
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2019

Explaining regressions via alignment slicing and mending Explaining regressions via alignment slicing and mending

Haijun WANG

Yun LIN

Zijiang YANG

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Yang LIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Citation Citation
WANG, Haijun; LIN, Yun; YANG, Zijiang; SUN, Jun; LIU, Yang; DONG, Jinsong; ZHENG, Qinghua; and LIU,
Ting. Explaining regressions via alignment slicing and mending. (2019). IEEE Transactions on Software
Engineering. 14, (8), 1-17.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4759

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Haijun WANG, Yun LIN, Zijiang YANG, Jun SUN, Yang LIU, Jinsong DONG, Qinghua ZHENG, and Ting LIU

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4759

https://ink.library.smu.edu.sg/sis_research/4759

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Explaining Regressions via
Alignment Slicing and Mending

Haijun Wang, Yun Lin*, Zijiang Yang, Jun Sun, Yang Liu, Jinsong Dong, Qinghua Zheng, Ting Liu*

Abstract—Regression faults, which make working code stop functioning, are often introduced when developers make changes to the
software. Many regression fault localization techniques have been proposed. However, issues like inaccuracy and lack of explanation
are still obstacles for their practical application. In this work, we propose a trace-based approach to identifying not only where the root
cause of a regression bug lies, but also how the defect is propagated to its manifestation as the explanation. In our approach, we keep
the trace of original correct version as reference and infer the faulty steps on the trace of regression version so that we can build a
causality graph of how the defect is propagated. To this end, we overcomes two technical challenges. First, we align two traces derived
from two program versions by extending state-of-the-art trace alignment technique for regression fault with novel relaxation technique.
Second, we construct causality graph (i.e., explanation) by adopting a technique called alignment slicing and mending to isolate the
failure-inducing changes and explain the failure. Our comparative experiment with the state-of-the-art techniques including dynamic
slicing, delta-debugging, and symbolic execution on 24 real-world regressions shows that (1) our approach is more accurate on
isolating the failure-inducing changes, (2) the generated explanation requires acceptable manual effort to inspect, and (3) our approach
requires lower runtime overhead. In addition, we also conduct an applicability experiment based on Defects4J bug repository, showing
the potential limitations of our trace-based approach and providing guidance for its practical use.

Index Terms—Regression bug, trace alignment, alignment slicing and mending, fault localization.

F

1 INTRODUCTION

Regression faults are often introduced after developers
make changes to the software [1], [2], [3], [4], [5], [6], [7].
As a large number of changes can happen between the
original correct version and current regression version, once
a regression failure is observed, it is a non-trivial task to (1)
isolate the failure-inducing changes and, more importantly,
(2) understand how they lead to the final observable failure,
before figuring out a potential fix.

Many approaches have been proposed, mainly focusing
on isolating the failure-inducing changes. The state-of-the-
art techniques can be roughly divided into the following
three groups.
Dynamic Slicing. A classical technique for regression fault
localization is dynamic slicing [8], [9] and its variations [10],
[11]. Dynamic slicing eliminates statements irrelevant to
the failure based on data and control dependence, and
all modified statements which the failure depends on are
reported. However, data and control dependence are often
abundant in a program, and consequently dynamic slicing
often reports an overwhelming number of program state-
ments.
Delta Debugging. Zeller et al. pioneered delta debugging to
isolate the failure-inducing changes by repetitively reverting
different subsets of changes between original correct version
and current regression version [12], [13]. Their approach
reports a smallest subset of changes which can be reverted
to recover the original program behavior.

Intuitive as the approach is, it suffers from an inherent
drawback, i.e., the number of reverted subsets is exponential

• Yun Lin has equal contribution with the first author in this work.
• Ting Liu is the corresponding author, email: tingliu@mail.xjtu.edu.cn

Manuscript received April 19, 2005; revised August 26, 2015.

to the number of changes. Assume that there are N changes
between two versions, theoretically, we need to revert 2N

subsets to isolate the failure-inducing changes. Therefore,
delta debugging based techniques [12], [13], [14], [15] have
to apply various heuristics to balance the trade-off between
the accuracy and efficiency. We further show how such
heuristics sacrifice the accuracy in Section 2.
Symbolic Analysis. The other line of works is based on
symbolic analysis [16], [17], [18], [19], [20]. A representative
work is AFTER [20], which works as follows. Given a test
case (with an assertion), its symbolic execution is captured
as a conjunctive predicate. For example, the execution of
the statements {a=0; b=1; b+=a; ...; assert(b<0)} can
be converted into a conjunctive predicate P = (a ==
0)∧(b0 == 1)∧(b1 == b0+a)∧ ...∧(bk < 0). As the execu-
tion result is incorrect, the converted conjunctive predicate
must be evaluated to be FALSE. Then, it selects a smallest
subset of conjuncts from P (including the assertion) whose
conjunction is still FALSE. Such subset is called a minimum
unsatisfiable core. Finally, the approach reports the changed
statements whose execution is responsible for minimum
unsatisfiable core. Novel as this line of approaches are, the
runtime overhead and capability of handling complicated
program expressions are usually the bottleneck for their
practical use. Moreover, only analyzing the code in regres-
sion version may miss reporting the deletion changes (see
details in Section 2).

On locating and explaining the root cause of a program
bug, trace-alignment-based approaches have inherently ad-
vantage [21], [22], [23], [24]. Those approaches align the cor-
rect and incorrect executions. Taking the correct execution
as the reference, we can check incorrect execution to narrow
down the infected steps towards the root cause. Through
the execution information, programmers can not only know

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

where the root cause lies, but also the dynamic causalities on
how the faulty code propagates the defect through infected
steps. Johnson et al. [23] propose trace alignment technique
to align the execution traces of two runs of the same mal-
ware program (with different input), building a casual differ-
ence graph for analyzing its behavior. Weeratunge et al. [24]
propose their trace alignment technique for different traces
of two runs of the same concurrent program to identify
the concurrency bug. Despite these approaches have shown
good potentials, we cannot apply their approach to locating
regression bug because these approaches works for aligning
variational traces derived from the same program while the
regression bug localization requires to align traces derived
from different versions with non-negligible number of code
modifications. The challenges of identifying root cause of a
regression bug lies in (1) how to align the execution traces
for modified parts of code in correct and regression versions,
and (2) how to report unexecuted modification (e.g., code
deletion) as root cause through the aligned traces.

In this work, we propose a trace-based approach called
Explain Regressions via Alignment Slicing and mEnding
(ERASE) to address above challenges. Our approach not
only has a decent accuracy over existing regression fault
localization approaches [24], [25], [26], [27] but also can
present how those changes propagate the defects to the
observable failure. In this work, we enhance the existing
trace alignment technique by proposing a novel relaxation
approach to aligning traces derived from two versions
of programs with considerable number of modifications.

Then, we keep the trace of the original correct version
as reference and infer the faulty steps on the trace of the
regression version so that we can build a causality graph of
how the defect is propagated. The causality graph answers
not only the why questions (e.g., why a step is executed
or why the variable value is 0) but the why-not questions
(e.g., why certain expected step is not executed). Note that,
in contrast to existing works [23], [24], [28], our causality
graph describes how the defect propagates through both
the execution steps and the unexecuted modifications like
deletion.

We implement a proof-of-concept tool (ERASE) for both
Java and C/C++ programs. Its screenshots and demo videos
are available at [29] and [30]. We evaluate the effectiveness
of our approach by conducting a comparative experiment
on 24 real-world C regressions. We evaluate the applica-
bility of our approach (i.e., when our approach can and
cannot work) on 298 Java regressions in the Defects4J bug
repository. The results of comparative experiment show
that our approach is more accurate on isolating the failure-
inducing changes than the state-of-the-art techniques. The
results of applicability experiment show the potential lim-
itations of trace-based approach and provide guidance for
how to apply our approach in practice. (The discussion
on the limitations of dynamic approach can be checked in
Section 5.2.3).

To summarize, we make the following contributions:
• Given two traces from two versions of a program,

we extend existing trace alignment techniques with a
novel relaxation technique to align the executions of
two program versions with considerable number of
modifications.

1:void testLang(int a[]){
2: for(int i=0; i<2; i++)
3: if(i%2==1)
4: a[i]=a[i]+1;
5: int max=a[0];
6: if(max<a[1])
7: max=a[1];
8: int out=max;
9: out=out-a[0];
10: assert(out==2);
11:}

(a) Original version P

1:void testLang’(int a[]){
2: for(int i=0; i<2; i++)
3: //c1
4: a[i]=a[i]+1;
5: int max=a[1]; //c2
6: while(max<a[0]) //c3
7: {max=a[0]; break;}//c4
8: int out=max;
9: out=out-a[0];
10: assert(out==2);
11:}

(b) Regression Version P ′

Fig. 1: Two versions of motivating example.

• We adopt the alignment slicing and mending technique
on locating regression bugs, which derives a causality
graph including both execution steps and unexecuted
modifications to explain the regression failure.

• We implement ERASE for both Java and C programs,
providing an interactive tool for programmers to ex-
plore why a regression failure happens in practice.

• We study the effectiveness of our approach on an ex-
periment on 24 real-world C regressions, which demon-
strates the effectiveness of ERASE over state-of-the-art
approaches. In addition, our applicability experiment
on 298 Defects4J bugs allows us to understand the lim-
itation of trace-based approach and provides guidance
on its practical use.

The remainder of the article is organized as follows.
Section 2 gives a motivating example to illustrate the idea of
ERASE. Section 3 presents the detailed algorithms. Section 4
describes our C and Java implementations of ERASE. Sec-
tion 5 reports the experimental results. Section 6 reviews the
related work. Section 7 concludes the paper and discusses
our future work.

