
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2019 

Secure virtual machine placement in cloud data centers Secure virtual machine placement in cloud data centers 

Amit AGARWAL 

Nguyen Binh Duong TA 
Singapore Management University, donta@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Computer Engineering Commons, and the Software Engineering Commons 

Citation Citation 
AGARWAL, Amit and TA, Nguyen Binh Duong. Secure virtual machine placement in cloud data centers. 
(2019). Future Generation Computer Systems. 100, 210-222. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4762 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4762&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4762&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Future Generation Computer Systems 100 (2019) 210–222

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Secure virtualmachine placement in cloud data centers
Amit Agarwal a,∗, Ta Nguyen Binh Duong b

a BITS Pilani, Goa, India
b Nanyang Technological University, Singapore

h i g h l i g h t s

• New, realistic metrics defined for assessing secure VM placements.
• A new placement scheme having better security and resource-efficiency.
• User classification improves security in VM placement.

a r t i c l e i n f o

Article history:
Received 1 November 2018
Received in revised form 24 February 2019
Accepted 1 May 2019
Available online 21 May 2019

Keywords:
Data centers
Cloud security
Co-location attacks
Virtual machine placement

a b s t r a c t

Due to an increasing number of avenues for conducting cross-VM side-channel attacks, the security of
multi-tenant public IaaS cloud environments is a growing concern. These attacks allow an adversary
to steal private information from a target user whose VM instance is co-located with that of the
adversary. In this paper, we focus on secure VM placement algorithms which a cloud provider can
use for the automatic enforcement of security against such co-location based attacks. To do so, we
first establish a metric for evaluating and quantifying co-location security of multi-tenant public
IaaS clouds, and then propose a novel VM placement algorithm called ‘‘Previously Co-Located Users
First" which aims to reduce the probability of malicious VM co-location. Thereafter, we perform a
theoretical and empirical analysis of our proposed algorithm to evaluate its efficiency and security.
Our results, obtained using real-world cloud traces containing millions of VM requests and thousands
of actual users, indicate that the proposed algorithm provides a significant increase in the cloud’s
co-location resistance with little compromise in resource utilization, compared to existing approaches.
We also explore the potential for cloud providers to leverage passive cache monitoring techniques as
an additional security measure in order to automatically improve the co-location resistance provided
by general VM placement algorithms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the advent of multi-tenant public IaaS cloud computing
services, users can now request instances as per their specific
requirements on demand. This type of service has benefits for
both cloud users and cloud providers. For cloud users, it obviates
the need for them to buy and maintain their own computing
hardware. For cloud providers, it enables them to generate rev-
enue by efficiently renting out such services to the users. In IaaS
clouds, the service is provided in the form of Virtual Machines
(VMs) which are instantiated by the cloud provider to run on one
of many Physical Machines (PMs) that the cloud provider owns.
The assignment of these VMs to PMs is done by the cloud provider
using an appropriate placement algorithm. These algorithms are
usually designed with the aim of scheduling the incoming VM

∗ Corresponding author.
E-mail addresses: f20140403@goa.bits-pilani.ac.in (A. Agarwal),

donta@ntu.edu.sg (T.N.B. Duong).

requests on PMs in a way that maximizes the resource utilization
of the data center. The task of creating VMs and their resource
management is done using a hypervisor which runs on each PM.
The hypervisor multiplexes the resources (e.g. cores, memory
etc.) of a PM across multiple VMs which are running on that PM.
At the same time, it is the task of the hypervisor to ensure that a
strong isolation of shared resources is provided between different
VMs which are running on the same PM so that each VM’s private
content is inaccessible to other co-located VMs.

Although these multi-tenant public cloud computing environ-
ments have proved to be extremely useful in the industry, it has
its own caveats. The same strategy which allows a cloud provider
to efficiently rent out services, by multiplexing the shared phys-
ical infrastructure among multiple cloud users, also becomes
a breeding ground for a class of attacks known as co-location
attacks. These attacks exploit the shared nature of public cloud
infrastructure and enable a rogue VM to extract information from
other benign VMs which are running on the same PM using
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side-channels present in shared cloud resources (e.g. Last Level
Cache).

One of the most interesting works addressing such attacks in
multi-tenant public clouds was by Ristenpart et al. [1]. In this
work, the authors conducted a comprehensive empirical study
on the feasibility of such attacks in Amazon EC2 cloud services.
They demonstrated ways to (i) create a map of physical cloud
infrastructure using network probes (ii) determine whether two
VMs are co-located (resident on the same PM) (iii) launch VMs
with the aim of co-locating them with specific target VMs (iv)
extract data from co-located VMs using side-channel attacks.
Zhang et al. [2] demonstrated the feasibility of side-channel at-
tacks to extract critical data such as private keys. Wu et al. [3]
designed and implemented a high-bandwidth (over 700 bps)
covert channel by leveraging the use of memory bus.

In the light of such developments in side-channel attack vec-
tors and newly discovered vulnerabilities such as Meltdown [4]
and Spectre [5], it has become equally important to design new
defense measures which the cloud providers can use to combat
these attacks. It is important to note that an essential prerequisite
for any such attack is physical co-location, i.e. a malicious user
first needs to successfully co-locate his VM on the same PM as
that of a benign user’s VM. In a cloud environment, the assign-
ment of VMs to PMs is solely controlled by the cloud provider
using a placement strategy. The cloud provider can leverage such
a strategy to make placement decision which not only optimizes
the utilization of cloud resources but also guarantees some level
of security against such co-location based attacks. Also, as some of
the recent works have indicated [6–8], it might be possible for the
cloud provider to detect side-channel attacks in some scenarios.
This kind of detection capability can be leveraged by the cloud
provider to gain prior knowledge about the class of cloud users
(benign or malicious) based on their past activities and use that
information for automatically reinforcing the security provided
by placement algorithms. With this idea in mind, we make the
following contributions in this paper:

• We describe a metric called ‘‘Co-Location Resistance’’ for
evaluating and quantifying the security of multi-tenant pub-
lic IaaS cloud against co-location based attacks. The metric
is a generalization (to account for multiple cloud users) of a
metric earlier proposed by Azar et al. [9].
• We describe ‘‘Secure VM Placement’’ (SVP) problem hav-

ing dual-objective of maximizing co-location resistance and
resource utilization of the cloud and then propose a new
algorithm called ‘‘Previously Co-Located Users First’’ as a
possible solution to the SVP problem. This algorithm can be
utilized by cloud providers for the automatic enforcement
of security in multi-tenant public IaaS clouds.
• We theoretically analyze the expected co-location resistance

that is provided by our algorithm and compare it with the
empirically obtained results.
• We perform an extensive empirical analysis of our proposed

algorithm with other standard and secure placement algo-
rithms using the recently released trace of workloads from
Microsoft Azure [10].
• We explore the potential for cloud providers to leverage

passive cache monitoring techniques and binary classifiers
in order to improve the security provided by general VM
placement algorithms.

