
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

2-2019

FC2: Cloud-based cluster provisioning for distributed machine FC2: Cloud-based cluster provisioning for distributed machine

learning learning

Nguyen Binh Duong TA
Singapore Management University, donta@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Citation Citation
TA, Nguyen Binh Duong. FC2: Cloud-based cluster provisioning for distributed machine learning. (2019).
Cluster Computing. 22, (4), 1299-1315.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4763

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4763&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4763&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

FC2: cloud-based cluster provisioning for distributed machine learning

Ta Nguyen Binh Duong1

Received: 25 September 2018 / Revised: 13 January 2019 / Accepted: 25 January 2019 / Published online: 8 February 2019
� Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Training large, complex machine learning models such as deep neural networks with big data requires powerful computing

clusters, which are costly to acquire, use and maintain. As a result, many machine learning researchers turn to cloud

computing services for on-demand and elastic resource provisioning capabilities. Two issues have arisen from this trend:

(1) if not configured properly, training models on cloud-based clusters could incur significant cost and time, and (2) many

researchers in machine learning tend to focus more on model and algorithm development, so they may not have the time or

skills to deal with system setup, resource selection and configuration. In this work, we propose and implement FC2: a

system for fast, convenient and cost-effective distributed machine learning over public cloud resources. Central to the

effectiveness of FC2 is the ability to recommend an appropriate resource configuration in terms of cost and execution time

for a given model training task. Our approach differs from previous work in that it does not need to manually analyze the

code and dataset of the training task in advance. The recommended resource configuration can then be deployed and

managed automatically by FC2 until the training task is completed. We have conducted extensive experiments with an

implementation of FC2, using real-world deep neural network models and datasets. The results demonstrate the effec-

tiveness of our approach, which could produce cost saving of up to 80% while maintaining similar training performance

compared to much more expensive resource configurations.

Keywords Distributed machine learning � Cloud-based clusters � Resource recommendation � Cluster deployment

1 Introduction

In machine learning (ML), we aim to learn models from

training data, and use them to make predictions on new

data. A ML model has to be trained with data first before it

can be used. Training ML models such as deep neural

networks [1] with large amounts of data is an iterative task

which requires high performance, distributed computing

infrastructure to reduce the training time, which could be

several days or weeks on a single system. Fast, resource-

efficient ML model training is an important problem as

such tasks would be repeated many times for fine-tuning of

model’s parameters; and users usually have budget con-

straints in terms of computational resource cost. Public

cloud resources, such as those provided by Amazon EC2,

Azure, etc., offer a compelling alternative to in-house

dedicated clusters, due to the on-demand, pay-as-you-go

pricing model and flexible, seemingly unlimited resource

capacity.

Optimizing resource cost and performance for cloud-

based distributed ML is challenging due to several reasons:

(1) there are many possible configurations which could

produce drastically different execution times, e.g., number

workers or parameter servers [2], network latency and

bandwidth, dataset or model partitioning strategies, model-

specific parameters such as number of neurons and their

connectivity, etc.; (2) most cloud providers offer a wide

range of resource types with varying levels of performance

and pricing; and (3) training large ML models with lots of

data is compute-intensive and time-consuming. Indeed,

ML researchers often find that setting up and maintaining a

distributed computing cluster a hassle which takes away

precious time from their core research activities [3].

Till date, not much research has been done to effectively

bridge the gap between machine learning and distributed

& Ta Nguyen Binh Duong

donta@ntu.edu.sg

1 School of Computer Science and Engineering, Nanyang

Technological University, Singapore 639798, Singapore

123

Cluster Computing (2019) 22:1299–1315
https://doi.org/10.1007/s10586-019-02912-6(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2882-2837
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02912-6&domain=pdf
https://doi.org/10.1007/s10586-019-02912-6

cloud computing. Most current setups require significant

domain expertise and manual system tuning to achieve a

desirable cluster configuration, which could be sub-opti-

mal: recent work [4] demonstrated that a good configura-

tion can be 20x faster in distributed model training

compared to a sub-optimal configuration, while producing

similar accuracy for the output models. Such performance

gap could be much more for larger-scale setups. As ML

model training may take days and be repeated many times

to find a good set of hyper-parameters and neural network

architectures, empirically exploring many possible cluster

configurations is simply not practical.

Recently, cloud-based ML services such as Amazon

Machine Learning [5] or Azure ML Studio [6] have been

popularized. Such services offer intuitive interfaces, simple

built-in ML models and algorithms for laymen to quickly

harness the power of ML and big data. However, in these

services, optimizing resource cost and performance with

regard to distributed training still requires much manual

effort. Popular ML packages like MXNet [7], TensorFlow

[8], etc., focus on providing programming supports and

leave tedious system management issues for end users to

handle.

In this work, we investigate resource recommendation

techniques to efficiently handle distributed ML model

training over public cloud infrastructures. We propose FC2

(Fast, Convenient, and Cost-effective), a system designed

to handle complexity and heterogeneity inherent in public

cloud resources; while providing a simple web-based

interface for ML researchers and laymen to train complex,

distributed ML models quickly and cost-effectively. We

have made the following contributions in this paper:

– We consider the problem of distributed ML training

over cloud resource. We then develop a simple but

effective resource recommendation algorithm which

can suggest a good cluster setup to reduce the training

time and cost for a given ML model and dataset. Our

approach is different from previous work in this area in

that it does not need to manually analyze complex ML

code and dataset to estimate the potential training time.

Instead, we only make use of resource information and

the scalability properties of a ML task to suggest an

appropriate cluster setup.

– We develop an easy to use web/mobile interface for

supporting simple cloud-based distributed ML model

training. Users only have to upload their code, specify

URLs to training datasets; and the appropriate resource

selection, system configuration and deployment will be

carried out by FC2 automatically.

– We conduct extensive experiments with real-world

deep neural network models and datasets to validate the

effectiveness of our proposed approach. The results

demonstrated significant cost savings of up to 80%,

while maintaining similar levels of training perfor-

mance in terms of execution time, compared to more

expensive resource configurations.

We continue this paper with a thorough review of related

work in Sect. 2. Sections 3 and 4 discuss the objective and

approach of this study. Sections 5 and 6 detail the core of

FC2: the resource recommendation algorithms and their

implementation. Sections 7 and 8 describe our evaluation

methodology, experimental results and analysis. Section 9

concludes the paper.

2 Related work

2.1 Overview of distributed machine learning

Recently, ML models like deep neural networks have had

great success in many challenging artificial intelligence

problems such as speech/image/video recognition

[1, 9–12], image segmentation [13], machine translation

[14], or even playing complex games such as Go [15]. To

be effective, these ML models need large amounts of data,

as evidence suggested that model accuracy improves with

regard to the increasing sizes of models and training data.

For example, millions of labelled images were used to train

neural networks having billions of connections resulting in

very high recognition accuracy [16, 17]. In [18], hundred

thousands of video clips [19] have been used to recognize

many classes of human actions. AlphaGo [15] was able to

beat world-class players using training data consisting of

more than 100,000 recorded games played by human

experts.

Usually, a distributed computing infrastructure is

required to handle such large-scale model training to

achieve a reasonable completion time, which could take

days. This has led to the development of a few distributed

ML frameworks, for example TensorFlow [8], SINGA

[20], MXNet [7], Petuum [21], etc. Such frameworks are

mostly based on the parameter server paradigm, in which

data or model are partitioned/replicated across a set of

worker nodes. A number of parameter servers are in charge

of maintaining the global state of model’s parameters.

Distributed ML models are usually trained iteratively using

stochastic gradient descent (SGD), in which workers need

to exchange newly computed gradients via the set of

parameter servers [2].