2 MOTIVATING EXAMPLE

Figure 1 shows a simplified regression in the Apache Lang
project. For clarity, we use simplified input and code while
keeping its non-triviality. In this example, the new version
testLang’ makes four changes c1-c4 to the old version
testLang. The method takes as input an array, increases
the value of its elements with odd indices, and outputs
the subtraction of the maximum and first elements. Given
an input a which is [1, 2], testLang passes while testLang’
fails.

In this example, the failure of testLang’ is caused by
mistakenly deleting the if-condition in line 3. The changes
c2, c3 and c4 only re-implement or improve the function to
compute the maximum of the input array. Unfortunately, the
existing techniques (including dynamic slicing [10], delta
debugging [12], [13], and symbolic analysis [20]) fail to
identify the change c1 as the root cause. In the following, we
first present how our approach works for regression showed
in Fig. 1, then we explain how state-of-the-art approaches
fail to locate the failure-inducing change c1.

2.1 Illustrating ERASE

In our approach, we use the original trace as a reference to
examine how the regression trace generates the failure and
propagates the defects. We first align the passing and failing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

a[i] =a[i]+1;

91: out=out-a[0]; 91: out=out-a[0];

31: if(i%2==1)

41: a[i] =a[i]+1;

Code Deletion

101: assert(out==2); 101: assert(out==2);
Read(out) = 2 Read(out) = 1

Read(out) = 3
Read(a[0]) = 1
Write(out) = 2

Read(out) = 3
Read(a[0]) = 2
Write(out) = 1

Read(a[0]) = 1
Write(a[0]) = 2

Legend
Match Relation

Control
Dependency

Data
Dependency

Executed Step

Unexecuted
Code

Failure Inducing Change
Original Trace, π Regression Trace, π’

Fig. 2: Causal graph generated by ERASE for the example in Fig. 1.

11 21 31 22 32 41 23 51 61 71 81 91 101
 π

(original)

11 21 41 22 42 23 51 61 81 91
π

(regression)

a[0]

a[0]

101

out

outout

control
dependency

correct
alignment

incorrect
alignment

Legend

out

data
dependency

Fig. 3: Two traces of the example in Fig. 1.

traces. Based on the matching results, we apply alignment
slicing and mending (see Section 3.4) to construct a causality
graph to explain why and how the root cause is propagated
towards the failure.

The original and regression traces for the code in Fig. 1
are shown in Fig. 3. We use Lkπ to represent a specific
trace step, L represents the line number, the superscript k
represents the times of L being executed, and the subscript
π represents the original or regression trace (π for original
one and π′ for regression one). For example, 22π represents
the second execution of line 2 on the original trace.
Trace Alignment. There are two challenges for aligning the
original and regression traces. First, a program statement
may be executed multiple times due to loops and function
calls [23], it is non-trivial to match those steps executing
same program statements. For example, it is a non-trivial
task to automatically decide whether the step 41π matches
41π′ or 42π′ in Fig. 3. 41π and 41π′ are considered as matched
if we regard the trace-matching problem as traditional se-
quence matching problem, as in [31], [32]. Nevertheless,
such a match is inaccurate and prevents us from locating the
regression bug. The inaccuracy lies in that simple sequential
matching ignores trace structural semantics. Note that, 21π′

and 41π′ are in the same iteration but 21π and 41π are not,
sequential matching breaks such structural semantics of
execution trace. Second, we need to consider the semantic
equivalence of dynamic traces with regard to source code
changes. For example, given the input a=[1, 2], the trace
Tπ = 〈51π, 61π, 71π〉 is equivalent to the trace Tπ′ = 〈51π′ , 61π′〉
as both execution aims to compute the max value in a=[1,
2]. Note that, the challenge is that line 6–7 in original version
is an if-condition while line 6–7 is a loop-condition. Their
dynamic semantic is equivalent despite that static semantics
is not. Classical trace alignment algorithm [23], [24] working
on variational traces derived from same version of program
cannot address this problem.

In this work, we develop a trace alignment algorithm
designated for facilitating our alignment slicing and mend-
ing technique so that we can generate causal graph (as
shown in Fig. 2) to (1) identify the failure-inducing change
(see the box with red text in Fig. 2), and (2) show why and

how the root cause is propagated to the unexpected failure.
In Fig. 2, solid rectangles represent execution steps, dashed
rectangles represent unexecuted code, bi-directional lines
represent matching relation between steps/code, solid lines
represent data dependencies, and dashed lines represent
control dependencies. In addition, each step is equipped
with a list of its read/written variable values (see grey
rectangles). We illustrate its construction as follows.
Alignment Slicing. Alignment slicing is designed for an-
swering why questions, e.g., why the value of variable in
a step in one trace is different from that in its counterpart
in the other trace? It achieves this by comparing aligned
trace steps in two traces so that we trace data dependence
when variable value is different and control dependence
when some steps cannot be aligned. In this example, our
tool ERASE starts the process from the step 101π′ where
the failure is observed. At this step, the value of used
variable out is incorrect as its value is different from that
of the matching step 101π (1 vs. 2). Thus, ERASE tracks data
dependence backward from 101π′ through variable out to
91π′ where out is defined. At the step 91π′ , there are two
read variables: out and a[0]. The value of out is correct
as its value is the same with that of the matching step 91π
(3 vs. 3). However, the value of a[0] is incorrect as its value
is different from that of the matching step 91π (2 vs. 1). In
the same vein, ERASE follows backward data dependence
from 91π′ to 41π′ through a[0]. The step 41π′ has no matching
step on the original trace. In order to answer the question
why 41π′ can be executed, we backward follows its control
dependence to 21π′ (not shown in Fig. 2). However, the
step 21π′ and its matching step 21π have the same branch
evaluation. As a result, it seems to run into a dead-end,
from which the slicing can no longer work.
Alignment Mending. Our approach bypasses such dead-
end by asking and answering why-not questions by align-
ment mending. Before reaching the dead end at 21π′ , ERASE
asks why step 41π′ should NOT be executed (as 41π′ has
no matching step on the other trace π). To answer such
why-not question, ERASE switches to the other trace π to
identify a step responsible for the deviated control flow. As
a result, the step 31π (executing the if-statement if(i%2==1))
is mended because 41π′ can be matched (as line 4 will be
executed in the first iteration in π) if the boolean expression
i%2==1 is evaluated to true.

Moreover, the step 11π is identical to 11π′ . Therefore,
there is no more different steps to proceed, thus ERASE
terminates and reports the change c1 as the root cause, i.e.,
failure inducing change.
What if trace alignment is incorrect? Then, we illustrate
how incorrect trace alignment affects our root cause location

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

for regression bugs. Assume that the two steps 41π and 41π′

are matched (which is incorrect). When ERASE proceeds to
41π′ , it asks why the value of used variable i in 41π′ is different
from that in 41π . As a result, ERASE will traverse through
data flow and proceed to 21π′ and 11π′ , and consequently
misses reporting the change at line 3.

2.2 Comparing to Other Approaches

In this section, we briefly discuss how existing state-of-
the-art approaches work and how they miss reporting the
failure-inducing change c1 in Fig. 1.
Dynamic Slicing. Given a trace π and a criterion s, dy-
namic slicing [8] identifies the steps on π that contribute
to s by data- and control-dependence. Considering the
two steps 101π and 101π′ as criteria, dynamic slicing on π
and π′ reports the results Sπ={11, 61, 71, 81, 91, 101} and
Sπ′={11, 21, 41, 51, 81, 91, 101}. We can see that Sπ reports
6 out of 13 steps and Sπ′ reports 7 out of 11 are failure-
relevant. Furthermore, the included changes c2, c3, and c4
in Sπ and Sπ′ are not the root causes.
Augmented Delta Debugging. Figure 4 shows the process
of applying Augmented Delta Debugging (ADD) [15] to the
example in Figure 1. Let F be the set of executed changes
between two versions, i.e., {c1, c2, c3, c4}. First, F is par-
titioned into d1 = {c1, c2} and d2 = {c3, c4}. Assuming
that the changes in d1 is irrelevant to the regression failure,
ADD applies F\d1 = {c3, c4} to the correct version, it turns
out that regression failure happens. Thus, ADD considers
that the failure-inducing changes reside in F\d1 = {c3, c4}.
Next, ADD further partitions {c3, c4} into d3 = {c3} and
d4 = {c4}. Assuming the change in d3 is irrelevant to the
regression failure, ADD applies F\d3 = {c1, c2, c4} to the
correct version and the regression failure remains. There-
fore, ADD reports d4 = {c4} responsible for the failure,
which is different from the actual root cause c1. Note that,
all the reverting process does not introduce syntactic or
compilation error, i.e., no construction error [13] does not
happen. Therefore, ADD cannot switch back to d1 to locate
the root cause.

ADD fails to report the root cause c1 for two reasons.
First, ADD adopts a binary search heuristic to narrow down
the failure-inducing change for efficiency, which miss a lot
possible change combinations. Second, ADD assumes that
the changes are independent with each other, which is not
true for our example in Fig. 1.

Initial c1 c2 c3 c4

Steps

02

01

Results

Fig. 4: Applying ADD to the example in Fig. 1.