The rest of the paper is organized in the following manner:
Section 2 describes past works on combating co-location based
attacks. In Section 3, we state our assumptions and threat model,
define the evaluation metrics, and formulate the placement prob-
lem. We then describe our proposed VM placement algorithm

and perform a theoretical analysis in Section 4. In Section 5,
we present a comparative empirical analysis of our proposed
strategy and other placement algorithms. Finally, in Section 6,
we conclude the paper and provide some directions for future
research work.

2. Background and related work

Recent works [11,12] have focused on increasing the power-
efficiency and thereby reducing the operational cost of data
centers. However, the problem of increasing resource efficiency
while maintaining co-location security is still a major issue.
A straightforward way to mitigate side-channel and other co-
location based attacks is to allocate a dedicate PM to every cloud
user. Although this would nullify the chances of co-location based
attacks, it would also drastically affect the resource utilization of
a cloud data center. Allocating a dedicated PM for every cloud
user would result in a high number of idle cores on live PMs,
which in turn would significantly increase the energy cost of the
data center. Therefore, it is necessary to devise defense strategies
which can combat co-location based attacks without significantly
increasing the cost of running a data center.

In this section, we will review some of the defenses against
co-location based attacks that have been proposed over the years
and their respective pros and cons. Most of the ideas can be
broadly classified into two main categories: (i) Reducing infor-
mation leakage through existing side channels. (ii) Reducing the
probability of co-location of attackers with cloud users. We dis-
cuss the proposed solutions pertaining to each of the two stated
categories in the following subsections.

2.1. Reducing information leakage through existing side channels

The primary aim of the works falling in this category is to
modify the architecture (Hardware, OS, Hypervisor etc.) in a way
which either eliminates the side-channels or reduces the amount
of information leakage through the side channels. In [13], the
authors proposed to combat timing-based side-channels by mod-
ifying the RDTSC instruction which provides fine-grained timing
information on Xen-virtualized x86 machines.

Wang et al. [14] proposed a new cache architecture which
uses a security-aware cache replacement algorithm (SecRAND) to
combat side-channel attacks. Liu et al. [15] designed a random
fill cache architecture which, in addition to defending against
contention-based attacks (e.g. Prime-Probe, Evict-Time), also pro-
vides security against reuse-based attacks (eg. Flush–Reload,
Cache-Collision). Page [16] proposed the use of a configurable
partitioned cache architecture which can defend against side-
channel attacks by dynamically splitting the cache into protected
regions.

Wang et al. [17] proposed a secure virtual network embed-
ding scheme to combat information leakage through covert chan-
nels in a virtual-network environment. Li et al. [18] proposed
a hypervisor-based defense system which aims to obfuscate the
leaked timing information in IaaS clouds by using 3 replicas of
each guest VM and only permitting the observation of aggregate
timing information of these VMs. Varadarajan et al. [19] proposed
to defend against cache-based side channel attacks by reducing
the frequency of VM preemption which is controlled by the
hypervisor scheduler.

Zhang et al. [20] proposed a system which can defend against
side-channels by injecting noise into the cache and thereby ob-
fuscating the information leakage through timing-based side-
channels. Pattuk et al. [21] designed a system which prevents the
compromise of cryptographic keys in shared cloud environments
by partitioning the key across multiple VMs.
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2.2. Reducing the probability of co-location of attackers with cloud
users

The primary aim of the works falling in this category is to
design ways to prevent or reduce the probability of co-location
of a malicious user with a benign user. Establishing co-location
is a major pre-requisite for conducting side-channel (and other
co-location based) attacks. Therefore, a VM placement strategy
which avoids (or reduces) the probability of malicious co-location
would directly reduce the chances of a successful side-channel
attack. There are two different ways by which the probability of
co-location can be reduced: (i) by designing secure VM placement
algorithms (ii) by designing secure live VM migration strategies.

Azar et al. [9] proposed a formal model for the design and
analysis of secure placement algorithms and designed a random
VM placement strategy to reduce co-location probability. Han
et al. [22] proposed a game theoretic based model for com-
paring the security of different VM placement policies against
co-location attacks. In [23], they also proposed a new allocation
policy called Previously-selected-servers-first (PSSF) which aims
to reduce the probability of co-location by minimizing the spread
of user’s requested VMs.

Berrima et al. [24] proposed a placement algorithm which
aims to decrease the co-location rate by compromising the VM
startup time instead of resource optimization. Their strategy uses
a mixing queue of a predefined capacity where VM requests are
buffered. The actual placement begins only after the queue is full
by selecting a random VM from the queue and allocating it to a
physical server as per the optimization strategy.

Qiu et al. [25] proposed a Co-Residency-Resistant vm De-
ployment (CRRD) strategy based on custom defined threshold
parameters. Their strategy takes into account these threshold
parameters resulting in a policy of ‘‘first spread, later centralize
and the more VMs you create the more concentrate’’. Afoulki
et al. [26] proposed a secure placement policy by incorporating
a trust relationship among cloud users. Each user is given the
freedom to choose his own set of adversaries and this is taken
into account while making placement decisions.

Zhang et al. [27] proposed an incentive compatible VM mi-
gration strategy based on the moving target defense philosophy
to combat co-location based attacks. Moon et al. [28] proposed
a cloud provider assisted VM migration strategy to restrict co-
residency and limit the amount of information leakage due to
side-channel attacks.

2.3. Analysis of past approaches

Table 1 provides a high-level summary of the pros, cons and
possible improvements pertaining to past works. Most of the de-
fenses described in Section 2.1 suffer from two major limitations
which prevent them from being adopted in the current cloud
architectures: (i) They require major changes to the existing cloud
infrastructure including, but not limited to, hypervisor, guest OS
and physical hardware. (ii) They do not ensure security against
currently unknown side-channels.

Compared to hardware-based defenses described in
Section 2.1, the strategies described in Section 2.2 might be more
suitable and feasible to be adopted in cloud environments for
two main reasons: (i) unlike hardware based defenses, they do
not require major changes to existing cloud infrastructure, and
(ii) they are likely to be more resilient against arbitrary and cur-
rently unknown side-channel attacks. However, these solutions
also have some common shortcomings: (i) Modified placement
algorithms significantly affect the resource utilization of the cloud
data center. (ii) Migration-based defenses incur extra network
cost to the cloud provider. (iii) Most of the proposed strategies
have not been evaluated on real-world cloud workload dataset.

Also, it is worth noting that a central assumption in the earlier
works is that the cloud provider has no prior knowledge regard-
ing which users are malicious. We argue that this is rather a
strong assumption and it is indeed possible, in some scenarios,
to detect a malicious user based on his cache-based activities.
Zhang et al. [6] proposed ‘‘CloudRadar’’ as a system to detect side-
channel attacks by correlating the attacker’s anomalous cache
activities to a benign user’s cryptographic application activity.
They used signature-based detection schemes to identify a user’s
execution of some cryptographic application and anomaly-based
detection schemes to identify the abnormal cache activities of a
potential attacker. They also leveraged the use of hardware per-
formance counters, which is present in modern CPUs, to passively
collect and monitor the cache statistics of cloud users. Similarly,
Chiappetta et al. [29] described ways to utilize the information
from hardware performance counters coupled with techniques
such as correlation-based approach, anomaly detection, and su-
pervised learning to detect FLUSH+RELOAD based side-channel
attacks in real-time.