Existing ML frameworks focus more on providing

programming supports and libraries for the development of

new ML models and algorithms; and model-specific opti-

mization to improve accuracy and training time. ML

researchers still have to spend a considerable amount of

1300 Cluster Computing (2019) 22:1299–1315

123

time to setup and maintain systems, and to select an

appropriate configuration for training, such as the number

of workers/parameter servers and their corresponding

resource configurations [22]. Such decisions require sig-

nificant expertise in the domain of distributed systems,

which many ML researchers may not have, or simply do

not have enough time to investigate. As it is not cost-

effective to maintain a large, dedicated computing cluster

in most practical situations, on-demand cloud computing is

a suitable alternative [23]. However, resources offered by

public cloud providers are diverse in terms of pricing and

performance [24]. Budget constraint is also another issue as

cloud resources are not that cheap in the long run. For

instance, the on-demand price of an AWS EC2 p2.16xlarge

instance is more than $27 per hour (latest pricing as of

August 2018, Singapore region).

We have carried out extensive literature survey, and

found that not much research has been done in bridging the

gap between cloud-based distributed computing and scal-

able machine learning. In the following, we classify

existing research efforts into several categories. First, we

discuss work that directly addresses the issues of perfor-

mance prediction and automatic cluster deployment for

training large-scale ML models. Second, we look at

research dealing with performance optimization for ML

training tasks in distributed and cloud-based computing

clusters. Finally, we review currently popular cloud-based,

on demand ML services which provide friendly interfaces

and visual supports for laymen to train ML models.

2.2 Performance prediction and automatic
deployment for distributed ML model
training

In order to automatically provision a cluster of suit-

able machines for ML model training, we first need to

estimate the performance for each candidate cluster con-

figuration. Feng et al [4] presented one of the first studies in

the area of automatic cluster configurations for distributed

ML model training. The authors developed a scalability

optimizer which could automatically choose a good con-

figuration, i.e., number of workers and parameter servers,

for distributed ML training. To do so, the optimizer will

need to know the neural network architecture and other

model-specific parameters, which might not be always

available. Furthermore, this approach has been designed

considering local, dedicated clusters, which might have a

limited number of homogeneous nodes. However, cloud

resource configurations are diverse and much more varied

in terms of performance. Resource cost, which is a key

issue in cloud deployment and multi-user systems, were

also not taken into account [4]. The same authors [25]

considered cloud-based setups for ML. However, it was

more for fast ML model serving, not distributed model

training.

More recently, [3] proposed a method for estimating the

speedup ratio of distributed ML training which might be

achieved when more workers are added to the system. The

approach requires analyzing the ML code and calculating

the amount of floating computations/parameters that are

present in the model. It could be a challenging and time-

consuming process when complex ML code written by

unknown users are analyzed. Security and copyright rea-

sons may also make it not possible to do so. Furthermore,

the developed method was evaluated on Apache Spark

using a dedicated commodity cluster, not public cloud

resource.

Apache SINGA [20] is a distributed ML framework

which supports both synchronous and asynchronous ML

model training. It provides a number of built-in model

partitioning strategies so that finding a good training con-

figuration becomes somewhat easier, but still largely a

manual process. In addition, SINGA has not considered the

issues of resource cost optimisation.

Ako [22] is a recently proposed decentralized ML sys-

tem supporting distributed model training. It does without

parameter servers by having all nodes in the cluster as

worker processes. Workers compute gradients and

exchange partial updates directly with each other, subject

to bandwidth availability. Ako does not require resource

configuration decisions, i.e., one does not need to deter-

mine the appropriate number of workers and parameter

servers to fully utilize the cluster’s resource. Similarly,

Horovod [26], which has been developed recently at Uber,

lets workers communicate directly by organizing them in a

ring. These systems do not address the issues specific to

cloud-based deployments such as cost and selections of

various resource types.

The authors of [27] developed a performance model for

the distributed training of deep convolutional neural net-

works using asynchronous GPU computation with mini-

batch SGD. The model considers the batch sizes, neural

network architectures and worker specifications to predict

the execution time given a training dataset. Such prediction

can then be used to choose the fastest server configuration.

This model has been designed and empirically evaluated

with supercomputers consisting thousands of dedicated

GPUs in mind. The authors did not show how such model

would be applicable for performance prediction and auto-

matic configuration selection on public cloud resources.

There have been some research in the area of perfor-

mance prediction for applications running on public cloud

infrastructures. CloudProphet [28] focused on the problem

of selecting the best-performing cloud providers for a given

application. It aimed to predict an application’s perfor-

mance when running on a chosen cloud platform, without

Cluster Computing (2019) 22:1299–1315 1301

123

actual deployments due to cost or security concern. On the

other hand, empirical approaches including [29] evaluate

the application’s performance on actual cloud infrastruc-

tures, with the aim of developing automated methods to

deploy and test applications using synthetic workloads in

advance. RA2 [24] predicted the execution time of cloud-

based simulations via a data-driven approach. In [30], the

authors used a simulation-based algorithm to predict

application execution times with respect to cloud configu-

ration changes. In the most recent work [31], a classifier

has been developed to characterize the computing footprint

of an application, and then to match this application with

the right cloud resource. Although interesting and practical,

these existing approaches have been designed specifically

for web and other enterprise applications, not distributed

ML model training.

2.3 Performance optimization in distributed ML
clusters

Recent research have been focusing more on performance

optimization techniques for training large ML models, e.g.,

loose synchronization methods, data filtering, communi-

cation and job scheduling, etc. We review them here as

these techniques have a direct impact on training perfor-

mance and resource selection techniques in distributed ML.

In [32], distributed ML execution threads could use loose

synchronization models and stale shared data to reduce

network communication costs. In [33], we developed net-

work optimization techniques including parameter storage,

gradient and parameter filtering to reduce communication

overhead and improve training time in distributed ML

clusters. In [34], a dynamically-partitioned cluster man-

agement mechanism and an utilization-fairness optimizer

have been implemented. Empirical performance measure-

ments then demonstrated significant speed gains and better

resource utilization in ML training clusters.

In [35], the authors considered using only ternary gra-

dients, i.e., gradients that are quantized to ternary levels, to

reduce the overhead of network synchronization. This in

turn helps to accelerate distributed deep learning under data

parallelism. A performance model has also been developed

to study and demonstrate the scalability as well as speedups

of the proposed mechanism. Similarly, [36] proposed to use

just 1-bit SGD to minimize the communication overhead in

distributed training of speech recognition models. In [37],

investigations showed that most of the gradient exchange

in distributed SGD are redundant. The authors then pro-

posed a method called Deep Gradient Compression to

reduce the network bandwidth consumption in the ML

training cluster which is based on commodity Ethernet and

mobile devices.

In [38], a deep learning cluster scheduler named Opti-

mus has been proposed. The authors argued that existing

cluster schedulers have not been tailored to deep learning

jobs, preventing the cluster to achieve high resource effi-

ciency and performance at the same time. Optimus aims to

minimize ML task training time using online fitting tech-

niques to predict ML model convergence during training,

and to estimate training speeds with regard to resource

allocations. The performance predictions then will be used

to dynamically provision compute resources and place ML

tasks accordingly to reduce completion time.

We note that these techniques have been demonstrated

to reduce training time and improve resource utilization in

ML clusters. However, none of them have directly

addressed the issue of cloud-based cluster setups and

automatic deployment for ML model training. We believe

that our approach in this paper could nicely complement

existing performance optimization techniques in the public

cloud context.

