

W
C

C

Twitter 37.8 21.5 28.3 1.1
UK-2007 21.7 41.6 12.6 1.0
UK-2014 21.7 55.6 18.0 6.0
EU-2015 28.0 48.8 15.5 6.2

Figure 8, 9 and 10 show the execution time of each
iteration with different systems, datasets and applications. We
could observe that GraphMP can considerably improve the
graph processing performance, especially when dealing with
big graphs. Table III shows the detail speedup ratios. The
performance gain comes from three contributions: the VSW
model, selective scheduling, and compressed edge caching.

When running PageRank on EU-2015, GraphMP-NC could
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(d) EU-2015

Fig. 11: Memory usage of 5 graph processing systems to run PageRank on
Twitter, UK-2007, UK-2014 and EU-2015. We disable the compressed cache
mechanism in GraphMP-NC, and enable it in GraphMP-C.

outperform GraphChi, X-Steam and GridGraph by 1.7x, 7.3x
and 3.1x, respectively. If we enable compressed edge caching,
GraphMP-C further improves the processing performance by
a factor of 7.4. GraphMP-C could outperform GraphChi, X-
Steam and GridGraph by 12.5x, 54.5x and 23.1x to run
PageRank on EU-2015, respectively.

When running SSSP, only a small part of vertices may
update their values in an iteration. Thanks to the selective
scheduling mechanism, GraphMP-NC and GraphMP-C could
skip loading and processing inactive shards to reduce the
disk I/O overhead and processing time. For example, when
running SSSP on EU-2015 with GraphMP-NC and GraphMP-
C, the third iteration uses less time than others, since a lot of
shards are inactive. We observe that GridGraph also supports
selective scheduling, since it has less computation time in an
iteration with just a few of active vertices. When running SSSP
on EU-2015, GraphMP-NC could outperform GraphChi, X-
Steam and GridGraph by 5.0x, 4.6x and 1.6x, respectively. The
GraphMP’s compressed edge caching mechanism further re-
duces the processing time by a factor of 6.3. Thus, GraphMP-
C could outperform GraphChi, X-Steam and GridGraph by
31.6x, 28.8x and 10.0x to run SSSP on EU-2015, respectively.

When running WCC on EU-2015, GraphMP-NC could out-
perform GraphChi, X-Steam and GridGraph by 4.5x, 7.8x and
2.5x, respectively. This performance gain is due to the VSW
computation model with less disk I/O overhead. If we enable
compressed edge caching, GraphMP-C could further improve
the processing performance by a factor of 6.2. GraphMP-C
can outperform GraphChi, X-Steam and GridGraph by 28.0x,
48.8x and 15.5x to run WCC on EU-2015, respectively.

In Figure 11, we show the memory usage of each graph pro-
cessing system to run PageRank. We can see that GraphMP-
NC uses more memory than GraphChi, X-Stream and Grid-
Graph, since it keeps all source and destination vertices in
memory during the computation. For example, when running
PageRank on EU-2015, GraphChi, X-Stream and GridGraph

only use 10.65GB, 1.22GB and 1.35GB memory, respec-
tively. The corresponding value of GraphMP-NC is 23.53GB.
GraphChi, X-Stream and GridGraph are designed and opti-
mized for large-scale graph processing on a single common PC
rather than a commodity server or a cloud instance. Even if our
testbed has 128GB memory, these systems cannot efficiently
use them. If we enable compressed edge cache, GraphMP-C
uses 91.37GB memory to run PageRank on EU-2015. In this
case, GraphMP-C roughly uses 68GB as cache. Thanks to the
compression techniques and the compact data structure used
in GraphMP, GraphMP-C can store all 91.8 billion edges in
the cache system using 68GB memory. Thus, there are even
no disk accesses for edges during the computation after the
data loading phase. While GraphMP-C needs additional time
for shard decompression, it can still considerably improve the
processing performance due to the reduced disk I/O overhead.

V. CONCLUSION

In this paper, we tackle the challenge of big graph an-
alytics on a single commodity server. Existing out-of-core
approaches have poor processing performance due to the high
disk I/O overhead. To solve this problem, we propose a SEM
graph processing system named GraphMP, which maintains
all vertices in the main memory during the computation.
GraphMP partitions the input graph into shards, each of which
contains a similar number of edges. Edges with the same
destination vertex appear in the same shard. We use three
techniques to improve the graph processing performance by
reducing the disk I/O overhead. First, we design a vertex-
centric sliding window (VSW) computation model to avoid
reading and writing vertices on disk. Second, we propose se-
lective scheduling to skip loading and processing unnecessary
shards on disk. Third, we use compressed edge caching to
fully utilize the available memory resources to reduce the
amount of disk accesses for edges. With these three techniques,
GraphMP could efficiently support big graph analytics on a
single commodity machine. Extensive evaluations show that
GraphH could outperform GraphChi, X-Stream and GridGraph
by up to 31.6x, 54.5x, and 23.1x, respectively.
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