In [7], the authors used several types of classifiers, including,
but not limited to, Naive Bayes and Support Vector Machine.
These probabilistic classifiers were trained on input features rel-
evant for detecting side-channel attacks such as Branch misses,
LLC misses, LLC references, Unhalted core cycles, number of in-
structions etc. and were later used to classify an unknown activity
as either benign or malicious. In [8], the authors proposed a
method to construct the security profile of VMs by combining dif-
ferent parameters such as Internal vulnerability score, Intrusion
behavior score and Trust based score. The weighted average of
these scores was used to construct a Security Profile Score (SPS).
These mechanisms can be used by the cloud provider to proac-
tively monitor the activities of tenants and determine whether
a particular tenant is an attacker or not using a classification
system.

To address the shortcomings of prior works, we relax our
assumption to include the case where the cloud provider might
have some information about the category of users. We also
propose a co-location resistant placement algorithm called ‘‘Pre-
viously Co-Located Users First’’ with a dual-objective of max-
imizing both resource utilization and co-location security. An
extensive comparative analysis of the proposed algorithm and
existing placement algorithms has also been carried out using
the Azure cloud workload traces [10]. We also study the effect of
utilizing a classification system (for categorizing users as benign
or malicious) on the performance of VM placement algorithms.

3. Problem formulation

3.1. Assumptions and threat model

The Cloud Provider uses a suitable placement algorithm to
fulfill the incoming VM requests. Here we list down some of the
assumptions with respect to the capabilities of Cloud Provider
(CP):

• The CP may or may not have knowledge about the category
of users.
• The CP has no information about the future VM requests and

has to make placement decisions on VM requests as they
arrive.
• The CP has sole control over the assignment decisions of

VMs to PMs.
• The CP does not use any migration algorithm to re-locate an

already allocated VM. In other words, once a VM has been
assigned to a particular server, that VM is assumed to run
on only that server until the user terminates it.
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Table 1
Analysis of past approaches.
Category Advantages Limitations Possible improvements

Architecture specific defenses,
e.g., [13–21]

Effective in reducing
information leakage through
existing side channels by
modifying OS, cache,
hypervisor, network, etc.

Require major changes to the
existing cloud infrastructure
and do not ensure security
against currently unknown
side-channels.

Design of generalized
techniques which could handle
future side-channels while
requiring minimum
hardware/software
modifications.

VM placement based defenses,
e.g., [9,22–28]

Effective in reducing the
probability of malicious
co-location and are resilient
against arbitrary side-channels.

Affect the resource utilization
of the data center.
Migration-based defenses incur
extra network cost to the
cloud provider.

Utilization of VM cache
statistics to ensure greater
isolation from attackers while
ensuring high resource
utilization.

The aim of malicious users is to compromise the VMs be-
longing to benign users by conducting side-channel (or other
co-location based) attacks after a successful co-location. Here we
list down some of the assumptions with respect to the capabilities
of malicious users:

• Like all other cloud users, the malicious users are in sole
control of their own workload. They are free to decide the
timing, core-requirement and memory-requirement of their
VM requests.
• The malicious users have the ability to compromise a benign

user once their VM is co-located with that of a benign user
by leaking information through arbitrary side-channels.
• Multiple malicious users can coordinate among themselves

in order to compromise a particular benign user.

3.2. Notations

Here we list some of the notations to be used later in this
paper:

• N: Total number of cloud users
• Pm: Percentage of cloud users that are malicious
• Ui: A cloud user i
• Vi: A virtual machine instance i
• V c

i : Number of CPU cores occupied by Vi

• Vm
i : Amount of memory (in GB) occupied by Vi

• UVi : User who requested virtual machine instance i
• Pi: A physical machine instance i
• Pc

i : Number of CPU cores for Pi
• Users(Pi): Set of all users whose VM instances are resident

on Pi
• CoLocated(Ui): Set of all users which have been co-located

with a user Ui at least once
• lVi : Life-time of Vi which is the difference between the time

(in seconds) when Vi was requested and the time when it
was terminated
• lPi : Life-time of Pi which is the total time (in seconds) during

which Pi hosts at least one VM instance

3.3. Performance metrics

3.3.1. Core utilization (CU)
The standard metric used to evaluate Online Bin Packing algo-

rithms is the ‘‘Number of bins used’’. In [9], the authors explained
why the ‘‘Number of bins used’’ (‘‘Number of physical servers’’ in
our problem) is not an accurate metric for the Online VM assign-
ment problem. The reason, as pointed out by the authors, was
that ‘‘Number of bins used’’ does not capture the actual amount
of resources expended in an online VM assignment scenario. We

now restate the example used by the authors to explain the
specific reason.

Suppose there are two different VM placement algorithms —
P1 and P2. P1 turns on one PM every hour for a total duration of n
hours whereas P2 turns on n PMs in the first hour and then keeps
those servers on for n hours. In such a scenario, both algorithms
used the same number of physical servers to satisfy the incoming
VM requests but clearly the first algorithm P1 is more efficient
in terms of resource usage. Therefore, it is important to consider
the amount of time for which physical resources are being used
rather than just the quantity of the resources. Another reason
why ‘‘Number of bins used’’ is not an accurate metric is that it
does not account the fact that servers which were turned on at
some time-instant to accommodate the incoming VM requests
might be turned off once those VMs have been terminated. This
is because, in ‘‘Online Bin Packing’’ problem, it is assumed that
once an item has been packed in a bin, the item stays in that bin
and cannot depart. However, this is clearly not true in a cloud
environment.

In [30], the authors showed that the energy consumption by
the CPU cores in the PMs exceeds all the other resources. Keeping
this in mind, we argue that in an ideal scenario, all the CPU cores
of live PMs would be allocated to some live VM. However, because
of sub-optimal placement decisions made by the placement algo-
rithm and the termination of live VMs by the cloud users, it is
possible for some of the CPU cores in live PMs to remain idle.
Therefore, to evaluate the performance of different placement
algorithms with respect to resource usage, we use Core Utilization
as a metric. Core Utilization is the ratio of the total number of
cores used by each VM weighted by their respective lifetime to
the sum of total cores of each PM weighted by their respective
lifetime. Mathematically, we define the Core-Utilization CU as
follows:

CU =
∑

all V V C
× lV∑

all P PC × lP
(1)

Note that the CU value as indicated by (1) is a real value
ranging between 0 and 1. CU is 0 when all the PM cores are idle
and it becomes 1 when all the PM cores are being occupied by
VMs. Therefore, our aim would be to maximize CU . In our results,
we will indicate CU in the form of percentage.