2.4 Commercial cloud-based ML services

Due to the currently strong demand in easy-to-use data

science tools, multi-user cloud-based ML services have

been getting popular, e.g., those currently offered by

Amazon ML [5], Azure ML Studio [6], Google Cloud AI

[39], or BigML [40], to name a few. These services provide

user-friendly interfaces and built-in ML models which are

ready to be put into usage. Users can also make use of

distributed GPU/CPU training capability offered to speed

up the process of tuning hyper-parameter and model

architectures, at a cost. There have also been some supports

in deep learning cluster setup and management. For

instance, Amazon took a first step in the right direction by

introducing the Deep Learning AMI [41] early 2017, which

is a template for creating virtual machines pre-installed

with ML packages such as MXNet. Using the template,

users can create on-demand deep learning clusters more

easily via AWS CloudFormation [42].

We note that existing cloud-based ML services still do

not really provide much controls and optimizations for

distributed ML model training, especially in the case of

budget-conscious users. In particular, the question of how

to configure the appropriate sets of workers/parameter

servers remains open. Well-known ML frameworks, e.g.,

MXNet [7], Petuum [21], TensorFlow [8], etc., provide

excellent libraries, programming models, and ML model-

specific optimisations, but they do not deal directly with

distributed system setup and management issues.

1302 Cluster Computing (2019) 22:1299–1315

123

3 Objective and scope

The wide variety of resource configurations, their perfor-

mance levels and prices offered by public clouds provides

the much-needed flexibility for end users running various

applications and workloads. At the same time, this also

creates difficult issues with regard to resource selection and

cost management. It is well-known that ML model training

needs to be done repeatedly to obtain good hyper-param-

eters such as biases, learning rates, etc. This process is

intensive in terms of both cost and time [2]. Therefore, the

choice of a suitable resource configuration would poten-

tially yield significant improvements in training time, and

vice versa. As cloud resource is typically billed per unit of

time, a faster training time could translate to greater cost

saving.

In this work, our aim is to alleviate the problem of cloud

resource selection and configuration for distributed ML

training, so that ML researchers would be able to focus

solely on their ML model development tasks. We consider

the training of large ML models using stochastic gradient

descent (SGD) [43], which is the standard technique

applied to a wide variety of models such as logistic

regression or deep learning networks [16]. In gradient

descent, a cost function computed using the ML model’s

parameters and the training data is iteratively optimized.

To speed up the training, usually a data-parallel approach1

is employed: the training dataset is partitioned over a

cluster of worker nodes. Each of the node computes the

gradients in parallel, and the results are aggregated at one

or more server nodes which are referred to as parameter

servers (PS) [44]. These servers maintain the ML model’s

parameters and broadcasts the latest values to all workers.

In this paper, we consider ML training clusters com-

posed of virtual machines (VMs) acquired on-demand from

public IaaS cloud providers such as AWS EC2. The

objective of this work is then two-fold:

(1) We investigate cloud resource recommendation

algorithms for training arbitrary ML models and

datasets using the PS framework so that both training

time and cost could be minimized.

(2) We develop an easy-to-use system to support auto-

matic resource configuration, deployment and exe-

cution for distributed ML model training over public

cloud resources.

4 The FC2 approach to distributed machine
learning

In this section, we describe our approach to convenient

and cost-efficient distributed ML model training over

resource acquired from public IaaS clouds. We start with

describing the architecture of the web-based ML system. In

the next section, we follow with the resource recommen-

dation algorithms which constitute the core of our system.

Figure 1 shows the architecture and various components

in our proposed system.

4.1 Web/mobile interface

The FC2 system provides an easy to use interface so ML

researchers can focus solely on their model and algorithm

development. ML code could simply be packaged (e.g., in

a Python wheel bundle) and uploaded via the web inter-

face. Training data could also be uploaded or specified

using external URLs. The user then can move on to specify

his/her budget for the model training process; or rely on the

resource recommendation algorithms to suggest an appro-

priate cluster setup to run the training. The ML model

training could then be submitted; and results would be

made available on the web interface for users to download.

Trained models could also be deployed, e.g., via Ten-

sorFlow Serving, to service online classification/regression

requests. Figure 2 illustrates a typical model training

workflow in FC2.

1 Model-parallel is another approach to speed up the training, which

is beyond the scope of this paper.

Fig. 1 An architectural overview of FC2. The system supports fast,

easy ML model training with a budget in mind

Cluster Computing (2019) 22:1299–1315 1303

123

4.2 Recommender

The resource recommendation component aims to predict

the most appropriate cluster setup to run a particular ML

model training, given the model code and dataset specified

by users. It takes input from a database which stores

empirical performance data obtained from past executions.

In Sect. 5, we define the resource recommendation prob-

lem, and describe several heuristic algorithms which have

been implemented in our system. The recommended cluster

configuration contains information such as cloud instance

types, number of workers, selection of parameter servers,

etc.

4.3 Provisioner

This component takes a cluster configuration from the

Recommender, connects to a public cloud provider and

provision the required resource. It will also automate var-

ious tasks in cluster setup for distributed ML training such

as network or data storage configuration so that a ML

researcher does not have to do this manually.

4.4 Monitor

This component is responsible for monitoring ML task

executions and the status, e.g., network bandwith and CPU/

GPU utilization, of the cluster provisioned for each training

task. It also collects empirical performance data which

could be necessary for the resource recommendation

algorithms.

5 Resource recommendation

5.1 Problem definition

The resource recommendation problem is defined as

follow. Given an indicative budget C, find a cluster setup

consisting of parameter servers and workers so that the

model training cost and/or time would be minimized. For

simplicity, we consider cluster setups which use a single

parameter server and the same cloud instance type for

workers. Such setups are actually quite popular for data-

parallel ML training [3].

The resource recommendation stated above is a chal-

lenging problem. Given a ML training problem (model

code and dataset), there is a large number of potential

cluster setups due to various cloud resource types, their

performance levels and pricing offered by public cloud

providers like AWS EC2. Each combination of resource

types in a computing cluster may produce drastically dif-

ferent training time, or model accuracy. In addition, due to

model and code complexity, it is difficult to derive the

expected training time of a given ML model beforehand

[4]. Therefore, searching for an optimal configuration

which could minimize both resource cost and training time

might not be possible due to time and budget limitation.

In the following sections, we describe several heuristics

which aim to suggest a suitable cluster configuration

quickly and efficiently. Our proposed algorithms are dif-

ferent from previous work such as [3] in that they do not

need to analyze the code and dataset of the ML training

task in advance, which could be a complex and time-con-

suming task. Instead, our algorithms are resource-aware, in

the sense that they make use of resource information and

previous empirical performance data to suggest a cluster

setup.

5.2 Algorithms

We adopt a two-stage approach in recommending a cluster

configuration. In the first stage, the parameter server for the

training cluster will be selected. In the next stage, the

algorithms will then recommend the appropriate instance

type and the number of workers in the cluster.

5.2.1 Selecting the parameter server

FC2 provides a list of suitable instance types which can be

used as parameter servers. In distributed ML training, the

parameter server only needs to maintain and communicate

the model’s parameters, so a medium-sized general pur-

pose instance such as AWS EC2’s m4.large or m4.2xlarge

would be sufficient in many cases. Given the list Lp of

Fig. 2 A typical ML model training workflow in FC2. Users can

submit packaged code, specifying training datasets, providing infor-

mation such as budget, and submitting training tasks with recom-

mended cluster setups. Trained models will be available for

downloading from the web interface

1304 Cluster Computing (2019) 22:1299–1315

123

eligible instance types, users can manually specify the type

of parameter server depending on their budget. Otherwise,

the resource recommendation algorithms would pick one

with the largest network (bandwidth) capacity from the list.