Symbolic Approach (AFTER). AFTER [20] assumes the
assertion (i.e., assert(out==2), line 10 in Fig. 1) holds, and
then conducts weakest precondition computation on the
trace π′, as shown in Table 1. Since the assertion fails, the

TABLE 1: Applying AFTER to the example in Fig. 1.
No. Step Weakest Precondition Satisfiability

1 101 out=2 SAT
2 91 out-a[0]=2 SAT
3 81 max-a[0]=2 SAT
4 51 a[1]-a[0]=2 SAT
5 42 (a[1]+1)-a[0]=2 SAT
6 41 (a[1]+1)-(a[0]+1)=2 SAT
7 11 (2+1)-(1+1)=2 UNSAT

weakest precondition computation leads to an unsatisfi-
able (UNSAT) core: (a[0] = 1) ∧ (a[1] = 2) ∧ (a[0]′ =
a[0] + 1) ∧ (a[1]′ = a[1] + 1) ∧ (max = a[1]′) ∧ (out0 =
max) ∧ (out1 = out0 − a[0]) ⇒ (out1 6= 2). Then, AFTER
maps the UNSAT core to a set of program statements
φ0 = {s1, s4, s5, s8, s9, s10} where sk represents the pro-
gram statement at line k in Fig. 1b. Since only the change c2
that corresponds to statement s5 ∈ φ0 is involved, AFTER
reverts c2, re-compiles, and re-executes the program. Since
the assertion still fails after c2 is reverted, AFTER concludes
that φ0 is not the root cause. Otherwise, reverting c2 would
fix the failure. At the moment, there is no more critical
predicate for φ0. As a result, AFTER terminates without re-
porting any root cause. In this case, AFTER fails to report the
root cause because the failure-inducing change is a deletion,
which can never be included in the weakest precondition
calculation.
Symbolic Approach (Darwin). Another classical symbolic
approach is Darwin [33]. Given a test case t whose executed
symbolic path condition in original program P is f(t) and
that in regression program P ′ is f ′(t), Darwin synthesizes
a new test case t′ so that f(t′) ∧ ¬f ′(t′). The difference
between f ′(t) and f ′(t′) is considered as the potential root
cause. Novel as Darwin is, it fails to locate the root cause in
our example.

Let t ←a=[1, 2], it is possible for Darwin to synthesize
t′ ←a=[2, 1] which meets the requirement f(t′) ∧ ¬f ′(t′).
In our example, f(t′) = f(t) = “i0 < 2 ∧ i0%2! = 1 ∧ i1 <
2∧i1%2 == 1∧a[1]1 = a[1]0+1∧max ≥ a[1]1”. In contrast,
f ′(t) and f ′(t′) are different in that the condition in line 6 is
false for t while true for t′. Therefore, Darwin will report
c4 as the root cause, which is different from the actual root
cause c1.

3 METHODOLOGY

P & P´ & I

1. Code
Alignment

2. Execute

Static
Changes

Original and
Regression Traces

3. Trace
Alignment

Trace
Matching

4. Alignment
Slicing & Mending

Root Cause &
Explanation

Fig. 5: Overview of ERASE.

Fig. 5 illustrates the overall workflow of our approach.
In Fig. 5, each rectangle represents an artifact and each
rounded rectangle represents a sub-process in our approach.
Our approach takes as input two versions P and P ′ of a
program and a test case I that passes P while fails P ′, and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

1:boolean equals(Object obj){
2: if(obj == this)
3: return true;
4: int s = size();
5: for(int i=0; i<s; i++)
6: if(!Util.equals(
7: (Shape)get(i),
8: (Shape)that.get(i)))
9: return false;
10: return true;
11:}

(a) Original version P

1:boolean equals(Object obj){
2: if(obj == this)
3: return true;
4: if(obj == null)
5: return false;
6: return super.equals(obj);
7:}
8:
9:
10:
11:

(b) Regression Version P ′

Fig. 6: Regression Example in JFreechart.

outputs the the failure-inducing changes and the explana-
tion of how it propagates defects to the failure. As showed
in Fig. 5, we first compute static source code changes (step 1)
and execution traces of both original and regression version
(step 2). Then, we match the original and regression traces
with regard to the static source code changes (step 3). Along
with the static changes, execution traces, and trace matching
result, we apply alignment slicing and mending to isolate
the failure-inducing changes as well as the explanation.

In the following, we illustrate code alignment, trace
alignment, and alignment slicing and mending in details.

3.1 Code Alignment
The challenge of code alignment is to align code elements
with regard to fine-grained syntactic features. Fig. 6 shows
an regression example taken from JFreechart project. Text
differencing tool like diff in Linux may report the difference
that line 4–10 in original version is replaced by line 4–6
in regression version. Such a differencing report is correct
but too coarse because a step executing line 4–10 in original
version could be matched to any step executing line 4–6 in
regression version, leading to false causalities reported by
our dynamic approach. To address this issue, we refine the
differencing result with our previous syntax-aware diff algo-
rithm [32], [34]. More specifically, we transfer the code into a
token sequence where each token is attached with AST type
information. Thus, we can calculate the similarity score of
each pair of token with regard to their code position as well
as AST syntax. Hence, we use LCS-based approach to align
the token sequence by computing a common subsequence
with maximum token similarity. With the reference to the
common subsequence, we can compute more fine grained
difference. In the example in Fig. 6, the line 9 in Fig. 6a can
only match line 5 in Fig. 6b as they are of return-statement
AST node. Readers can go through more details in [32], [34].

Based on the differencing results, we can have a code
matching function match, given a code element c in original
(regression) version, we can have its fine grained corre-
sponding code element match(c). Note that match(c) can
be ε (i.e., empty).

3.2 Trace Alignment
Different from existing approaches [24], [25], [26], [27], we
align two traces by: (1) strictly following the boundary and
appearing order of loop iteration in trace and (2) identifying
equivalent semantics of trace steps with regard to static code
changes. For clarity, we first introduce how we align intra-
method traces. We will first justify our iteration order based

1:void test(int x){
2: for(int i=0;i<2;i++){
3: if(x<=1)
4: printf("%d", x);
5: if(x==0)
6: x = x + 1;
7: }
8:}

(a) Original Code

1:void test’(int x){
2: for(int i=0;i<2;i++){
3: while(x>0 && x<3)
4: printf("%d", x++);
5:
6: x = x + 1;
7: }
8:}

(b) Regression Code
Fig. 7: Two versions P and P ′ for trace alignment.

2

3

4

5

6

2'

3'

4'

6'

8 8'

Fig. 8: CFG Matching

matching principle (Section 3.2.1) and how we identify
equivalent trace semantics (Section 3.2.2). Then, we extend
our argument to align inter-method traces (Section 3.2.3).
Finally, we present the general trace alignment algorithm
(Section 3.2.4).

3.2.1 Iteration Order Based Principle
Given a program P , its control flow graph (CFG) G, and an
input I for P , we regard the execution trace π as a traversal
on G with regard to I . Therefore, given an input, matching
the traces of two versions of a program is equivalent to
comparing two traversals on similar CFGs. Given an input
I , two CFGs G and G′, we denote the traversal of I on
G = 〈N,E〉 and G′ = 〈N ′, E′〉 as T and T ′. T and
T ′ are represented by a sequence of CFG nodes, namely,
T = 〈s1, s2, ..., sm〉 and T ′ = 〈s′1, s′2, ..., s′n〉, si(i = 1, ...,m)
and s′j(j = 1, ..., n) are the nodes in N and N ′. Moreover,
we use Ti to denote the sequence of first i CFG nodes in T ,
T [i] to denote the ith element (or step) in T (i starts with 1),
and T [i].node to denote the CFG node where the step T [i]
executes.

Let us take the code in Fig. 7a for example. Its CFG is
showed in the left part of Fig. 8 where each CFG node is
labelled corresponding to the line number in Fig. 7a. Given
the input x as 0, the traversal T = 〈2, 3, 4, 5, 6, 2, 3, 4, 5, 2, 8〉,
T4 = 〈2, 3, 4, 5〉, and T [5].node = 6.

With static code matching technique, we can have a
bilateral matching function match so that match(n) = n′

and match(n′) = n where n ∈ N and n′ ∈ N ′. Note
that n and n′ can be ε, which means that the static change
is either a deletion (i.e., match(n) = ε) or an addition
(i.e., match(n′) = ε). Moreover, if n 6= ε and n′ 6= ε,
match(n) = n′ is equivalent to match(n′) = n. The blue
dashed line in Fig. 8 shows the matching relation for CFG
nodes of the code in Fig. 7

A traversal is a dynamic walking process on a graph.
Aligning two traversals T and T ′ is to identify when the
walk of T ′ synchronizes with or deviates from T .

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

2 3 4 5 2 3 4 5 2
 T

(original)

2' 3' 6' 2' 3' 4' 3' 2'
T ’

(regression) 4' 3' 6'

6

Fig. 9: Iteration Alignment Example

We can see that the complication of aligning two traver-
sals lies in the loop in CFG as they incur repetitive CFG
nodes in traversals. Assume that there is no loop in CFG,
each step in a traversal walks to a unique CFG node. Thus,
with regard to match function, aligning two traversals is
equivalent to finding the longest common subsequence of
two sequences of CFG nodes.
Argument on Iteration Boundary. Let us call each time a
traversal walks through a static loop is an iteration. We
first argue that iterations should be matched with regard
to its boundary, i.e., the steps in iteration I in T cannot be
matched to steps in different iterations in T ′, and vice versa.
Therefore, we annotate iteration boundary for each traversal
so that we can regard each iteration as a separate unit as a
single step. For example, given the input x=0, The traversal
for code in Fig. 7a is T = 〈[2, 3, 4, 5, 6]1, [2, 3, 4, 5]2, [2]3, 8〉,
and the traversal for code in Fig. 7b is T ′ =
〈[2′, 3′, 6′]1, [2′, 3′, 4′, 3′, 4′, 3′, 6′]2, [2′]3, 8′〉. We use brackets
to represent the iterations generated by the loop in each
traversal. The order of iteration is represented by the sub-
script.
Argument on Iteration Order. Next, given two traversals
T and T ′, if they respectively go through the loops which
are statically matched in CFGs G and G′, then their derived
iterations must be strictly aligned in the traversing order.
For the example in Fig. 7 and the corresponding CFGs in
Fig. 8. The CFGs in Fig. 8 has a matched loop with loop
head of node 2. According to our argument, as the loop is
matched, its kth iteration in T should only be aligned to the
kth iteration in T ′, regardless how similar the traversing
path of ith iteration in T and jth iteration in T ′ where
i 6= j. Therefore, the iteration matching should be as Fig. 9.
We provide a more sophisticated proof and argument in
Section 8.