3.3.2. Co-location resistance (CLR)
Currently, there is no standard metric to quantify the security

of a cloud data center with respect to co-location based attacks.
Azar et al. [9] introduced the idea of ‘‘Single CL-resistance’’ as a
metric to quantify the resistance of a cloud to co-location based
attacks. In ‘‘Single CL-resistance’’, the adversary is only interested
in co-locating his VM with at least one of the target VMs. There-
fore, if a malicious user is successful in co-locating his VMs with
at least one VM of a benign user, that benign user is assumed to
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be compromised. As stated in Section 3.1, we have assumed that
multiple malicious users in the cloud can coordinate their efforts
to compromise a benign user. Keeping this in mind, we define a
user as SAFE if none of his VM instances is co-located with that of
a malicious user throughout the VM placement process. We then
define the Co-Location Resistance (CLR) of the cloud as the ratio
of benign users who are SAFE to the total number of benign users.

CLR =
Total number of benign users who are SAFE

Total number of benign users
(2)

The CLR indicated by (2) can also be interpreted as the prob-
ability of a randomly chosen benign cloud user to be SAFE. Also,
note that the CLR value indicated by (2) is a real value ranging
between 0 and 1. CLR is 0 when all the benign users are UNSAFE.
On the other hand, if all the benign users are SAFE, the CLR be-
comes 1. Therefore, our aim would be to maximize the CLR value.
In our results, we will indicate CLR in the form of percentage.

We will now illustrate an example to explain the CLR met-
ric. Assume a cloud environment consisting of 4 benign users
(U1,U2,U3 and U4) and one malicious user (UA). Fig. 1 depicts
the assignment of VMs (belonging to different users) after the
placement phase is complete. We notice that the VMs belonging
to the malicious user UA have been allocated on Server-2 and
Server-3. On Server-2, the VMs of UA is co-located with a VM
belonging to a benign user U2. Similarly, on Server-3, the VM of UA
is co-located with 3 VMs belonging to a benign user U1. Therefore,
by our definition, all benign users except U2 and U1 are SAFE since
none of their VMs have been co-located with that of UA. Therefore,
the CLR in this scenario as per (2) would be 2

4 .

3.4. Problem statement

A multi-tenant public IaaS cloud service has N users in total.
The users belong to one of the two categories — benign or mali-
cious. The benign users are the normal cloud users who request
VM instances to utilize cloud resources for their computation.
The intent of malicious users is to compromise the benign users
who are using cloud services by using co-location based attacks.
The cloud provider may or may not have knowledge about the
category of users.

In such a cloud environment, VM requests of different resource
requirement arrive one-by-one. Each incoming VM request V be-
longs to a particular cloud user and is characterized by a specific
number of cores V c and memory Vm requirement. The Secure VM
Placement (SVP) problem is to assign these incoming VMs to the
available PMs in a way which maximizes both CU and CLR.

Note that the SVP problem is similar to the well known Online
Bin Packing problem (OBP) in that the items and bins in OBP
problem are equivalent to VMs and PMs respectively in the SVP
problem. The difference between OBP and SVP is that: OBP is a
single-objective optimization problem where the objective is to
minimize the number of bins used to pack the items. On the other
hand, SVP is dual-objective: in addition to minimizing the amount
of resources needed to satisfy the requirement of incoming VM
requests, we also need to minimize the probability of malicious
co-location.

3.5. Mathematical problem formulation

Given a set of s PMs: P1, P2, . . . ., Ps, each having a fixed core
Pc
i and memory capacity Pm

i , and a list of t incoming VMs:
V1, V2, . . . .., Vt , each belonging to a specific cloud user and char-
acterized by a specific number of cores V c

i and memory Vm
i

requirement, find an assignment of each Vi to a Pj in a way which:
Maximizes Core-Utilization (CU) given by Eq. (1),

Maximizes Co-Location Resistance (CLR) given by Eq. (2),
subject to
PM core constraint given by Eq. (3)

t∑
i=1

V c
i × xij ≤ Pc

j , ∀j ∈ {1, 2, ...., s} (3)

PM memory constraint given by Eq. (4)
t∑

i=1

Vm
i × xij ≤ Pm

j , ∀j ∈ {1, 2, ...., s} (4)

One VM to exactly one PM constraint given by Eq. (5)
s∑

j=1

xij = 1 , ∀ i ∈ {1, 2, ......, t} (5)

where xij = 1 if Vi is assigned to Pj, otherwise xij = 0

4. Proposed approach

4.1. Proposed algorithm

We now propose a placement algorithm called ‘‘Previously
Co-Located Users First’’ (PCUF ) with the aim of maximizing Core-
Utilization and Co-Location Resistance of the cloud. Algorithm 1
is invoked whenever a new VM request arrives. It takes as input
a VM Vi, a list of live PMs live_pms and a list of empty PMs
empty_pms. Ucurr represents the cloud user who requested Vi. We
now provide a brief description of the working of our algorithm.

Algorithm 1: Previously Co-Located Users First
Input : Vi, live_pms, empty_pms
Output: Assignment of Vi to a PM

1 Ucurr ← UVi ;
2 if Ucurr is not a new cloud user then
3 eligible_pms← all Pj ∈ live_pms s.t. Pj has enough

resources to host Vi and
Users(Pj) \ Ucurr ⊆ CoLocated(Ucurr );

4 if eligible_pms ̸= φ then
5 Pk ← PM from eligible_pms having least number of

free cores;
6 Assign Vi to Pk;
7 else
8 Pk ← PM from empty_pms;
9 Assign Vi to Pk;

10 Remove Pk from empty_pms and insert it into
live_pms;

11 end
12 else
13 eligible_pms← all Pj ∈ live_pms s.t. Pj has enough

resources to host Vi;
14 if eligible_pms ̸= φ then
15 Assign Vi to a random PM Pj ∈ eligible_pms;
16 else
17 Pk ← PM from empty_pms;
18 Assign Vi to Pk;
19 Remove Pk from empty_pms and insert it into

live_pms;
20 end
21 end

First we check whether the user Ucurr is a new cloud user or
not i.e. we check whether he has made any VM requests in the
past or not. If he is not a new cloud user, we construct a list of
eligible_pms by including all those PMs Pj from live_pms which
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Fig. 1. Allocation outcome of an arbitrary placement algorithm in which the malicious user (red) manages to co-locate his VMs with VMs belonging to benign users
U1 (orange) and U2 (green). Users U3 (blue) and U4 (violet) are SAFE as none of their VMs have been co-located with the malicious user. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

satisfy two conditions: (i) Pj has enough resources to host Vi,
and (ii) Users(Pj) \ Ucurr ⊆ CoLocated(Ucurr ) i.e. the users which
are currently resident on Pj are a subset of users whom Ucurr
has already been co-located with. If this eligible_pms list is non-
empty, we assign Vi to a PM belonging to eligible_pms which has
least number of free cores. Otherwise, if eligible_pms is empty, we
assign Vi to an empty PM Pk belonging to empty_pms.

On the other hand, if Ucurr is a new cloud user and has not
requested VM instances in the past, then we proceed as follows:
we construct a list of eligible_pms by including all those PMs
from live_pms which have enough resources to host Vi. If this
eligible_pms list is non-empty, we assign Vi to a random PM
belonging to eligible_pms. This random selection is done in order
to make it difficult for a malicious user to get co-located with
their intended target user. Otherwise, if eligible_pms is empty, we
assign Vi to an empty PM Pk belonging to empty_pms.