5.2.2 Cost optimization (cost-opt)

This algorithm aims to minimize the total resource cost

when running ML training tasks. At first, FC2 automati-

cally provides a pre-defined list Lw of CPU or GPU

instance types which could be suitable for ML model

training. As a model-agnostic algorithm, Cost-Opt would

only make use of the resource pricing information to select

the cheapest cloud instance types for the execution. This

selection is subjected to the indicative per-hour budget

C which should be set by the user in advance. For example,

the user might specify that he is willing to spend around $2

per hour to train his ML model. Alternatively, a user can

also set a certain limit on the number of workers in the

training cluster. With a given budget C, Cost-Opt then

calculates the total number of workers needed as follow,

assuming the per-hour cost for the parameter server is cps:

The Cost-Opt Algorithm:

(1) Select the cheapest instance type t from Lw, and

obtain its per-hour cost ct.

(2) Calculate the number of workers needed for the

cluster: nt ¼ ðC � cpsÞ=ct.
The Cost-Opt algorithm mainly serves as a point of com-

parison with other algorithms. Cheaper instance types may

reduce the cost, but their potentially inferior performance

may prolong the training time, leading to more cost in the

end. However, our experiments demonstrate that in some

cases, cheaper instances could produce similar or even

better performance compared to the more expensive types.

5.2.3 Runtime optimization (time-opt)

This algorithm aims to minimize the total execution time

for a ML training task by selecting the most expensive

cloud instance type from a predefined list Lw for the exe-

cution. This selection is also subjected to an indicative per-

hour budget C, or a maximum number of workers which

should be set by the user in advance. Time-Opt calculates

the total number of workers needed using the below

algorithm if C is given:

The Time-Opt Algorithm:

(1) Select the most expensive instance type t from Lw,

and obtain its per-hour cost ct.

(2) Calculate the number of workers needed:

nt ¼ ðC � cpsÞ=ct.

At first, the Time-Opt algorithm may seem not very cost-

efficient. However, we note that current cloud billing

models are usually per unit of time e.g., hour or second. A

more expensive resource type, for example AWS EC2’s p2

or g3 instances which are GPU-based, would be able to

complete deep neural network training tasks, e.g., for

image recognition, much faster compared to cheaper

instances such as the CPU-based m4 instances. In this way,

the total cost of using more expensive workers may not be

more than that of a cluster composed of cheaper-priced

workers.

We also note that for both Cost-Opt and Time-Opt, the

user may also choose to specify a maximum number of

workers instead of an indicative budget. In this case, these

two algorithms would only need to look at the list of pre-

defined instance types L and select the cheapest or most

expensive type, respectively.

5.2.4 Scalability optimization (scala-opt)

In this algorithm, we find an optimized cluster configura-

tion by exploiting the scalability properties of a distributed

ML training setup based on the PS framework [2]. More

specifically, Scala-Opt estimates the number of workers

that should be deployed in a cluster using the network

bandwidth utilization of the given ML task. In order to do

this, Scala-Opt would need to collect some bandwidth

utilization data first by bench-marking the particular ML

task for a very short duration using the smallest cluster

setup available, e.g., a cluster with only one parameter

server and one worker. We note that such data collection

task may increase the overall cost and time of ML model

training. However, for training tasks that last days or

weeks, a few minutes of added time could be considered

negligible. Furthermore, a ML training task could be

repeated many times, while our algorithm may need to

collect the bandwidth utilization data only once. Such data

could also be stored for future usage with similar ML

training tasks.

For flexibility, we develop two versions of Scala-Opt. In

the first version, a user may have the option to manually

specify the instance type for workers. The algorithm will

then recommend a suitable number of workers for the

cluster. We refer to this version as Scala-Opt-M. In the

second version, users may leave both the tasks of choosing

instance type and number of workers for the algorithm. In

the following, we mainly describe the second version under

the name of Scala-Opt, with some notes applied for Scala-

Opt-M. We denote Lw as the list of all possible instance

types the user would like to consider as workers for his

task. We denote that the parameter server’s per-hour cost

as cps, and its bandwidth capacity as Bps. Scala-Opt then

Cluster Computing (2019) 22:1299–1315 1305

123

calculates the appropriate number of workers using the

below algorithm:

The Scala-Opt Algorithm:

(1) Remove the most expensive instance type t from the

list L, and estimate its bandwidth utilization bt (in

Mbps) for the given ML task. This step can be

skipped if bt is already available due to previous

runs.

In the Scala-Opt-M version, a user can select the

type of workers from the list L manually, so we can

skip this step.

(2) Calculate the number of workers: nt ¼ minfðBps

�pÞ=bt; ðC � cpsÞ=ctg, where 0\p\1.

(3) If nt is smaller than the currently chosen value,2

choose nt as the number of workers needed. Else,

repeat step (1) and (2) until all instance types in the

list have been considered.

In this algorithm, we consider all possible instance types

ordered according to their per-hour price. Step (2) calcu-

lates the number of workers for a given instance type t,

starting with the most expensive one, subject to an

indicative per-hour budget C and the bandwidth constraint

Bps. The parameter p, which could be set to a value close to

1, for example 0.8, is there to ensure that the bandwidth

capacity of the parameter server would not be close to

saturation by the workers’ aggregated bandwidth. Scala-

Opt considers the more expensive instances first since they

might have much better computation performance, espe-

cially for deep neural network training. Higher-performing

instances may generate more network traffic, i.e., higher

values for the bandwidth utilization bt, which in turn would

reduce the number of workers calculated by this algorithm.

However, there might be cases in which slightly cheaper

instances could perform better. The algorithm accounts for

that in Step (3), which aims to choose the smallest number

of workers for a given indicative budget.

6 System implementation

We implement the FC2 system described above using a

mix of open-source tools and frameworks. The web inter-

face has a responsive design, and has been implemented

using Python/Django. Boto33 and Paramiko4 are used for

interfacing with AWS EC2 and to control cloud instances

with SSH. Subprocess5 is used to run ML tasks so that the

system can employ some status monitoring mechanisms.

When the ML training task is completed, a Python script

will trigger an HTTP request from the task’s cluster to

update the web interface. Nethogs6 is used to carry out

bandwidth utilization measurements when running ML

tasks for the first time using the Scala-Opt resrouce rec-

ommendation algorithm.

The system currently supports some of the most popular

ML frameworks such as TensorFlow, MXNet and Apache

Spark MLlib. In Fig. 3, users can upload the code for his

ML model training in a Python wheel bundle, specifying

the main script to be executed. They can then move on with

supplying the training dataset, which could be a built-in

one,7 or via an external URL (Fig. 4). Figure 5 illustrates

how a user can choose the computing resource manually or

use system-recommended configurations.

7 Evaluation methodology

In this section, we describe the methodology used to

evaluate the effectiveness of our proposed resource rec-

ommendation algorithms. The algorithms have been

implemented into our FC2 system.

7.1 ML model and dataset

Due to a limited budget for cloud resource, and the need to

repeat the experiments many times to obtain reliable

results, we mainly use the popular CIFAR-10 dataset which

is available online at [45], and the TensorFlow ML

framework to carry out the experiments. The CIFAR-10

dataset is a collection of small images which are frequently

used to train or evaluate ML and computer vision algo-

rithms. The dataset has 60000 colour images which are

classified into 10 classes. 50000 images are used for

training, and the rest are test images.

The ML model used in the experiments is a deep neural

network consisting of convolution and non-linear layers,

followed by fully connected layers, and a softmax classi-

fier.8 The model has more than a million of learnable

parameters. In a distributed setting, the batch size which is

the number of images processed in each time step might

greatly affect the amount of computation a worker would

have to carry out, as well as the network bandwidth uti-

lization. In our experiments, we test several different batch

sizes, e.g., 128, 512 and 1280, to evaluate its effect on the

performance of our resource recommendation algorithms.