Therefore, we can align two traversals with the following
routine. We first abstract each iteration so that each iteration
is regarded as a single iteration step (e.g., [2, 3, 4, 5, 6] in T)
and the iterations derived from the same loop are assigned
with its iteration order. Thus, a traversal can be converted
into a sequence consists of either normal steps or iteration
steps. Iteration steps can be matched only if they are derived
from statically matched loops and share the same iteration
order. In this regard, every step in the sequence is unique.
Thus we adopt longest common subsequence for the con-
verted traversal. If two iteration steps are matched (e.g.,
[2, 3, 4, 5, 6]1 in T matches [2′, 3′, 6′]1 in T), we apply the
same routine for their path until the alignment process ends.

3.2.2 Adapting Source Code Change

Compared to existing solutions [24], [26] designed for align-
ing traces derived from same program, our work is de-
signed for aligning traces derived from two versions of a

program under the same input. Thus, we need to address
the challenge of identifying the semantically equivalent parts
of two executions even if their source code is different because of
code change. Semantically equivalent parts mean the control
flow semantics to control the execution of the program.
Note that, the tree showed in Fig. 10 is constructed from
the program execution trace and the non-leaf nodes are
usually branching node such as while, for, etc. Therefore,
the code change applied on branching node affects our trace
alignment result.

In this work, we study whether the code change of
added/deleted/updated branching node makes a difference
on the final execution output. If some do not, we consider
the change keeps the flow semantics. With regard to the
changes on control flow structure, we define four types
of code changes which may preserve the flow semantics
of dynamic execution even if the control flow structure is
changed.
1. Add/Delete Selection: When the regression version adds
or deletes a selection (e.g., if statement), the execution of
regression version still preserve the flow semantics if the
evaluation of the added or deleted condition is true. For
example, Fig. 7b deletes an if statement (i.e., if(x==0))
in Fig. 7a, the trace alignment would not be influenced
if the x==0 is evaluated to be true in original execution.
That is, the execution of line 6 in Fig. 7a should be aligned
with the execution of line 6 in Fig. 7b. Note that, existing
approaches [24], [26] follows strict control flow, which can
miss such alignment.
2. Replace Selection (or Loop) with Loop (or Selection):
When the regression version replaces a selection with a
loop, or vice versa, the execution of regression version
still preserve the flow semantics between the execution of
the selection and the first iteration derived from the loop.
For example, Fig. 7b replaces if statement with a while
statement (line 3), we should align the execution of line 4
in Fig. 7a with the execution of line 4 in Fig. 7b, even if the
latter is under iteration.
3. Add/Delete Loop: Based on above two points, when the
regression version adds or deletes a loop, the execution of
regression version still preserve the flow semantics for the
first iteration derived from the loop.
4. Replace Loop (or Selection) with Loop (or Selection):
When the regression version replaces a loop (selection) with
a loop (selection), the execution of regression version still
preserve the flow semantics if the evaluation of the loop
(selection) are the same. For example, the regression version
replaces a for statement with a while statement, it does not
influence the flow semantics if both boolean expression are
evaluated to be true or false.

Our aforementioned iteration based approach can well
address the first and fourth points. It is because that, com-
paring to control flow based alignment strategy [?], [26], the
iteration order based alignment strategy does not strictly
require the match of executed control nodes. As long as a
CFG node is executed (regardless whether it is controlled by
a selection), the longest subsequence is sufficient to capture
the control flow difference. Nevertheless, we need to adjust
our matching criteria for the second and third points.
Alignment Complication Introduced by Change. Consider
the example in Fig. 7 (with input x=0) where we match

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

2'

main

... ...test’

B’2

A’23' 6' 8'

2' 3' 4'

A’3

2'B’3

3' 4' 3'

relaxed steps

3

main

... ...test

A25 6 8

2 4 5

A3

2

4

3

1

2

3

4

5

2

Fig. 10: Abstraction Tree

I = [2, 3, 4, 5]2 in T with I ′ = [2′, 3′, 4′, 3′, 4′, 3′, 6′]2 in T ′,
i.e., the second group of aligned iterations in Fig. 9. Accord-
ing to our argument for matching criteria (underlined text),
I[3] should match I ′[3] (i.e., 4 and 4’ in CFGs) because I2
and I ′2 are well aligned and match(I[3].node) = I ′[3].node.
However, if we abstract the traversal of two iterations, we
have I = [2, 3, 4, 5]2 while I ′ = [2′, [3′, 4′]1, [3

′, 4′]2, [3
′]3, 6

′].
As an iteration step cannot match a normal step, which
makes I[3] and I ′[3] fail to match with each other. Source
code modification causes such a complication as a loop
structure is created by introducing an edge from node 4’
to node 3’ and the branch node 3 is turned into a loop head.

To this end, we relax the abstraction for first iteration
to address this problem. Namely, we do not abstract the
first iteration derived from any static loop. Fig. 10 shows
the example of how relaxation helps match original and
regression trees derived from Fig. 7 with input x=0. In
Fig. 10, the relaxed steps from the first iteration are high-
lighted by red dashed rectangles. In the fourth layer, we
have I = [2, 3, 4, 5]2 (on the fourth layer) while I ′ =
[2′, 3′, 4′, [3′, 4′]2, [3

′]3, 6
′] (on the fourth and fifth layer).

Note that I ′[2] (i.e., 3’) and I ′[3] (i.e., 4’) are regarded as
normal steps instead of being abstracted into an iteration
step.

The relaxation is sound because traversing the first it-
eration of a loop is semantically equivalent to traversing
through a true/false branch of a selection node of the
same condition. Moreover, after relaxing the first iteration,
the items under any non-leaf node are still unique. It is
because the steps relaxed from the first iteration step must
be different from either iteration step (because the step type
is different) or other normal step (because otherwise other
normal steps should form an iteration step). Therefore,
we can still adopt longest common subsequence for the
converted traversal. The blue dashed lines in Fig. 10 shows
the alignment between I and I ′ after relaxation.

3.2.3 Extension to Function Call
Now, we discuss the case when the traversals include func-
tion call, which is another reason for repetitive CFG nodes
in a traversal. Let us first call each time a traversal walks
through a function as a call. Despite a function can be
called many times, its calls should be aligned with the same

boundary requirement as iteration. That is, the steps in a call
C ∈ T cannot be matched to steps in different calls in T ′.
Therefore, we can also abstract the whole steps of a call by
adding call boundary into a “call step”.

3.2.4 Overall Alignment Algorithm
Based on the above arguments, we convert a traversal T into
an abstraction tree Tree = 〈N,E〉 in which each n ∈ N
corresponds to a step T [k] ∈ T and each e ∈ E represents
a parent-child relation, which is either of the following two
cases:
• a step starting a call and all the derived steps in the call

are its children.
• a step starting a loop, all its derived steps are its chil-

dren, and each of its iteration (except the first one) are
regarded as an separate step.

Fig. 10 shows an example of abstraction tree based on
the code in Fig. 7b. The root of the tree is the entry method
main. Each time a step calls a function or starts a loop, its
derived steps are its children. There are nested loops in
the example, where the relaxed steps are highlighted in
dashed rectangles, and the iteration steps are represented
by A2, A3, B2, and B3. A2 and A3 indicates the second and
third iterations and B2 and B3 indicates the second and
third nested iterations. For children of a loop step, its first
iteration will not be abstracted, for example, the node 2’, 3’,
and 4’ under the invocation node of test’ and the node 3’
and 4’ under node I2.

Algorithm 1 shows our hierarchical trace alignment
algorithm. The algorithm takes as input parent nodes of
two abstraction tree r and r′, the static code matching
function match, and a matching relation set MSet. Before
the algorithm starts, r and r′ are two root steps of two trees,
and MSet is ∅. Our aims to obtain a MSet← T × T ′.

Given two parents r and r′, we first obtain their direct
children in the tree, i.e., children and children′ (line 1-
2). Note that, children and children′ are two lists with
regard to execution order. Then we match these two lists
with longest substring algorithm (line 3). The result is a
list of pairs pairList. A pair pair ∈ pairList is a pair of
corresponding nodes in two trees. We use pair.s to denote
the child under r and pair.s′ to denote the child under r′.
Note that, pair.s and pair.s′ can be ε, i.e., some step cannot

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 1: TraceAlign(TreeNode r, TraceNode r′,
MatchFunction match, MatchSet MSet)
1 children← r.directChildren();
2 children′ ← r′.directChildren();
3 pairList←

computeLongestSubsequence(children, children′,match);
4 for each pair ∈ pairList do
5 MSet←MSet ∪ pair;
6 if pair contains function call then
7 TraceAlign(pair.s, pair.s′, match);

8 else if pair contains iteration then
9 TraceAlign(pair.s, pair.s′, match);

10 return MSet;

be matched. We first add the pair into our step matching
relation set MSet. If a pair contains either function call
or iteration, we recursively call TraceAlign(). Thus, we can
achieve MSet by traversing both abstraction trees in such a
top-down manner.