In essence, the algorithm gives preference to those PMs which
are currently hosting VMs belonging to the users who have al-
ready been co-located with Ucurr in the past. The reason for
choosing PMs in such a way is to limit the number of benign users
that a malicious user can be co-located with. We believe that
doing so would significantly affect the probability of a specific
cloud user to get co-located with an adversary.

4.2. Theoretical analysis of the proposed algorithm

4.2.1. Time and space complexity
Since Users(Pj) < Pc

j always (at least one core is assigned to a
user’s VM), a near-constant number of steps would be required
to check whether a particular PM Pj is eligible or not. There-
fore, the overall construction of eligible_pms list would require
O(|live_pms|) number of steps. If the VM belongs to a new cloud
user, the selection of a suitable PM from eligible_pms list requires
an additional O(1) steps (random selection), and O(|eligible_pms|)
steps (selecting PM having least number of free cores) other-
wise. As eligible_pms is always a subset of live_pms, the overall
time complexity of Algorithm 1 for allocating a single VM is
O(|live_pms|). During the allocation process, Algorithm 1 uses 3
lists — live_pms, empty_pms, and eligible_pms. Since eligible_pms
is always a subset of live_pms, the space complexity for allocating
a single VM is O(|live_pms| + |empty_pms|).

4.2.2. Expected Co-Location Resistance provided by PCUF algorithm
In this section, we will derive an expression for the expected

number of cloud users who will be SAFE at the end of the entire
VM placement phase assuming PCUF is used as the placement
algorithm. Consider a cloud data center consisting of N users out
of which Nm users are malicious and Nb users are benign. Let π

represent an arbitrary permutation sequence of these N cloud
users. The sequence of users in π represents the sequence in

which those cloud users make their first VM request to the cloud
provider. Without loss of generality, we will denote the ith user in
π as Ui. For e.g., if π = U1U2, it indicates that the timing of first
VM request of user labeled U1 precedes the timing of first VM
request made by the user labeled U2. We will associate a random
variable Xi with each user Ui such that:

Xi =

{
1 if Ui is benign and SAFE
0 otherwise

The expected number of benign users who will be SAFE is
calculated by summing up the probability that Xi = 1 over all
N cloud users and is indicated by (6).

E [ Users who are benign and SAFE ] =
N∑
i=1

P(Xi = 1) (6)

A user Ui can become co-located with another user Uj in 2
possible ways:

• If j < i i.e. user Uj is in-front of Ui in the sequence π , then Ui
can become co-located with Uj when Ui requests his first VM
instance. If Ui does not co-locate with the user Uj during Ui’s
first VM allocation, it is guaranteed by our algorithm that
future VM requests from Ui also will not be co-located with
Uj.
• If j > i i.e. user Uj is behind Ui in the sequence π , the Ui

can become co-located with Uj when Uj requests his first VM
instance. If Uj does not co-locate with the user Ui during Uj’s
first VM allocation, it is guaranteed by our algorithm that
future VM requests from Uj also will not be co-located with
Ui.

Having made the above observations, we can now calculate
the probability that a user Ui is benign and does not get co-located
with any malicious user throughout the allocation phase using
(7).

P(Xi = 1) = P(Ui is benign)
× P(Ui is not colocated with any malicious user

Uj| j < i and Ui is benign)
× P (No malicious user Uj gets colocated with

Ui; | j > i and Ui is benign)

(7)

We will now calculate the probability of each of the three
events (on the R.H.S) involved in (7).

• The probability that Ui is a benign user is simply the ratio
of the number of benign users to the total number of cloud
users and is indicated by (8).

P(Ui is benign) =
Nb

N
(8)
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• We will now calculate the probability that Ui does not get
co-located with a malicious user Uj who in front of Ui (j <
i) in the sequence π . To do so, we make the following
observation: whenever user Ui makes his first VM request,
the VM is either assigned to a random PM or a new PM
depending on whether enough resources are available. To
simplify our analysis, we will assume that a random incom-
ing new user would get co-located with k other users on an
average when his first VM is instantiated on a PM. Therefore,
the probability of Ui not co-locating with any malicious user
would be equal to the probability of that all k selected users
out of (i− 1) preceding users are benign. The probability of
this event happening is indicated by (9)

P(Ui is not colocated with any malicious user Uj| j < i and
Ui is benign)

=

(
Nb−1
N−1

)min(i−1, k)

(9)

• We will now calculate the probability that no malicious user
Uj, who is behind Ui (j > i) in the sequence π , gets co-
located with Ui. To do so, we will first state the probability
for a user Uj who is malicious, to get co-located with Ui in
(10).

P(Uj is malicious and Uj gets colocated with Ui; | j > i and
Ui is benign)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Nm
N−1 ; if (j− 1) ≤ k

Nm
N−1 ×

(
j− 2
k− 1

)
(
j− 1
k

) ; if (j− 1) ≥ k

= ( Nm
N−1 ×

min(j−1, k)
j−1 )

(10)

Now we can calculate the probability that no malicious user
Uj (j > i) gets co-located with benign user Ui in the following
way:

P (No malicious user Uj gets colocated with Ui; | j > i and
Ui is benign)

=
∏n

j=i+1

(
1 − P(Uj is malicious and Uj gets colocated with

Ui; | j > i and Ui is benign)
)

=
∏N

j=i+1

(
1 − Nm

N−1 ×
min(j−1, k)

j−1

)
(11)

By plugging (8), (9) and (11) into (7), we derive the probability
that a user Ui is benign and SAFE:

P(Xi = 1) = Nb
N ×

(
Nb−1
N−1

)min(i−1, k)

×
∏N

j=i+1

(
1 − Nm

N−1 ×
min(j−1, k)

j−1

) (12)

Finally, by plugging (12) into (6), the expected number of
benign users who will be SAFE can be summarized using (13):

E [ Users who are benign and SAFE ] =∑N
i=1

(Nb
N ×

(
Nb−1
N−1

)min(i−1, k)

×
∏N

j=i+1

(
1 − Nm

N−1 ×
min(j−1, k)

j−1

) ) (13)

Table 2
Azure Workload Statistics.

Characteristics Count

Workload duration 10 consecutive days
Total number of VMs 619846
Total number of subscriptions 1884
Maximum number of running VMs at any time instant 16990
Average lifetime of VMs 4.08 hrs

The Co-Location Resistance, as defined in Section 3.3.2, can
now be easily derived by dividing the expected number of benign
users who are SAFE to the total number of benign users. We call
this value as CLRtheoretical

pcuf which represents the expected fraction
of benign cloud users who will remain SAFE throughout the
VM placement phase (assuming PCUF is used as the placement
algorithm):

CLRtheoretical
pcuf =

1
N ×

∑N
i=1

( (Nb−1
N−1

)min(i−1, k)

×
∏N

j=i+1

(
1 − Nm

N−1 ×
min(j−1, k)

j−1

) ) (14)

Given the total number of cloud users (N), the percentage of
malicious users (Pm) and the average number of users that a user
gets co-located with during his first VM allocation (k), we can
estimate the CLR of our proposed PCUF strategy using (14). For
example, consider a cloud data center with N = 100, Pm = 10%
and k = 2. Using N and Pm, we find Nm =

Pm
100 × N = 10 and

Nb = N − Nm = 90. By plugging N , Nm, Nb and k into (14), we
find that our estimated CLR is 67.43%. In Section 5.4, we evaluate
the accuracy of our derived CLR by comparing it with empirical
results.