2 nt should be initialized to a very large value.
3 https://github.com/boto/boto3.
4 http://www.paramiko.org
5 https://pymotw.com/2/subprocess.

6 https://github.com/raboof/nethogs.
7 FC2 provides a number of the most popular training datasets via

AWS Elastic File System.
8 https://code.google.com/archive/p/cuda-convnet.

1306 Cluster Computing (2019) 22:1299–1315

123

https://github.com/boto/boto3
http://www.paramiko.org
https://pymotw.com/2/subprocess
https://github.com/raboof/nethogs
https://code.google.com/archive/p/cuda-convnet

7.2 Instance types and pricing

AWS EC2 provides many instance types with varying

sizes and costs for different purposes. In our evaluation, we

use instance types and pricing from the Singapore region.

For parameter servers, we consider the general purpose m4

instances. Table 1 lists the prices and configurations for the

considered instance types. Note that in the table, EC2

Compute Unit (ECU) indicates the integer processing

power of an AWS EC2 instance. In distributed ML train-

ing, a parameter server is mainly used for aggregating

gradients computed by workers, and sending out the

updated model parameters. Therefore, CPU-based instan-

ces such as m4 would be sufficient. The larger configura-

tions, e.g., m4.10xlarge, tend to have much better network

performance9 at a significantly higher cost. Depending on

the user’s budget, an appropriate instance type could be

selected from the given list. To avoid network saturation at

the parameter server, we set the value p ¼ 0:95 in the

Scala-Opt algorithms.

For workers, a wide variety of EC2 instance types have

been considered, namely the general purpose m4 and t2

instances, the compute-optimized c4, the GPU-based p2

and g3. These have been widely used for ML workloads

and other enterprise applications. Table 2 lists the pricing

and configurations for various instance types considered for

workers in this paper. The t2 instances do not have a fixed

level of CPU performance (variable ECU).

Fig. 3 Specifying ML model code in FC2 with TensorFlow. The code

should be packaged into a Python wheel bundle

Fig. 4 Specifying training data in FC2 with TensorFlow. Users can

choose to use built-in datasets or an external URL pointint to their

own datasets

Fig. 5 Specifying computing resource for ML model training in FC2

with TensorFlow. Users can do it manually, or rely on the built-in

resource recommendation algorithms to setup the training cluster

9 EC2 only mentions that the network performance of these instance

types is classified as High. More information is available from https://

aws.amazon.com/ec2/instance-types/.

Cluster Computing (2019) 22:1299–1315 1307

123

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

8 Results and analysis

In this section, we report the experimental results using

various combinations of algorithms and configurations. We

first describe the results obtained with CPU-based instan-

ces, i.e., when users have limited budget. We then move on

to consider a mix of resource types ranging from cheap

CPU instances to the more expensive GPU-based instan-

ces. We also look at the effect of expensive parameter

servers having very high levels of network performance.

8.1 Using inexpensive CPU-based instances

For users with limited budget, they may want to opt for

lower-priced CPU-based instances such as m4, t2 or c4. In

this set of experiments, we consider only CPU-based

instances for the ML training cluster. We also use an

m4.large instance as the parameter server due to budget

reason. We do not use larger batch sizes such as 1280 as

such sizes would be too slow for CPU-based training. To

set the indicative budget C, we choose a limit of 6 workers

per cluster.10 Figures 6 and 7 show the performance in

terms of training time and cost for each algorithm,

respectively. We observe that Scala-Opt produces similar

training time to Time-Opt as shown in Fig. 6, albeit rec-

ommending smaller cluster sizes. More specifically, Scala-

Opt recommends 2 and 3 workers of the instance type

t2.xlarge for batch sizes of 64 and 128, respectively. At the

same time, Time-Opt chooses 6 workers of the type

m4.xlarge which is the more expensive instance type

compared to t2.xlarge. This is mainly because in our

experiments, the cheaper t2.xlarge instances provide better

computation performance compared to m4.xlarge. Figure 6

also demonstrates that Scala-Opt performs similarly in

temrs of training time to Cost-Opt, which selected 6

workers of the cheapest type c4.xlarge.

When comparing the resource cost, we observe that

Scala-Opt results in the lowest cost compared to the other

two algorithms. This is mainly because it chooses the

cheaper t2.xlarge instances and a smaller number of

workers. Figure 7 illustrates the cost savings. More

specifically, the cost reduction of Scala-Opt when com-

pared to Time-Opt is around 65% for the batch size of 64,

and around 40% for the batch size of 128. If we let users

choose instance type for workers manually, i.e., Scala-Opt-

M, the cost reduction would be around 15% (not shown in

Fig. 7) when m4.xlarge or c4.xlarge is selected.

Figure 8 and 9 provide a closer look at the training

performance for various CPU-only instance types and

cluster sizes. We observe that t2.xlarge, despite being

relatively inexpensive, has the best performance in terms of

training time. The figures also demonstrate that peak per-

formance has been obtained from clusters of 3–4 workers.

From that point, increasing the cluster size does not help

much as the parameter server’s network capacity has been

saturated. This explains the effectiveness of our Scala-Opt

approach, in which FC2 estimates the bandwidth con-

sumption of the ML task before actual training to limit the

cluster size accordingly. As a result, Scala-Opt can provide

comparable training time at a much lower resource cost.

Table 1 Pricing and configuration for EC2 instance types considered

for the parameter server

Instance type Cost ECU Mem. (GiB) Network

m4.large 0.125 6.5 8 Moderate

m4.2xlarge 0.5 26 32 High

m4.10xlarge 2.5 124.5 160 High

Table 2 Pricing and configuration for EC2 instance types considered

for workers

Instance type Cost ECU GPU Mem.

m4.xlarge 0.25 13 - 16

t2.xlarge 0.2336 Variable - 16

c4.xlarge 0.231 16 - 7.5

c4.8xlarge 1.848 132 - 60

p2.xlarge 1.718 12 1 61

g3.4xlarge 1.67 47 1 122

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

ru
nn

in
g
ti
m
e

64 128

Fig. 6 Comparing model training times between resource recom-

mendation algorithms (CPU-based instances only). We note that they

have quite similar performance with various batch sizes. Scala-Opt-M

(not shown here) also provides similar training times when users

manually select either m4.xlarge or c4.xlarge for the workers

10 Similar results have also been obtained for larger cluster sizes.

1308 Cluster Computing (2019) 22:1299–1315

123

8.2 Using a mix of GPU and CPU instances

In this set of experiments, we consider a list of several

instance types which could be used to run ML model

training, namely t2, m4, c4 and the GPU-based p2. Similar

to the above experiments, we assume the same instance

type for the parameter server, and a limit of 6 workers per

cluster. Figure 10 shows the execution time comparison

between the proposed algorithms with various batch sizes

used for training the neural network model. We observe

very similar performance in most cases for the two

algorithms Time-Opt and Scala-Opt. The Time-Opt algo-

rithm would recommend a cluster of 6 p2.xlarge instances,

which are the most expensive type in the list. On the other

hand, Scala-Opt makes use of the available bandwidth

information obtained via quick bench-marking to recom-

mend smaller cluster sizes. More specifically, Scala-Opt

recommends 2, 3 and 5 workers of the type p2.xlarge given

the batch sizes of 128, 512 and 1280 respectively.