3.2.5 Alignment Result Taxonomy
Each element in the resulted match set (i.e., the returned
output of Algorithm 1) is a pair of steps 〈s, s′〉 where
s comes from the original trace and s′ comes from the
regression trace. Note that either s or s′ can be ε, i.e., the
step s or s′ cannot be matched to any step in the other
trace. In addition, we define that s.match = s′ if s 6= ε
and s′.match = s if s′ 6= ε. According to the results of trace
alignment, for each step s in either original or regression
trace, we denote the type of s as s.type, the matched step of
s as s.match. We categorize a step s as follows:
• s.type=SRC: the source code of s is different between

two versions;
• s.type=CTL: the step s has no matching step

(s.match = ε), i.e., it has a different control flow;
• s.type=DAT: the step s read variables with different

values from its matching step, i.e., it has a different data
flow;

• s.type=IDT: the step s is exactly the same with its
matching step in terms of the source code, data flow,
and control flow.

Note that, SRC is not exclusive from CTL and DAT.

3.3 Difference with Existing Approaches
We summarize the differences between our approach and
existing approaches [24], [26] in three folds. First, we ad-
dress different alignment problem from that of existing
solutions [24], [26]. We align traces derived from running
same input for two different versions of program and they
align traces derived from running two different inputs for
the same version of program. Second, existing solutions
derive tree from trace via control flow point of view, in
contrast, our approach derives tree from trace via iteration
point of view. That is, they transfer a trace step into a non-
leaf node in the tree if it is either a selection or loop, while
we only transfer a trace step into a non-leaf node only if it is
a loop. Iteration-based alignment has a coarser granularity,
nevertheless, we show that it (1) has all the information to
align the trace and (2) allows relaxation technique for better
accuracy in our program settings. Third, our approach uses

1:void example(int x){
2: int a = 0;
3: int b = 0;
4:
5: a=1;
6: assert(a>0)
7:}

(a) Original Code

1:void example’(int x){
2: int a = 0;
3: int b = 0;
4: if(x>0)
5: a=1;
6: assert(a>0)
7:}

(b) Regression Code
Fig. 11: Two versions P and P ′ for trace alignment.

relaxation technique to handle the effect introduced by the
code changes.

3.4 Alignment Slicing and Mending
Rationale. Based on the result of trace alignment, given a
step s on either trace, s can be a clue to find the root cause
if s.type 6=IDT. Starting from a step s where the failure is
manifested, the rationale of alignment slicing and mending
is to keep asking why and why not questions so that we can
track back from s to its root cause. In particular, alignment
slicing is used for answering why questions while alignment
mending is used for answering why-not questions.

Given a trace step s, if s.type 6=IDT, it could be caused
by either (1) different data flow (i.e., s.type=DAT) from that
in the other trace, (2) different control flow (i.e., s.type=CTL)
from that in the other trace, and (3) code modification (i.e.,
s.type=SRC). In the following, we first discuss different
data and control flow, and discuss the code modification
at the end.

If s.type=DAT, there must be a variable var read by s and
its match s.match so that the value of var in s (denoted as
val) is different from that in s′ (denoted as val′). Therefore,
we asks the following two questions:
• Data Why Question: Why the value of variable var is
val?

• Data Why-not Question: Why the value of variable var
is not val′?

Data Slicing and Mending. As for answering data why
question, we apply data slicing on the variable var on s.
More specifically, we locate the data dominator of s with
regard to var, i.e., the latest step before s which defines
var, denoted as dd(s, var). The variable definition behavior
of dd(s, var) directly answers why variable var is of a
different value from that in s.match. As for answering data
why-not question, we first locate s.match and compute
dd(s.match, var). As a result, we need to check three more
steps, i.e., dd(s, var), s′.match, and dd(s.match, var). Algo-
rithm 2 shows how we collect the set of steps through data
slicing and mending process.

Algorithm 2: dataSlicingAndMending(Trace π,
Trace π′, Step s)
1 varSet← {var|var reads different value in s};
2 set← ∅;
3 for var in varSet do
4 sd ← dd(s, var);
5 s′d ← dd(s.match, var);
6 set← set ∪ {sd, s′d, s.match}
7 return set;

Fig. 11 shows an example and the execution traces T
and T ′ for Fig. 11a and Fig. 11b is showed in Fig. 13.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

2

3

5

6

2'

4'

6'

5'

3'

Fig. 12: CFG for Control Mending Example

1 2 3

4'

5 6
 T

(original)

1' 2' 3' 5' 6'
T

(regression)

a

a

control
dependency

trace
alignment

Legend
data
dependency

code
alignment

Fig. 13: Example of Alignment Slicing and Mending

The change is that an if-statement is added in line 4. For
formatting reason, we let the original line 4 be an empty
line. Let the input be x=0, then both traces have 5 steps, i.e.,
T = 〈1, 2, 3, 5, 6〉 and T ′ = 〈1′, 2′, 3′, 4′, 6′〉. For simplicity,
we use line number in Fig. 11 to indicate the CFG node num-
ber, as showed in Fig. 12. In Fig. 13, we represent the data
dependency with solid lines and control dependency with
dashed lines. Suppose we are looking at the step T [5] (i.e.,
T [5].node=6). Based on the alignment result, T [5].match =
T ′[5]. Moreover, the value of variable a in T ′[5] is 0 while
that that in T [5] is 1. Thus, T [5].type=DAT. In such case, we
apply data slicing for T [5] on variable a to reach T [4], and
apply data mending on T [5] to reach T ′[5] and T ′[2].

Given a trace step s, if s.type=CTL, i.e., s.match = ε, we
asks the following two questions:
• Control Why Question: Why s is executed?
• Control Why-not Question: Why s.match is not exe-

cuted?
Control Slicing and Mending. As for answering control
why question, we apply control slicing on s. More specif-
ically, we locate the control dominator of s (denoted as
cd(s)), i.e., the latest step before s so that its CFG node
is control depended by s.node. The flow altered by cd(s)
directly answers why step s is executed. As for answering
control why-not question, we conduct control mending as
follows. First, we locate the source code (or CFG node)
n′ = match(s.node). Then, we locate the latest step s′

which makes n′ fail to be executed. As a result, we need
to check two more steps cd(s) and s′, as well as a static
source code n′. Algorithm 3 shows how we collect the set of
steps through control slicing and mending process.

Algorithm 3: controlSlicingAndMending(Trace π,
Trace π′, Step s)
1 sc ← cd(s);
2 n′ ← match(s.node);
3 s′c ← the controlling step in π′ to make n′ unexecuted;
4 return {sc, s′c};

For example in Fig. 11 and Fig. 13, suppose we are

looking at the step T [4] (as it is the answer for why the value
of variable a read by T [5] is not 1?). The control slicing will
reach the step f calling the example() method. The control
mending will first locate the source code line 5 at Fig. 11b.
Then, we can locate T ′[4] as it is the latest step which makes
line 5 fail to be executed.

Now, we discuss the case when s′.type=SRC. Given
regression code can be complicated (e.g., refactoring and
feature enhancement), we take a conservative strategy so
that we conduct both data/control slicing and mending.

Algorithm 4: AlignSliceMend(Trace π, Trace π′,
Step s′w)

1 worklist← {s′w};
2 reasonSet← {s′w};
3 while worklist 6= ∅ do
4 s← worklist.pop();
5 setd, setc ← ∅;
6 if s.type=SRC then
7 setd ← dataSlicingAndMending(π, π′, s);
8 setc ← controlSlicingAndMending(π, π′, s);

9 else if s.type=DAT then
10 setd ← dataSlicingAndMending(π, π′, s);

11 else if s.type=CTL then
12 setc ← controlSlicingAndMending(π, π′, s);

13 for s ∈ Setd ∪ Setc do
14 if !isVisited(s) then
15 worklist← worklist ∪ {s};
16 reasonSet← reasonSet ∪ {s};

17 return reasonSet;

Algorithm 4 presents the pseudo-code for alignment
slicing and mending. Its input are two traces π and π′, and
a step s′w where the failure manifests. Its output is a step
set reasonSet, including the steps on both traces which
can serve as the explanation for s′w. The algorithm starts
with a worklist worklist containing only s′w (line 1). We
pop out and check each step in worklist (line 4). Each time
we reach a new non-IDT step through data/control slicing
and mending, we add it into worklist and reasonSet (line
13–16). Note that, when applying data slicing and mending
(line 7 and 10) on a step s, we locate the data dominator for
every read variable in s of different value with those read
in s.match. Finally, we return reasonSet which records all
the checked steps once appearing in worklist.
Explanation Manifestation. When we have the returned
reasonSet from Algorithm 4, it is straightforward to con-
vert it into a bipartite graph Gb = 〈Gc, Gb, E〉 in which
Gc = {sc|sc ∈ reasonSet ∧ sc ∈ T}, Gb = {sb|sb ∈
reasonSet ∧ sb ∈ T ′}, E = {(sc, sb)|sc matches sb ∧ sc ∈
Gc ∧ sb ∈ Gb}. Moreover, for the steps in Gc or Gb, we can
also manifest the control or data dependence relation among
them. The generated explanation for the example in Fig. 11
is showed in Fig. 14.