5. Results and analysis

5.1. Evaluation methodology

We have conducted our experiments on the Microsoft Azure
VM workload dataset that has been made public in 2017 by
Cortez et al. [10]. The dataset contains 2,013,767 VMs over a
period of 30 consecutive days. For our evaluation, we use a subset
of this dataset by including all the VMs that were created and
terminated between the 11th and 20th day of the 30 day period.
The results for other time intervals of the dataset are similar and
have not been presented in this paper due to space limitations.
Table 2 summarizes some statistics related to the dataset which
we have used for our evaluation.

The main features in the workload that are relevant for eval-
uating VM placement algorithms include VM id, Subscription id,
VM Start time, VM Stop time, VM core count and VM memory
(in GB). We map each subscription id to a unique cloud user
in our evaluation. In our experiments, it has been assumed that
all PMs have the same core and memory size — 32 cores and
224 GB respectively, which is equal to twice the configuration
of largest VM present in the dataset. Table 3 summarizes the
statistics related to VM core and memory configuration.

Unfortunately, the workload dataset has no information about
which subscriptions were used for conducting co-location based
attacks. Therefore, for our evaluation purpose, we randomly map
Pm% of the subscriptions to malicious users, while the rest of the
subscriptions are mapped to benign cloud users. After this, we
form a sequence of VM start and stop events, sort the events as
per their timestamp and then invoke VM placement algorithm for
each event sequentially. We repeat this for all the events and then
finally compute the CU and CLR of the cloud as per the equations
described in Section 3.3. We repeat each experiment 20 times
so that we can have a different set of malicious users for each
experiment. We then compute the average CU and CLR over all
20 experiments and use this average value as our final estimate.
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Table 3
Azure VM Instance Types.
VM cores VM memory (in GB) VM count

1 0.75 12119
1.75 280069
2 221

2 3.5 163702
4 80
14 61
16 6

4 7 69627
8 11
28 98
32 10

8 14 67137
16 6
56 26609
64 5

16 112 85

5.2. Explanation of different standard and secure placement algo-
rithms used in the analysis

In our analysis, we compare the performance of our algorithm
with 3 most commonly used standard VM placement policies:
(i) Best-Fit (BF ), (ii) Worst-Fit (WF ) and (iii) Random Placement
(RP), along with 3 co-location resistant VM placement policies: (i)
Amazon’s Dedicated Instance placement [31] which we will de-
note as DI , (ii) CLR placement strategy proposed by Azar et al. [9]
which we will denote as AZ , and (iii) Previously Selected Servers
First (PSSF ) strategy proposed by Han et al. [23]. In the following
subsections, we will provide a brief summary of each of the
above-mentioned placement strategies.

5.2.1. Standard placement algorithms
In the Best-Fit policy, an incoming VM request is assigned to a

live PM having the least remaining free cores. Contrary to this, the
Worst-Fit policy assigns an incoming VM to a live PM having the
most number of remaining free cores. Random Placement policy
assigns an incoming VM to a PM selected uniformly at random
from the list of live PMs. In all these policies, if no live PM has
sufficient resources to host the incoming VM, a new empty PM is
started for hosting that VM.

5.2.2. Amazon’s Dedicated Instance strategy
In Amazon’s Dedicated Instance strategy, two VMs that belong

to different AWS accounts are never co-located on the same
PM. Therefore, for allocating a VM Vi requested by user Uj, we
only consider those PMs which host only Uj’s VMs. Among those
PMs, we consolidate Uj’s VMs using a Best-Fit approach. If there
are no candidate PMs for allocation, a new PM is started for
accommodating Vi.

5.2.3. Azar’s placement strategy
Azar et al. [9] proposed a random placement strategy wherein

all the PMs in the data center are dynamically labeled either OPEN
(already host some VMs and can receive more VMs), CLOSED
(cannot receive more VMs) or EMPTY (do not host any VMs).
At every instant, exactly λ PMs are kept OPEN, with λ being
a predefined parameter of the algorithm. When a new VM re-
quest arrives, it is assigned to a PM Pj randomly selected from
λ OPEN PMs. If Pj cannot accommodate any more VMs, it is
labeled as CLOSED and a PM labeled EMPTY is re-labeled as OPEN
to keep exactly λ PMs OPEN. However, the authors have not
mentioned any procedure for the de-allocation of VMs. Therefore,
we perform the deallocation procedure for their algorithm in the

following way: when a VM Vi is deallocated from PM Pj, we
first check whether Pj becomes empty. If Pj becomes empty after
deallocation, we label Pj as EMPTY, otherwise, we label it as OPEN.
Note that this deallocation procedure might result in more than
λ OPEN PMs.

5.2.4. Han’s placement strategy
Han et al. [23] proposed a VM placement policy called PSSF

which aims to satisfy 3 requirements: security, power consump-
tion and workload balance. The PSSF algorithm is parametrized
using 2 variables — N∗ and NG. N∗ determines the maximum
number of VMs of a user which can be allocated to the same
PM, which in turn helps in tuning the workload balance. Since
we are not dealing with the objective of workload balance in this
paper, therefore we ignore the parameter N∗ in our evaluation.
In their approach, all the PMs in the data center is divided into
groups of size NG and every PM dynamically maintains a list of
cloud users that it has ever hosted. When a user Ui requests a
new VM, those PMs which have already hosted or are currently
hosting Ui’s VMs are considered first for assignment. If no such
PM exists, then remaining PMs are considered with the priority
being given to PMs which have a lower group index and more
number of resources left.

5.3. Comparative analysis of different placement algorithms assum-
ing no information about the category of users is available

Figs. 2 and 3 illustrate the CLR and CU respectively, obtained by
executing different standard and co-location resistant placement
algorithms on the Azure workload with varying percentage of
malicious users (Pm). We have fixed the total number of PMs in
the data center as 16,990 which is the same as the maximum
number of simultaneously live VMs described in Table 2. While
evaluating the AZ strategy, we test for 4 different values of the
parameter λ (5%, 10%, 15% and 20%) indicating the fraction of total
PMs that are kept OPEN at all times. Similarly, while evaluating
the PSSF strategy, we test for 4 different values of the parameter
NG (5%, 10%, 15% and 20%) indicating the group size in terms
of the fraction of total PMs in the data center. We make the
following important observations in our analysis:

• Fig. 3 indicates the following relationship among the various
placement algorithms in terms of Core Utilization:

BF > RP > PSSFNg=5% > PCUF > WF > DI > PSSFNg=10% >

PSSFNg=15% > PSSFNg=20% > AZλ=5% > AZλ=10% > AZλ=15%

> AZλ=20%

BF guarantees better CU than all other placement algorithms
whereas AZλ=20% performs worst. Our proposed algorithm
PCUF ranks fourth among all algorithms and is less efficient
(in terms of CU) than BF , RP and PSSFNg=5% by 14.25%,
5.68% and 1.69% respectively. We note that all standard
placement algorithms — BF, WF and RP perform better than
DI. Among the co-location resistant placement algorithms,
all algorithms except PSSFNg=5% and PCUF are worse off than
DI. We also note that the Core-Utilization value is indepen-
dent of the percentage of malicious users for all placement
algorithms because the algorithm has no knowledge about
the category of each user.
• Fig. 2 indicates that as Pm increases, the CLR of all algorithms

(except DI) decrease. By increasing Pm, the number of ma-
licious VMs in the cloud increases which in turn increases
the likelihood of a benign user’s VM to get co-located with
at least one malicious VM. In fact, with more than 20%
malicious users in the cloud, the CLR of BF , WF and RP is
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Fig. 2. Variation of Co-Location Resistance (CLR) of different placement algo-
rithms with the change in percentage of malicious users (Pm). In 2(a), Pm varies
between 0 and 10 at increments of 1 whereas, in 2(b), Pm varies between 10
and 90 at increments of 10.

almost close to 0. This illustrates that standard VM place-
ment algorithms provide almost negligible co-location resis-
tance compared to our proposed algorithm. The same figure
also indicates the following relationship among the various
placement algorithms in terms of Co-Location Resistance:

When percentage of malicious users < 20%

DI > PSSFNg=20% > PSSFNg=15% > PCUF > PSSFNg=10%
> PSSFNg=5% >

AZλ=20% > AZλ=15% > AZλ=10% > AZλ=5% > WF > RP > BF

When percentage of malicious users ≥ 20%

DI > PSSFNg=20% > PSSFNg=15% > PSSFNg=10% > PCUF
> PSSFNg=5% >

AZλ=20% > AZλ=15% > AZλ=10% > AZλ=5% > WF > RP > BF

• We note that any approach which provides lower CU than
DI is impractical simply because the CLR provided by DI is
always 100%. Therefore, although PSSFNG=10%(for Pm > 20%),
PSSFNG=15% and PSSFNG=20% could have better CLR than PCUF
as Fig. 2 indicates, they might not be useful as their CU val-
ues are too low. Having said that, we note that PCUF clearly
outperforms BF , WF , RP and AZ in terms of CLR for all values
of Pm by a huge margin. Therefore, the only competitor to
PCUF algorithm is PSSFNG=5%. Among these two, the CU of
PCUF is less than that of PSSFNG=5% by 1.69%. However, we

Fig. 3. Comparison of Core Utilization (CU) among PCUF and different standard
and co-location resistant placement algorithms.

note that PCUF consistently provides a significantly higher
CLR compared to PSSFNG=5% for all values of Pm.

From these observations, we conclude that our proposed PCUF
algorithm provides much higher co-location resistance compared
to standard placement algorithms (BF , WF , RP) with minimal
compromise in core utilization. Also, PCUF achieves a better bal-
ance between CU and CLR compared to existing secure placement
algorithms (DI , PSSF , AZ).

5.4. Comparison of CLRtheoretical
pcuf and CLRazure

pcuf

We will now compare the CLRtheoretical
pcuf given by (14) with the

actual CLR obtained by executing PCUF on Azure dataset which
we call CLRazure

pcuf . By executing PCUF on the Azure dataset, we
observed that the average number of users with whom a new
incoming user gets co-located for the first time is approximately
2.23. We use this value as our k while calculating CLRtheoretical

pcuf . We
set N = 1884 as per the number of users in our Azure dataset.

Fig. 4 shows that our derived CLRtheoretical
pcuf provides a decent

approximation to CLRazure
pcuf . Specifically, we observe that CLRazure

pcuf
is strictly greater than our derived CLRtheoretical

pcuf and the maximum
difference between CLRazure

pcuf and CLRtheoretical
pcuf is 9.21% at Pm = 30%.

The average difference of our derived CLRtheoretical
pcuf from CLRazure

pcuf is
5.9%. A possible reason for this difference might be attributed to
VM de-allocation requests from cloud users which we have not
accounted for in our theoretical analysis.

5.5. Effect of utilizing user classification information on the perfor-
mance of placement algorithms

In Section 3.1, we assumed that the cloud provider may or may
not have knowledge about the category of users. This section per-
tains to the empirical analysis of different placement algorithms
for the former case. In Section 2.3, we have already described
past works that demonstrate specific techniques using which a
cloud provider can gain knowledge about the category of users.
To model the ‘‘cloud provider’s knowledge about the category of
users’’ in an abstract way, we proceed as follows:

Each cloud user will be associated with 2 attributes — Actual
Class Label (ACL) and Predicted Class Label (PCL). Each of these
class labels can either be M (indicating malicious) or B (indicat-
ing benign). The ACL of each malicious user is M and each benign
user is B. The cloud provider will have access to a Binary Classifier
Cp,q which can predict whether a user U is malicious or not. Note
that the cloud provider will have access only to the predicted
class labels (PCLU ) of each cloud user and will have no knowledge
about the user’s actual class labels (ACLU ).



A. Agarwal and T.N.B. Duong / Future Generation Computer Systems 100 (2019) 210–222 219

Fig. 4. Comparison between the theoretically derived CLR for PCUF (CLRtheoretical
pcuf )

and the empirical CLR obtained by executing PCUF algorithm on Azure dataset
(CLRazure

pcuf ) for different percentages of malicious users (Pm). In 4(a), Pm varies
between 0 and 10 at increments of 1 whereas, in 4(b), Pm varies between 10
and 90 at increments of 10. CLRtheoretical

pcuf well approximates CLRazure
pcuf for smaller

values of Pm but the difference increases for larger values of Pm .

Also, we assume that the classifier Cp,q has a True Positive
rate of p and False Positive Rate of q which remains constant
throughout the entire VM allocation phase. The True Positive rate
of Cp,q is the ratio of the number of users who were predicted
malicious and are actually malicious (users having both PCLU =
M and ACLU = M) to the total number of actual malicious
users. The False Positive Rate of Cp,q is the ratio of the number
of users who were predicted malicious but are actually benign

(users having PCLU = M and ACLU = B) to the total number of
actual benign users. The predictions generated by such a classifier
can be utilized by the cloud provider’s placement algorithm to
make better placement decisions.

As stated in Section 5.1, we randomly map Pm% of the subscrip-
tions to malicious users, while the rest of the subscriptions are
mapped to benign cloud users. Let Nm and Nb denote the number
of malicious and benign users respectively after such mapping
has been done. The Actual Class Label (ACLU ) of each malicious
and benign user is fixed as M and B respectively. To generate
the Predicted Class Label of each user (PCLU ), we simulate the
prediction results of a hypothetical Binary Classifier Cp,q using the
following technique:

• Among all the Nm malicious users, we assign PCLU = M to
p×100% randomly selected users and the rest (1−p)×100%
users are assigned PCLU = B. This is done considering the
fact that the True Positive Rate of the classifier is p.
• Among all the Nb benign users, we assign PCLU = M to

q×100% randomly selected users and the rest (1−q)×100%
users are assigned PCLU = B. This is done considering the
fact that the False Positive Rate of the classifier is q.