Figure 11 confirms that larger cluster sizes do not nec-

essarily provide shorter training time. We note that for

smaller batch size, e.g., 128, the workers could complete

the computation faster. As a result, more data would be

exchanged with the parameter server to update the ML

model, leading to more bandwidth utilization. In the

experiments, we observe that when using p2.xlarge which

is GPU-based, a setup of more than 2 workers could easily

saturate the network capacity of the parameter server, with

a batch size of 128. Therefore, the Scala-Opt algorithm

would recommend only 2 workers in this case.11. When

using larger batch sizes such as 512 or 1280, the workers

would take more time for computation due to the larger

number of images in each batch. This would reduce net-

work bandwidth traffic in the cluster, thus more workers

could be used to speed up the computation without over-

loading the parameter server’s network interface. For the

largest batch size used in our experiments (1280), the

Scala-Opt algorithm recommends around 5 p2.xlarge

workers.

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

strategy

co
st

64 128

Fig. 7 Comparing resource cost incurred by each resource recom-

mendation algorithm (CPU-based instances only). We note that

Scala-Opt outperforms Time-Opt by as much as 65%. This is mainly

because Scala-Opt uses a smaller number of cheaper workers to

achieve similar training performance. For instance, when using a

batch size of 64, Scala-Opt uses only 2 t2.xlarge workers compared to

6 m4.xlarge workers in Time-Opt, and 6 c4.xlarge workers in Cost-

Opt

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

t2.xlarge m4.xlarge c4.xlarge

Fig. 8 Performance of CPU instances with various number of

workers, batch size of 64

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

t2.xlarge m4.xlarge c4.xlarge

Fig. 9 Performance of CPU instances with various number of

workers, batch size of 128

11 The parameter p in the Scala-Opt algorithms is set to 0.95 to avoid

bandwidth saturation at the parameter server, which has a capacity of

around 450Mbps.

Cluster Computing (2019) 22:1299–1315 1309

123

It is not a surprise that Cost-Opt, which selects the

cheapest instance type c4.xlarge, takes more time to

complete the training compared to the other two algo-

rithms. However, cheaper resource type does not neces-

sarily reduce the total cost, as shown in Fig. 12. This is

because a longer training time would lead to more cost; as

cloud resource is charged per unit of time. Figure 12 also

shows that the cost has been reduced significantly in Scala-

Opt as compared to Time-Opt. More specifically, when the

batch sizes are 128 and 512, the cost reductions are around

80% and 50%, respectively. This demonstrates the effec-

tiveness of Scala-Opt, which provides almost the same

level of training performance but with much less resource

cost.

8.3 Using only high-performance instances

In this section, we present the results obtained when run-

ning the resource recommendation algorithms using a set

of high-performance (and costly) instance types. This

scenario is applicable for users with relatively higher

budget. More specifically, we consider the following EC2

instance types: the GPU-based g3.4xlarge and p2.xlarge,

and the CPU-based c4.8xlarge. These instance types have

similar pricing as shown in Table 2. To handle these high-

performance workers, a parameter server of the type

m4.2xlarge which has a network capacity of around 1 Gpbs

is used. Other settings and parameters are the same as in

the previous experiments.

Figures 13 and 14 show the training time and cost of the

three algorithms, respectively. We observe that Cost-Opt

and Scala-Opt have quite similar performance in all cases,

while Time-Opt results in more time especially for the

larger batch size of 512. A closer look at Figs. 15 and 16

reveals the reason for such difference in training perfor-

mance. Despite being the cheapest among the three,

g3.4xlarge, which is a newer-generation instance type,

outperforms the other instances namely p2.xlarge and

c4.8xlarge. Scala-Opt has been able to make use of net-

work utilization information to recommend only 2 and 4

g3.4xlarge workers for the clusters with the respective

batch size of 128 and 512. As a result, while incurring less

cost, its performance is quite similar to that of Cost-Opt,

which uses 6 g3.4xlarge in all cases. We note that the

training performance (with batch size of 128, Fig. 15)

shows little improvement when increasing the cluster size

beyond 2 workers, due to network saturation at the

parameter server. The instance p2.xlarge has not been used

in all the algorithms as it is neither the most expensive nor

cheapest type. It also does not have the best performance

according to the pre-run network benchmarking.

When the batch size is set to 512, more computation will

be required per iteration. In this case, the gap in training

performance becomes more obvious, as shown in Fig. 16.

The most expensive instance type, c4.8xlarge, does not

really provide the same level of performance compared to

the other GPU-based instances. In the end, Time-Opt incurs

about 65% more cost compared to Scala-Opt, while pro-

ducing around 30% less training performance. This fact

demonstrates the effectiveness of our proposed approach,

and the importance of selecting the right resource type and

cluster size when training large ML models.

8.4 Using large-capacity parameter server

In this set of experiments, we investigate the effect of using

a parameter server with large network capacity on the

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

no
rm

al
iz
ed

ru
nt
im

e 128 512 1280

Fig. 10 Comparing execution times between resource recommenda-

tion algorithms. We note that Time-Opt and Scala-Opt have quite

similar performance with various batch sizes, while Cost-Opt results

in more time

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

128 512 1280

Fig. 11 Performance of p2.xlarge with various number of workers

and batch sizes

1310 Cluster Computing (2019) 22:1299–1315

123

proposed resource recommendation algorithms. More

specifically, we use the instance type m4.10xlarge as the

parameter server for all training clusters. This instance

provides about 10 Gpbs in network bandwidth. We use the

same high-performance instance types, i.e., g3.4xlarge,

p2.xlarge and c4.8xlarge, for the workers.

Figure 17 compares the training performance produced

by each recommendation algorithm. Regardless of the

parameter server’s capacity, we note that Time-Opt per-

forms worse than the other two, mainly due to the fact that

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

no
m
ar
liz

ed
co

st
128 512 1280

Fig. 12 Comparing resource cost incurred by each resource recom-

mendation algorithm. We note that Scala-Opt outperforms Time-Opt

by as much as 80%. The cost incurred by Cost-Opt is not as small as

expected due to the much longer training time

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

no
rm

al
iz
ed

ru
nt
im

e 128 512

Fig. 13 Comparing execution times between all resource recommen-

dation algorithms when using high-performance instances. We note

that Cost-Opt and Scala-Opt have quite similar performance with

various batch sizes, while Time-Opt results in more time for the larger

batch size of 512

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

no
m
al
iz
ed

co
st

128 512

Fig. 14 Comparing resource cost incurred by each resource recom-

mendation algorithm when using high-performance instances. We

note that Scala-Opt outperforms Time-Opt by as much as 65%. The

cost incurred by Cost-Opt is higher than that of Scala-Opt due to the

former recommending the maximum number of workers for the

training clusters

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

p2.xlarge g3.4xlarge c4.8xlarge

Fig. 15 Performance of high-performance instances with various

number of workers, batch size of 128

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

p2.xlarge g3.4xlarge c4.8xlarge

Fig. 16 Performance of high-performance instances with various

number of workers, batch size of 512

Cluster Computing (2019) 22:1299–1315 1311

123

c4.8xlarge, although expensive, is not the best at this kind

of ML model training tasks. The other thing is that Cost-

Opt and Scala-Opt have almost the same level of perfor-

mance. This is because they recommend the same resource

type and cluster size in this case. Here, it happens that the

highest performing instance type is also the cheapest one,

and this explains the similarity in performance between

Cost-Opt and Scala-Opt. This might not be the case all the

time. In the public cloud market where new resource types

are introduced and pricing adjusted quite frequently, we

believe that Scala-Opt should be the choice for consistently

recommending an appropriate cluster size and worker type

(Fig. 18).