With the causality graph showed in Fig. 14, program-
mers can (1) know where is the failure inducing change (in
this case, T ′[4]) and (2) how such change can propagate
the error to the final observable failure. In this case, the
user can confirm the reported failure inducing change with
the following causality chain: The fact that variable a is
incorrect is due to the assignment is miss-executed; the fact

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

4'

5 6
 T

(original)

2' 5' 6'
T

(regression)

a

a

control
dependency

trace
alignment

Legend
data
dependency

code
alignment

Fig. 14: Example of Explanation for Fig. 11

of miss-execution of the assignment is due to the addition
of a change in line 4. The causality chain also allows an
interactive tool for users to explore the causality chain, a
demo video is available in [29].

4 IMPLEMENTATION

We implement our approach to support both C/C++ and
Java programs. Both tools implement our approach. The
C++ version is available at [30], which is based on PIN
tool [35]. The Java version is available at [29], which is
based on JVM instrumentation technique. Both PIN and
Java instrumentation allows us to retrieve various runtime
information, e.g., execution trace, read/written variable in-
formation, etc.

Noteworthy, we also support user to explore the ex-
planation in an interactive manner. A demo video can be
checked at [29]. Trace are visualized into our abstraction tree
mentioned in Section 3.2. Our tool first visualize the regres-
sion and original traces in left and right views. When the
programmer clicks a step on a trace, we can (1) highlight its
matched step in the other trace, (2) compare its read/written
variables and (3) compare the corresponding source code in
the eclipse editor. Programmer can choose to apply slicing
and mending for each step as well. Based on our tool,
programmer can explore how the defects propagate from
the root cause in a more vivid and understandable way.

5 EVALUATION

We evaluate our approach with a comparative experiment
and an applicability experiment. In the comparative ex-
periment, we apply our technique along with dynamic
slicing, delta-debugging and symbolic execution technique
on 24 Linux programs. The comparative experiment helps
us to understand both the advantage and disadvantage of
our approach over existing state-of-the-art approaches. In
the applicability experiment, we apply our technique on
298 Defects4J bugs [36] where the changes between the
correct and buggy version includes only bug fixing. In
contrast to the comparative experiment which evaluates
the (dis)advantages of our approach, we use 298 Defects4J
bugs as “tests” for our approach to help us understand the
scenarios where our trace-based approach can and cannot
work with larger scale of bugs, providing guidance for the
practical use of our approach.

5.1 Comparative Experiment
In the comparative experiment, we evaluate how accurate is
ERASE to isolate the root causes of real-world regressions

comparing to state-of-the-art tools. We aim to answer the
following research questions in this experiment:
• RQ1: How accurate is ERASE to isolate the root causes

of real-world regressions?
• RQ2: How much effort is required to inspect the expla-

nation of real-world regressions?
• RQ3: What is the runtime performance of ERASE on

real-world regressions?

5.1.1 Experiment Setup
We collected 24 regressions in this experiment to com-
pare our approach with dynamic slicing [10], augmented
delta debugging (ADD) [15], and symbolic approach
(AFTER) [20]. In this experiment, we implemented dy-
namic slicing in ERASE for comparison. Given that the
tools of ADD and AFTER are not available, we reuse their
experimental results (including accuracy and runtime per-
formance) to compare with our approach. In this regard,
we select the subject regressions as follows. We select all
12 regressions used in Yu et al.’s ASE’12 work (ADD) [15]
and all 7 regressions used in Yi et al.’s ICSE’15 work
(AFTER) [20]. Note that, Yi et al. [20] selected 7 regressions
from the 12 regressions in the evaluation of ADD [15]. Thus,
we have 7 regressions to compare all four approaches, and
5 (i.e., 12 - 7) regressions to compare dynamic slicing, ADD,
and ERASE. Moreover, in order to generalize the results,
we additionally choose 12 regressions with the criteria of
large number of modifications and large program size. For
large number of modifications, we select 8 regressions from
CoREBench regression benchmark [37]. CoREBench regres-
sion benchmark has 4 projects, and we select 2 regressions
with largest number of modifications from each project. For
large program size, we select 4 regressions with average
664K lines of code (note that the largest program used in
CoREBench has only 191K lines of code). Given the tools
of ADD and AFTER are not available, we compare ERASE
with dynamic slicing on these 12 regressions. Readers can
refer to Table 2 for more details of all 24 subject regressions.

As the configuration for the subject regressions are very
different and even CoREBench does not report failure in-
ducing changes, we manually run ERASE on all 24 regres-
sions, isolate the failure inducing changes by reading the
source code and bug description, and calculate precision
and recall for the reported failure inducing changes. In this
experiment, the changes reported are based on source code
line. Thus, we compare the reported changed lines covered
by causal graph with the reported changed lines by state-of-
the-art approaches. Given the set of all reported changes as
A, the set of reported failure inducing changes as TP , the
set of all failure inducing changes as Root The precision p

is calculated by p = |TP |
|A| and the recall r is calculated by

r = |TP |
|Root| .

This comparative experiment is conducted on 32-bits
Ubuntu 12.0 with 3.5GHz Intel Xeon E5 CPU and 8G RAM.

5.1.2 Results
Table 3 shows the results of this comparative experiment,
where each line indicates a subject regression, and their
details including program name, size, the trace length of
passing and failing version, number of modifications (#Ch),

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2: Subject Regressions Overview
Name LoC (K) Pass Fail Regression Description Report Site

bench-
mark

in
ICSE’15
(AFTER)

and
ASE’12
(ADD)

find-a 24 4.2.15 4.2.18 Using -L/-H produces
wrong output http://savannah.gnu.org/bugs/?12181

find-b 40 4.3.5 4.3.6 Using -mtime produces
wrong output http://savannah.gnu.org/bugs/?20005

find-c 40 4.3.5 4.3.6 Using -size produces
error message http://savannah.gnu.org/bugs/?30180

make 23 3.8 3.81 Using -r produces
wrong output http://savannah.gnu.org/bugs/?20006

bc 10 1.05a 1.06 Argument processing
error http://bugs.gentoo.org/show bug.cgi?id=51525

diff 20 2.8.1 2.9.2 Adds additional newline http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832
gwak 20 2.8.1 2.9.2 Adds additional newline http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832

bench-
mark

in
ASE’12
(ADD)

grep 6 2.5.4 2.6 Using -include produces
wrong output http://savannah.gnu.org/bugs/?29876

indent 15 2.2.9 2.2.10 Adds too many newlines http://savannah.gnu.org/bugs/?27036
tar 21 1.13.25 1.13.90 Wrong uid display http://lists.gnu.org/archive/html/bug-tar/2004-10/msg00034.html

ls 87 6.7 6.8 Using -x produces
wrong output http://lists.gnu.org/archive/html/bug-coreutils/2007-04/msg00000.html

bash 20 2.8.1 2.9.2 Adds additional newline http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=577832

CoRE-
Bench
(large

number
of

modi-
fica-

tions)

make-1 23 3.8 3.81 cannot turn off implicit
rules for %.c and %.tex http://savannah.gnu.org/bugs/?18622

make-2 24 3.81 3.82 incorrect order only
parsing in patterns http://savannah.gnu.org/bugs/?31155

grep-1 6 2.5.4 2.6 two options -i and -n do
not work well http://lists.gnu.org/archive/html/bug-grep/2012-08/msg00012.html

grep-2 6 2.5.4 2.7 Core dump with
pattern ’(ˆ—)*(—$)’ http://savannah.gnu.org/bugs/?33547

find-1 40 4.3.5 4.3.6 incorrect error message
on invalid argument http://savannah.gnu.org/bugs/?28824

find-2 49 4.3.2 4.3.5 using -mtime -2 error http://savannah.gnu.org/bugs/?20139

coreutils-1 91 6.7 7.3 rm -I vs. rm
–interactive=once https://debbugs.gnu.org/cgi/bugreport.cgi?bug=9308

coreutils-2 107 7.4 7.5 tail –retry not re-
attempting to open file http://lists.gnu.org/archive/html/coreutils/2013-04/msg00003.html

bench-
mark
(large
size)

global 217 6.3.3 6.3.4 Failed to parse template http://lists.gnu.org/archive/html/bug-global/2016-08/msg00000.html
gettext-a 805 0.18.3 0.19.6 Mangling C escapes http://savannah.gnu.org/bugs/?46756
gettext-b 861 0.19.6 0.19.7 Glade file error http://lists.gnu.org/archive/html/bug-gettext/2016-01/msg00002.html
gettext-c 758 0.18.1 0.18.2 Behavior change http://savannah.gnu.org/bugs/?func=detailitem&item id=39157

number of executed modifications (#Exec Ch), number of
actual failure inducing changes (#R), as well as the precision
(Pre), recall (Rec), and runtime overhead (Time) for each
approach. Particularly, the executed modifications refer to
the covered changes by the test case executing on either the
regression version or the original version of the program.

5.1.2.1 RQ1 (Accuracy): From Table 3, we can have
the following conclusions. First, dynamic slicing achieves
good recall (100.0% for 7 regressions, 95% for 12 regressions,
and 97% for 24 regressions) with great cost of precision (6%
for 7 regressions and 6% for 12 regressions, and 4% for 24
regressions). Second, ADD is outperformed by AFTER and
ERASE in terms of both precision and recall. Third, AFTER
is comparable to ERASE in terms of recall but reports more
false positive than reported by ERASE. We qualitatively
analyze the above conclusion as follows.

Dynamic Slicing’s Great Sacrifice. Dynamic slicing slices
the steps on the regression trace through every data and
control dependency. As the data and control dependencies
are usually abundant in program trace, it leads to a large
number of reported steps. Therefore, it is not a surprise
to see dynamic slicing achieves good recall with severe
cost of precision. Nevertheless, dynamic slicing may still
miss reporting failure-inducing change when some code is
missed or misses execution in either regression or original
version.