Also, in our analysis, we have only considered those Binary Clas-
sifiers for which the True Positive rate is not less than the False
Positive rate i.e, p >= q. As stated in [32], any classifier that has a
True Positive rate which is less than its False Positive rate can be
negated (by negating its classification decision on every instance)
to produce a corresponding classifier which has a True Positive
rate greater than its False Positive rate.

Taking into account the additional information regarding user’s
category which is available, we also make a slight modification
to the placement algorithms which, conventionally, do not uti-
lize that information at all. We use A1 to denote an arbitrary
placement algorithm which does not utilize user classification
information. Examples of A1 include BF , WF , RP , PCUF , PSSF , AZ .
We design an algorithm A2 which accounts for user classification
information in the following way: At every instant, A2 maintains
2 group of PMs — GM and GB . GM and GB contain those PMs
which currently host VMs belonging to users whose PCL =M and
PCL = B respectively. If the incoming VM request V belongs to a
user U who has been predicted as malicious by Cp,q i.e, PCLU =M,
then we invoke A1 with live_pms = GM otherwise we invoke A1
with live_pms = GB .

Using the technique described above, we can modify an ar-
bitrary algorithm designed based on the assumption that no
user classification information is available into a corresponding
algorithm based on the relaxed version of the assumption. From
now on, we will refer to BF 2, WF 2, RP2, PCUF 2, PSSF2 and AZ2 as
the modified versions of algorithms described in Section 5.2. We
study the effect of different classifier parameters such as ‘‘True
Positive rate’’ (p) and ‘‘False Positive rate’’ (q) on the performance
of these placement algorithms. For doing so, we fix Pm = 10% and
vary the True Positive (p) and False Positive (q) rate of the Binary
Classifier Cp,q. Also for PSSF2 and AZ2 algorithm, we fix Ng = 5%
and λ = 5% respectively. After carrying out multiple experiments,
we made some important observations:

• Tables 4–9 indicate the CU values obtained by executing
BF2, WF2, RP2, PCUF2, PSSF2 and AZ2 respectively for different
values of p and q. We observe that Core-Utilization of the
BF2, WF2, RP2 and PCUF2 is almost unaffected by p and q.
Also, we observe that BF2 provides best CU compared to
other algorithms whereas AZ2 provides the worst CU for
all values of p and q. PCUF2 ranks third in terms of CU ,
lagging behind BF2 and RP2 by approximately 13% and 5%
respectively.
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Table 4
CU for BF 2 .

Table 5
CU for WF 2 .

Table 6
CU for RP2 .

Table 7
CU for PCUF 2 .

Table 8
CU for PSSF 2 .

• Contrary to CU , the True Positive (p) and False Positive
(q) rate of the classifier have a significant influence on
the Co-Location Resistance of the placement algorithms.
Tables 10–15 indicate the CLR values obtained by executing
BF2, WF2, RP2, PCUF2, PSSF2 and AZ2 respectively for different
values of p and q. The rows of table indicate different values
of p whereas the columns indicate different values of q.
When p = 1 and q = 0, the CLR of all algorithms is exactly

Table 9
CU for AZAR2 .

Table 10
CLR for BF 2 .

Table 11
CLR for WF 2 .

Table 12
CLR for RP2 .

Table 13
CLR for PCUF 2 .

100%. This is because a binary classifier with p = 1 and
q = 0 is equivalent to an ideal classifier which correctly
classifies the categories of all the cloud users. In that case, all
algorithms will place the VMs belonging to malicious users
in PMs belonging to the group GM and the VMs belonging
to benign users in PMs which belong to the group GB . Thus,
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Table 14
CLR for PSSF 2 .

Table 15
CLR for AZAR2 .

there is no inter-mixing of VMs belonging to malicious and
benign users.
• We also observe that as q increases from 0 to 1, the CLR

decreases. This trend is similar for all algorithms; reason
being that as q increases, more number of benign users are
classified as malicious by classifier Cp,q and are therefore
allocated PMs which belong to the group GM. This, in turn,
leads to a higher probability of malicious co-location for
those benign users who have been misclassified as malicious
due to high False Positive rate of the classifier Cp,q. Similarly,
we observe that as p decreases from 1 to 0, the CLR of all
algorithms decrease. This happens because a decrease in p
leads to more number of malicious users being misclassified
as benign. This, in turn, leads to a higher number of mali-
cious users being allocated PMs belonging to the group GB ,
thereby increasing the probability of malicious co-location.
• Also, it is worth noting that PCUF2 ensures better CLR than

all other algorithms for almost all values of p and q. Except
for the case when p = 1, q = 0.2 and p = 1, q = 0.4 where
PSSF performs better than PCUF , the general relationship
with respect to CLR is as follows:

PCUF > PSSF > AZ > WF > RP > BF

This shows that our proposed PCUF algorithm is effective
in terms of CU and CLR, compared to other placement algo-
rithms, even when user classification information is taken
into account.

6. Conclusion and Directions for future work

In this paper, a co-location resistant VM placement algorithm
called ‘‘Previously Co-Located Users First’’ has been described.
We used Core Utilization and Co-Location Resistance metrics for
quantifying the resource efficiency and security of VM placement
algorithms. We performed an extensive theoretical and empiri-
cal analysis of our proposed algorithm using a large, real-world
cloud trace. Our results indicate that the proposed algorithm
can achieve much higher co-location resistance with little com-
promise in Core Utilization compared to existing standard and
co-location resistant placement algorithms. In addition to this,
we also performed a comparative study of different algorithmic
solutions taking into account the case where the cloud provider

has access to the predicted category of users. Specifically, our
analysis shows that the Co-Location Resistance of placement al-
gorithms is directly proportional to the True Positive rate and
inversely proportional to the False Positive rate of the underlying
classifier. We also observe that our proposed algorithm consis-
tently achieves higher Co-Location Resistance compared to other
placement algorithms in both scenarios.

Although our approach efficiently handles the initial VM place-
ment problem, there are some open questions which need to
be addressed. For instance, how should we defend against an
adversary who manages to co-locate with the target user during
initial VM placement. We believe that in order to effectively deal
with such a scenario, it is necessary to incorporate live-migration
algorithms. The migration algorithm should be triggered when
the system notices a significant change in a user’s cache behavior,
which is likely to happen when the adversary conducts a side-
channel attack. The challenge would then be to isolate either the
adversary or the victim within the timeframe of the attack. Our
future work would focus on the design and analysis of such secure
live migration algorithms.

Another possible research direction would be to design classi-
fiers which can be used to classify users (as benign or malicious)
based on their cache statistics. These classifiers can then be used
in conjunction with placement algorithms for SVP problem to
provide a higher degree of isolation from malicious cloud users.
It would also be interesting to design and analyze new placement
algorithms for SVP problem which can provide better Co-Location
Resistance by accounting for parameters like True Positive and
False Positive rate of the underlying classifier.
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