Due to the larger network capacity, adding more

workers to the clusters (subjected to a pre-defined limit or

budget) seems to reduce the training time more compared

to the previous experiments, although the reduction get less

significant as the cluster size increases. Figures 19 and 20

illustrate this effect. All the resource recommendation

algorithms suggest the maximum size for the cluster.

Therefore, in Fig. 18, we observe that Cost-Opt and Scala-

Opt have similar cost, while Time-Opt incurs the most cost

due to the more expensive instance type coupled with

longer training time. We also note that while using a better

parameter server could make it easier for selecting the right

cluster size, the cost of such server would account for a

significant proportion in the users’ budget. In particular, the

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

no
rm

al
iz
ed

ru
nt
im

e 128 512

Fig. 17 Comparing execution times between all resource recommen-

dation algorithms when using a large-capacity parameter server, the

m4.10xlarge. We note that Cost-Opt and Scala-Opt have quite similar

performance with various batch sizes, while Time-Opt results in more

time for the larger batch size of 512

Cost-Opt Time-Opt Scala-Opt
0

0.5

1

1.5

algorithm

no
m
ar
liz

ed
co

st

128 512

Fig. 18 Comparing resource cost incurred by each resource recom-

mendation algorithm when using large-capacity parameter server. We

note that Scala-Opt and Cost-Opt outperform Time-Opt significantly

1 2 3 4 5

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

p2.xlarge g3.4xlarge c4.8xlarge

Fig. 19 Training performance when using large parameter server with

various number of workers, batch size of 128

1 2 3 4 5

0.2

0.4

0.6

0.8

1

number of workers

no
rm

al
iz
ed

ru
nt
im

e

p2.xlarge g3.4xlarge c4.8xlarge

Fig. 20 Training performance when using large parameter server with

various number of workers, batch size of 512

1312 Cluster Computing (2019) 22:1299–1315

123

m4.10xlarge costs about 5X more than m4.2xlarge which

has been used in the previous experiments.

8.5 Summary

The empirical results demonstrated that the Scala-Opt

algorithm could effectively make use of scalability prop-

erties such as network capacity of servers and bandwidth

utilization of distributed ML tasks to make simple but

efficient cluster configuration recommendations. We

highlight two key advantages of Scala-Opt:

(1) In most cases, Scala-Opt provides similar training

performance in terms of execution time compared to

the other two algorithms, namely Time-Opt and Cost-

Opt, but with much lower resource cost (up to 80%

cost reduction). The significant savings in resource

cost enable ML researchers to conduct more training

for fine-tuning of models and hyper-parameters.

(2) We also observe that Scala-Opt consistently works

well for a wide range of instance types used as

workers and parameter servers. In most practical

cases, it was able to select the lower cost but higher-

performing resource type given the diverse options

from public cloud providers. This feature is espe-

cially useful as in the current cloud computing

landscape, new resource types and pricing have been

introduced to the market very frequently. It is not

sufficient to just rely on hardware specifications and

pricing for automatic provisioning of ML clusters.

9 Conclusion

Public cloud services such as AWS EC2 provides various

resource configurations with different pricing and perfor-

mance levels, which make it difficult to select a suit-

able cluster setup to execute resource-intensive distributed

ML model training tasks. In addition, popular ML frame-

works such as TensorFlow or MXNet focus on program-

ming support and model development, and leave the job of

cluster configuration and deployment to end users. These

issues create a gap between scalable ML and distributed

computing research, which hinders the progress of ML

researchers who might not be familiar with distributed

system setup, or not willing to spend the time.

In this work, we have designed and developed FC2, an

easy-to-use web service which could automate the resource

provisioning, configuration and execution of distributed

ML training tasks. The core of our system is a set of

resource-aware recommendation algorithms which can

intelligently suggest appropriate cluster setups to run any

ML tasks without the need to analyze complex source

code, or making predictions on task running time in

advance. Our proposed Scala-Opt algorithm instead

leverages the scalability properties of a distributed ML

setup to recommend cost-effective and high-performing

cluster configurations. The experiments demonstrated that

Scala-Opt could achieve similar levels of performance

compared to much more expensive configurations. The cost

savings produced by Scala-Opt could be up to 80% as

demonstrated in our experiments. We are deploying the

FC2 system to serve end-user ML model training requests

in our organization.

Acknowledgements The research has been supported via the Aca-

demic Research Fund (AcRF) Tier 1 Grant RG121/15.

References

1. Chan, W., Jaitly, N., Le, Q., Vinyals, O.: Listen, attend and spell:

A neural network for large vocabulary conversational speech

recognition. In: 2016 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pp. 4960–4964.

IEEE (2016)

2. Li, M., Andersen, D.G., Park, J.W., Smola, A.J., Ahmed, A.,

Josifovski, V., Long, J., Shekita, E.J., Su, B.Y.: Scaling dis-

tributed machine learning with the parameter server. OSDI 14,
583–598 (2014)

3. Ulanov, A., Simanovsky, A., Marwah, M.: Modeling scalability

of distributed machine learning. In: 2017 IEEE 33rd International

Conference on Data Engineering (ICDE), pp. 1249–1254. IEEE

(2017)

4. Yan, F., Ruwase, O., He, Y., Chilimbi, T.: Performance modeling

and scalability optimization of distributed deep learning systems.

In: Proceedings of the 21th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining,

pp. 1355–1364. ACM (2015)

5. Amazon Machine Learning. https://aws.amazon.com/machine-

learning. August 2018

6. Microsoft Azure Machine Learning Studio. https://studio.azur

eml.net. August 2018

7. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T.,

Xu, B., Zhang, C., Zhang, Z.: Mxnet: A flexible and efficient

machine learning library for heterogeneous distributed systems.

arXiv preprint arXiv:1512.01274 (2015)

8. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,

Devin, M., Ghemawat, S., Irving, G., Isard, M.: Tensorflow: a

system for large-scale machine learning. OSDI 16, 265–283

(2016)

9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-

shick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional

architecture for fast feature embedding. In: Proceedings of the

22nd ACM international conference on Multimedia, pp. 675–678.

ACM (2014)

10. Chilimbi, T.M., Suzue, Y., Apacible, J., Kalyanaraman, K.:

Project adam: building an efficient and scalable deep learning

training system. OSDI 14, 571–582 (2014)

11. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M.,

Senior, A., Tucker, P., Yang, K., Le, Q.V., et al.: Large scale

Cluster Computing (2019) 22:1299–1315 1313

123

https://aws.amazon.com/machine-learning
https://aws.amazon.com/machine-learning
https://studio.azureml.net
https://studio.azureml.net
http://arxiv.org/abs/1512.01274

distributed deep networks. In: Advances in Neural Information

Processing Systems, pp. 1223–1231 (2012)

12. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolu-

tions for action recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 40(6), 1510–1517 (2018)

13. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille,

A.L.: Deeplab: semantic image segmentation with deep convo-

lutional nets, atrous convolution, and fully connected crfs. IEEE

Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

14. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: Opennmt:

Open-source toolkit for neural machine translation. arXiv pre-

print arXiv:1701.02810 (2017)

15. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van

Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneer-

shelvam, V., Lanctot, M.: Mastering the game of go with deep

neural networks and tree search. Nature 529(7587), 484–489

(2016)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. In: Advances in

Neural Information Processing Systems, pp. 1097–1105 (2012)

17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.:

Densely connected convolutional networks. In: CVPR, Vol. 1,

p. 3 (2017)

18. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new

model and the kinetics dataset. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

pp. 4724–4733. IEEE (2017)

19. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C.,

Vijayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P.,

et al.: The kinetics human action video dataset. arXiv preprint

arXiv:1705.06950 (2017)

20. Wang, W., Chen, G., Chen, H., Dinh, T.T.A., Gao, J., Ooi, B.C.,

Tan, K.L., Wang, S., Zhang, M.: Deep learning at scale and at

ease. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)

12(4s), 69 (2016)

21. Xing, E.P., Ho, Q., Dai, W., Kim, J.K., Wei, J., Lee, S., Zheng,

X., Xie, P., Kumar, A., Yu, Y.: Petuum: a new platform for

distributed machine learning on big data. IEEE Trans. Big Data

1(2), 49–67 (2015)

22. Watcharapichat, P., Morales, V.L., Fernandez, R.C., Pietzuch, P.:

Ako: Decentralised deep learning with partial gradient exchange.