For example, dynamic slicing misses reporting a failure-
inducing change in program indent, which is showed in

Listing 1: Dynamic Slicing Misses Change in indent program
1 +#if 0
2 + ...
3 + if(...)
4 + prefix_blankline_requested = 0;
5 + ...
6 +#endif

Listing 1. Its root cause lies in line 3 of Listing 1 where
the boolean expression in if-condition should have been
evaluated to true in the regression version. Thus, line
4 (i.e., prefix blankline requested = 0) is not exe-
cuted. Note that dynamic slicing can only slice the in-
correct data and control flow instead of missing flows.
Hence, it cannot reach line 4 when slicing through the
prefix blankline requested variable (as it is not exe-
cuted). As a result, such a change is missed. In contrast,
ERASE can report the change by comparing with the origi-
nal trace via alignment mending technique.
ADD’s Inherence Disadvantage. ADD’s disadvantage in
accuracy lies in that ADD regards the program logics as
a black box and inducing failure-inducing change with a
trial-and-error strategy through reverting changes. In con-
trast, AFTER and ERASE consider program semantics in
terms of data and control dependencies. In the trial-and-
error strategy, ADD regards a change as failure-inducing as
long as its reversion can make the test case pass. In such
case, ADD may induce inaccuracy. Taking find-a program for
example. The regression in find-a program has two failure-
inducing changes, however, ADD only report one of them. In

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 3: Experiment Result
Trace Length Dynamic Slicing ADD AFTER ERASEProgram LoC (K) Pass Fail #Ch #Exec

Ch #R Pre Rec Time (s) Pre Rec Time (s) Pre Rec Time (s) Pre Rec Time (s)
find-a 20 2853 941 72 19 2 0.13 1.00 9.8 1.00 0.50 17 1.00 1.00 125 0.67 1.00 18.1
find-b 40 6357 6360 244 20 1 0.09 1.00 104 0.08 1.00 61 0.20 1.00 321 1.00 1.00 110.9
find-c 40 634 630 244 3 1 0.50 1.00 9.6 1.00 1.00 10 1.00 1.00 39 1.00 1.00 78.3
make 23 52526 35188 1292 269 4 0.04 1.00 118.5 0.06 1.00 1833 0.67 1.00 946 0.80 1.00 76.3
bc 10 40772 29 420 15 1 0.25 1.00 15 1.00 1.00 25 1.00 1.00 12 1.00 1.00 21.4
diff 20 2741 2885 372 59 1 0.02 1.00 24.7 1.00 1.00 45 1.00 1.00 31 0.33 1.00 33.4
gawk 20 8988 9771 701 2 1 0.50 1.00 128.6 1.00 1.00 73 1.00 1.00 5 1.00 1.00 46.5

All

overall 24.7 16410.1 7972.0 477.9 55.3 1.6 0.06 1.00 58.6 0.12 0.91 294.9 0.65 1.00 211.3 0.73 1.00 55.0
grep 6 2178 1358 596 53 3 0.13 1.00 27.7 0.14 1.00 / / / / 1.00 1.00 35.6
indent 15 10538 10723 802 47 1 0.00 0.00 58.5 0.50 1.00 / / / / 1.00 1.00 25.5
tar 21 5725 6059 619 51 1 0.04 1.00 22.1 0.00 0.00 / / / / 0.33 1.00 25.3
ls 87 1450 1401 73 13 2 0.14 1.00 13.5 0.18 1.00 / / / / 1.00 1.00 134.6
bash 20 111905 116345 1249 68 1 0.05 1.00 208.1 0.50 1.00 / / / / 0.50 1.00 106.3

DS
vs

AD
vs
ER overall 26.8 20555.6 15974.2 557.0 51.6 1.6 0.06 0.95 61.7 0.1 0.9 / / / / 0.73 1.00 59.4

make-1 23 77781 81466 1404 188 1 0.01 1.00 96.3 / / / / / / 0.33 1.00 36.2
make-2 23 433075 431620 2092 464 2 0.01 1.00 158.9 / / / / / / 0.50 1.00 75
grep-1 6 6705 5913 1428 93 1 0.03 1.00 25.6 / / / / / / 0.50 1.00 52.4
grep-2 6 4061 2848 1549 95 1 0.08 1.00 23.1 / / / / / / 1.00 1.00 53.4
find-1 40 538 544 1328 25 2 0.13 1.00 10.8 / / / / / / 0.50 1.00 110.6
find-2 40 7732 8384 1147 93 1 0.02 1.00 15.5 / / / / / / 0.33 1.00 134
coreutils-1 91 557 523 2531 38 1 0.09 1.00 9.8 / / / / / / 1.00 1.00 83.1
coreutils-2 107 4621 659 662 43 2 0.11 1.00 13.2 / / / / / / 1.00 1.00 75.4
global 217 119016 101140 24 13 1 0.14 1.00 2032.1 / / / / / / 0.33 1.00 1877.6
gettext-a 805 200753 214485 851 364 1 0.01 1.00 1306.2 / / / / / / 0.25 1.00 619.4
gettext-b 861 213847 215028 225 117 2 0.03 1.00 2837.7 / / / / / / 0.33 1.00 758.9
gettext-c 758 223464 223480 237 50 1 0.05 1.00 1806.4 / / / / / / 0.33 1.00 716

DS
vs
ER

overall 137.5 64117.4 61574.2 840.1 91.8 1.5 0.04 0.97 378.2 / / / / / / 0.56 1.00 221.0

Listing 2: False Positive of AFTER in find-b program
1 - if(get_comp_type(&s, &comp))
2 + if(get_comp_type(&timearg, &comp))

these two failure-inducing changes, the code of one change
invokes the code of the other, and the test case fails once
the latter change is triggered. Therefore, as long as ADD
reverts the former change, the code of the latter change
would not be triggered. As a result, ADD reports only one
change. In contrast, both AFTER and ERASE can track
through data flow (AFTER tracks the data flow by solving
the weakest precondition and ERASE tracks the data flow
by data slicing) so that both the failure-inducing changes
will be tracked through the causality chain.
Comparison Between AFTER and ERASE. In Table 3, we
can see that ERASE achieves the same recall with AFTER
while better precision than AFTER. We investigate the rea-
son for the ERASE’s advantage over AFTER. We observe
that, comparing to AFTER, ERASE can get rid of the
changes introduced by refactoring or re-implementing. Note
that ERASE matches the steps between original and re-
gression traces and apply data alignment slicing only when
the variable values of matched trace steps are different. As
refactoring or re-implementing the code of partial function
does not affect the values of their final written variables,
ERASE can avoid reporting such changes. Note that, AF-
TER needs to transfer code into a conjunctive predicate P , as
long as minimum satisfiable core of P involves refactoring
or re-implementation code, it incurs false positive. Listing 2
shows a non-failure inducing change (i.e., rename) reported
by AFTER as failure-inducing change in find-b program,
which does not affect the control/data dependency.
False Positive Reported by ERASE. ERASE may include
more changes than failure-inducing ones when an irrelevant
change appears in the propagation of the regression bug.
Listing 3 shows an example for diff program where the

Listing 3: Additional Change in diff program
1 + while((char const*)p < suffix_begin)
2 - while(p< suffix_begin)

change (casting data type) appears in the cause of alignment
slicing and mending. ERASE conservatively reports the
change as failure-inducing as the change is control depen-
dent by the observable faulty step. Nevertheless, with the
explanation (i.e., causality graph) presented to the develop-
ers, it is convenient for them to manually inspect the false
positives of ERASE.

5.1.2.2 RQ2 (Effort for Inspecting Explanation):
ERASE also reports explanation in terms of causal graph.
We investigate the inspecting effort by the size of generated
causal graph. Table 4 shows the comparison between the
reported steps in by dynamic slicing (DS) and the reported
explanation by ERASE. In Table 4, we show the reported
steps by dynamic slicing and ERASE on both passing and
failing traces. Moreover, we also show the times of steps
reported by dynamic slicing over that of ERASE (i.e., Adv
(times)). We can see that dynamic slicing reported on aver-
age 7175.0 (3104.5 + 4046.5) steps for each regression, which
is overwhelmingly large for developers to check. In contrast,
ERASE reports a more reasonable number of explanation,
i.e., on average 30.2 (13.1 + 17.1) steps).

5.1.2.3 RQ3: Performance: As showed in Table 3,
in terms of the performance overhead, ERASE incurs less
runtime overhead than dynamic slicing (221.0s vs 378.2s),
ADD (55.0s vs 294.9s), and AFTER (55.0s vs 211.3s). In
addition, we further investigate the runtime performance
of ERASE, as shown in Table 5.