In: Proceedings of the Seventh ACM Symposium on Cloud

Computing, pp. 84–97. ACM (2016)

23. Jonas, E., Pu, Q., Venkataraman, S., Stoica, I., Recht, B.: Occupy

the cloud: distributed computing for the 99%. In: Proceedings of

the 2017 Symposium on Cloud Computing, pp. 445–451. ACM

(2017)

24. Duong, T.N.B., Zhong, J., Cai, W., Li, Z., Zhou, S.: Ra2: Pre-

dicting simulation execution time for cloud-based design space

explorations. In: Proceedings of the 20th International Sympo-

sium on Distributed Simulation and Real-Time Applications,

pp. 120–127. IEEE Press (2016)

25. Yan, F., Ruwase, O., He, Y., Smirni, E.: Serf: efficient scheduling

for fast deep neural network serving via judicious parallelism. In:

SC16: International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, pp. 300–311. IEEE

(2016)

26. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed

deep learning in tensorflow. arXiv preprint arXiv:1802.05799

(2018)

27. Oyama, Y., Nomura, A., Sato, I., Nishimura, H., Tamatsu, Y.,

Matsuoka, S.: Predicting statistics of asynchronous SGD

parameters for a large-scale distributed deep learning system on

GPU supercomputers. In: 2016 IEEE International Conference on

Big Data (Big Data), pp. 66–75. IEEE (2016)

28. Li, A., Zong, X., Kandula, S., Yang, X., Zhang, M.: Cloud-

prophet: towards application performance prediction in cloud. In:

ACM SIGCOMM Computer Communication Review, vol. 41,

pp. 426–427. ACM (2011)

29. Cunha, M., Mendonça, N., Sampaio, A.: Cloud crawler: a

declarative performance evaluation environment for infrastruc-

ture-as-a-service clouds. Concurr. Comput. Pract. Exp. 29(1),
e3825 (2017)

30. Li, H.W., Wu, Y.S., Chen, Y.Y., Wang, C.M., Huang, Y.N.:

Application execution time prediction for effective cpu provi-

sioning in virtualization environment. IEEE Trans. Parallel Dis-

trib. Syst. 28(11), 3074–3088 (2017)

31. Evangelinou, A., Ciavotta, M., Ardagna, D., Kopaneli, A., Kou-

siouris, G., Varvarigou, T.: Enterprise applications cloud right-

sizing through a joint benchmarking and optimization approach.

Future Gener. Comput. Syst. 78, 102–114 (2018)

32. Cui, H., Cipar, J., Ho, Q., Kim, J.K., Lee, S., Kumar, A., Wei, J.,

Dai, W., Ganger, G.R., Gibbons, P.B., et al.: Exploiting bounded

staleness to speed up big data analytics. In: USENIX Annual

Technical Conference, pp. 37–48 (2014)

33. Sun, P., Wen, Y., Duong, T.N.B., Yan, S.: Timed dataflow:

Reducing communication overhead for distributed machine

learning systems. In: 2016 IEEE 22nd International Conference

on Parallel and Distributed Systems (ICPADS), pp. 1110–1117.

IEEE (2016)

34. Sun, P., Wen, Y., Ta, N.B.D., Yan, S.: Towards distributed

machine learning in shared clusters: a dynamically-partitioned

approach. In: 2017 IEEE International Conference on Smart

Computing (SMARTCOMP), pp. 1–6. IEEE (2017)

35. Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., Li, H.:

Terngrad: Ternary gradients to reduce communication in dis-

tributed deep learning. In: Advances in Neural Information Pro-

cessing Systems, pp. 1509–1519 (2017)

36. Seide, F., Fu, H., Droppo, J., Li, G., Yu, D.: 1-bit stochastic

gradient descent and its application to data-parallel distributed

training of speech DNNs. In: Fifteenth Annual Conference of the

International Speech Communication Association (2014)

37. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient

compression: reducing the communication bandwidth for dis-

tributed training. arXiv preprint arXiv:1712.01887 (2017)

38. Peng, Y., Bao, Y., Chen, Y., Wu, C., Guo, C.: Optimus: an

efficient dynamic resource scheduler for deep learning clusters.

In: Proceedings of the Thirteenth EuroSys Conference. ACM

(2018)

39. Google Cloud AI. https://cloud.google.com/products/ai. August

2018

40. BigML. https://bigml.com. August 2018

41. Amazon Deep Learning AMIs. https://aws.amazon.com/machine-

learning/amis. August 2018

42. AWS CloudFormation. https://aws.amazon.com/cloudformation.

August 2018

43. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A.,

Hellerstein, J.M.: Distributed graphlab: a framework for machine

learning and data mining in the cloud. Proc. VLDB Endow. 5(8),
716–727 (2012)

44. Li, M., Andersen, D.G., Smola, A.J., Yu, K.: Communication

efficient distributed machine learning with the parameter server.

In: Advances in Neural Information Processing Systems,

pp. 19–27 (2014)

1314 Cluster Computing (2019) 22:1299–1315

123

http://arxiv.org/abs/1701.02810
http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1712.01887
https://cloud.google.com/products/ai
https://bigml.com
https://aws.amazon.com/machine-learning/amis
https://aws.amazon.com/machine-learning/amis
https://aws.amazon.com/cloudformation

45. Krizhevsky, A., Hinton, G.: Learning multiple layers of features

from tiny images. Technical Report, University of Toronto (2009)

Ta Nguyen Binh Duong is cur-

rently a regular faculty (Lec-

turer) in the School of Computer

Science and Engineering

(SCSE), Nanyang Technologi-

cal University (NTU), Singa-

pore. He obtained his PhD in

Computer Science from NTU

Singapore. Previously, he was a

Research Scientist with

A*STAR Institute of High Per-

formance Computing, and a

Research Fellow with SCSE,

NTU and University College

Cork, Ireland. His main areas of

expertise include distributed computing, machine learning, distributed

simulations, and computer networking.

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cluster Computing (2019) 22:1299–1315 1315

123

	FC2: Cloud-based cluster provisioning for distributed machine learning
	Citation

	FC^{2}: cloud-based cluster provisioning for distributed machine learning
	Abstract
	Introduction
	Related work
	Overview of distributed machine learning
	Performance prediction and automatic deployment for distributed ML model training
	Performance optimization in distributed ML clusters
	Commercial cloud-based ML services

	Objective and scope
	The FC^2 approach to distributed machine learning
	Web/mobile interface
	Recommender
	Provisioner
	Monitor

	Resource recommendation
	Problem definition
	Algorithms
	Selecting the parameter server
	Cost optimization (cost-opt)
	Runtime optimization (time-opt)
	Scalability optimization (scala-opt)

	System implementation
	Evaluation methodology
	ML model and dataset
	Instance types and pricing

	Results and analysis
	Using inexpensive CPU-based instances
	Using a mix of GPU and CPU instances
	Using only high-performance instances
	Using large-capacity parameter server
	Summary

	Conclusion
	Acknowledgements
	References