The time overhead of ERASE is divided into five parts:
Diff includes the time for source code comparison and
rearrangement, Execution presents the time for executing
the program and collecting the information, Dependence
is the time for computing dynamic control- and data-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

TABLE 4: Results reported by dynamic slicing and ERASE

Regression Trace Length Dynamic Slicing ERASE Adv
(times)Pass Fail Pass Fail Pass Fail

find-a 2853 941 210 252 8 10 25.7
find-b 6357 6360 635 607 17 14 40.1
find-c 634 630 204 184 3 5 48.5
make 52526 35188 4825 2796 8 36 173.2
bc 40772 29 6 7 1 3 3.3
diff 2741 2885 599 576 25 37 19.0
gawk 8988 9771 870 1303 8 3 197.5
grep 2178 1358 342 145 10 3 37.5
indent 10538 10723 516 5732 8 6 446.3
tar 5725 6059 1802 1768 9 8 210.0
ls 1450 1401 182 178 20 20 9.0
bash 111905 116345 12495 13694 15 23 689.2
make-1 77781 81466 4476 5367 22 31 185.7
make-2 433075 431620 3689 3976 18 23 187.0
grep-1 6705 5913 1035 983 13 15 72.1
grep-2 4061 2848 689 1054 9 15 72.6
find-1 538 544 135 236 8 7 24.7
find-2 7732 8384 752 775 18 15 46.3
coreutils-1 557 523 85 103 7 9 11.8
coreutils-2 4621 659 256 218 10 9 24.9
global 119016 101140 18716 18679 8 38 812.9
gettext-a 200753 214485 7291 7317 28 28 260.9
gettext-b 213847 215028 245 16727 3 19 771.5
gettext-c 223464 223480 14454 14438 38 34 401.3
average 64117.4 61574.2 3104.5 4046.5 13.1 17.1 198.8

TABLE 5: Runtime performance in four techniques
Regression Diff Execution Dependence Alignment S&M Total
find-a 8.2 8.7 0.9 0.2 0.1 18.1
find-b 84.7 15.6 6.5 3.5 0.6 110.9
find-c 66.1 8.0 1.1 3.0 0.1 78.3
make 12.2 27.4 34.3 1.0 1.4 76.3
bc 5.7 7.7 7.2 0.2 0.6 21.4
diff 8.8 14.4 9.6 0.4 0.2 33.4
gawk 15.2 11.2 14.2 4.6 1.3 46.5
grep 7.8 12.2 15.3 0.2 0.1 35.6
indent 7.9 10.7 6.0 0.6 0.3 25.5
tar 6.8 12.6 4.8 0.8 0.3 25.3
ls 117.6 8.2 4.9 3.5 0.4 134.6
bash 23.5 62.3 10.2 3.1 7.2 106.3
make-1 9.8 13.8 1.9 2.2 8.5 36.2
make-2 13.9 21.8 25.8 10.6 2.9 75.0
grep-1 16.3 8.7 18.2 6.9 2.3 52.4
grep-2 12.3 10.7 24.2 3.5 2.7 53.4
find-1 67.9 25.8 8.9 3.2 4.8 110.6
find-2 82.3 32.1 10.6 5.4 3.6 134.0
coreutils-1 36.9 15.9 25.9 1.2 3.2 83.1
coreutils-2 28.3 16.5 23.7 4.6 2.3 75.4
global 1704.8 31.1 137.0 1.1 3.6 1877.6
gettext-a 274.7 37.9 290.0 7.6 9.2 619.4
gettext-b 383.7 45.4 307.5 7.3 15.0 758.9
gettext-c 299.7 36.6 340.3 27.0 12.4 716.0
average 137.3 20.6 55.4 4.2 3.5 221.0

dependencies, Alignment lists the time for trace alignment,
and S& M is the time for performing alignment slicing and
mending. Note that ERASE computes dynamic data- and
control-dependencies and performs alignment slicing and
mending based on the practical demand for them.

As showed in Table 3, compared to techniques AFTER,
ADD and dynamic slicing, ERASE achieves the speedups of
4.03X, 4.69X and 1.71X, respectively. AFTER uses symbolic
execution and SMT sovler and ADD needs to repetitively
revert the modification and execute the program, ERASE
only needs to execute the original and regression version
once. Comparing to the time overhead in dynamic slicing
for computing almost every dynamic data- and control-
dependency, ERASE only focuses on those dependencies
different in original and regression version. Given that the

TABLE 6: Subject Bugs

Bugs in Repository Project TotalChart Closure Lang Math Mockito Time
Inspected Bugs 28 24 60 72 40 25 237
Discarded Bugs 0 109 5 34 8 2 158

Total 26 133 65 106 38 27 395

trace alignment and alignment slicing and mending takes
acceptable time, ERASE can output other approaches in
terms of efficiency.

5.1.3 Threats to Validity
The main threat in our study is that we can only compare
ERASE with ADD and AFTER on their reported regressions
as AFTER is not publicly available. In the future, we will
generalize the comparison results on more regressions by
implementing their approaches. Moreover, 24 real regres-
sions can still be not generalized enough. Nevertheless,
we have tried our best to mitigate this threat by sampling
regressions with different criteria to make our subject re-
gressions representative.

5.2 Applicability Experiment

We applied our approach on the bugs in Defects4J reposi-
tory [36]. Up till now, Defects4J repository records 395 real-
world bugs from 6 open source Java projects. For each bug in
the repository, it has a buggy version and fixed version, and
the changes between two versions include only bug fixing.
In our experiment, we regard the fixed version as the correct
version and buggy version as the regression version. Note
that, in this experiment, the changes from buggy version
to fixed version for each Defects4J bug are pure failure-
inducing change. Nevertheless, our trace-based approach
reports changes involved in alignment slicing and mending
process (see Section 3.4) as failure-inducing changes. Thus,
we would like to know whether those pure changes in
Defects4J bugs can always be reported by ERASE. The
rationale is that we regard those large number of bugs
as “tests” to evaluate the limitations of our approach to
understand and categorize the scenarios where ERASE can
and cannot work, providing guidance for the practical use
of our approach.

5.2.1 Subject Bugs
In this experiment, we use 298 out of 395 bugs in Defects4J
repository, as showed in Table 6. We discard 97 bugs because
either (1) the regression bug is trivial as the regression error
happens at last step on buggy trace, or (2) the buggy trace
or the fixed trace is over-long (i.e., over 1 million steps).

5.2.2 Result
Of the 298 Defects4J bugs, our approach localizes 265 bugs,
i.e., reports the steps executing the fixed code, which occu-
pies 88.9% of the bugs. We summarize the reasons of our
approach’s failure on the remaining 33 regression bugs in
Table 7.
Language Specific Implementation. The major reason (27+3
bugs) lies in that some language specific feature makes data
and control flow analysis fail, including the use of Java
native method and runtime exception. First, the use of Java
native method such as System.arrayCopy() causes some

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 7: Reasons for Failing Localizing the Root Cause
Reason Number
Java Native Method 27
Miss Control of Runtime Exception 3
Multi-thread 2
JVM Keyword Regulation 1

data flow missed. In addition, some runtime exception (e.g.,
try-catch structure) alters the control flow in an implicit way.
Missing such implicit exception-caused control flow breaks
the causality chain leading towards the root cause.
Multi-threaded program. Our current implementation only
supports recording trace steps for single-threaded pro-
grams. We may miss some steps when some key steps
happen in other threads than main thread. Multi-threaded
programs are out of the scope of this work. In order to fully
support localizing multi-thread regression bugs, we can
revise the trace matching algorithm described in Section 3.2.
We will address this issue as our future work.
Untraced Static Change. We also observed that some static
change may not be recorded in trace but they still take
effect in the execution. For example, in the 56th bug of
Lang project, the root cause lies in missing using transient
keyword. More specifically, without the transient modifier
to tell JVM not to serialize a field, the program mistakenly
serializes some fields, leading to a runtime exception. In
such case, we cannot trace to such a change as JVM plays a
role to deal with the effect of transient keyword.

5.2.3 Discussion
In this study, we can see that our approach is effective to
localize the root cause if the data and control dependence
is complete. Nevertheless, our approach requires recording
the whole trace of a program. We discard 52 bugs because
recording a long trace and building data and control depen-
dency are memory expensive. With regard to the scalability
of recording a program with long trace, we deem that a
more practical way of adopting our approach is to record
traces partially while incorporating the debugging process
with human feedback, as proposed in [38]. More specifically,
we may first ask programmers’ feedback for a small range of
suspicious code. Based on the range, we can record a small
portion of traces and apply alignment slicing and mending
on the fly to generate a partial causality graph. Programmers
may further provide feedback based on generated explana-
tion so that we can generate a new portion of traces and
apply our approach again. By this means, programmers
can interactively reach the root causes. We will leave the
implementation of such a strategy to our future work.

5.2.4 Threats to Validity
The major threat in our feasibility experiment lies in that we
discard 52 bugs whose trace length are over 1 million. Thus,
the performance of our approach on the regression bugs
with over 1 million steps is not clear. In the future, we can
try developing a more efficient trace collection technique to
generalize our finding to all the Defects4J bugs.

6 RELATED WORK

Program Slicing. A classical debugging technique is dy-
namic slicing [8] and its variants [2], [10], [39], [40], which

works on a single trace of the program and outputs state-
ments relevant to the slicing criterion. Thin slicing [39]
includes a subset of data-dependencies, data slicing [40]
includes all data-dependencies, full slicing [8] includes data-
and control-dependencies, relevant slicing [2], [10], and
data- and control-dependencies, also includes potential-
dependencies. The main difference between ERASE and
them is that ERASE alternatively and iteratively conducts
slicing and mending on the passing and failing traces.
Regression Fault Localization. Comparing to traditional
fault localization solution [38], [41], [42], regression fault
localization techniques usually can use the original version
as a reference to infer root cause. Most regression fault lo-
calization works are based on delta debugging [12], [13] and
symbolic analysis [16], [17]. Delta debugging pioneers this
field by isolating failure-inducing changes through reverting
different subsets of changes. Misherghi et al. [43] propose
hierarchical delta debugging (HDD) to improve the effect
of delta debugging on program inputs with hierarchical
structure. Artho et al. [44] propose iterative delta debugging
(IDD) [44] to enhance the technique by leveraging the whole
evolutionary history of the program. Effective as they are,
these approaches may miss the failure-inducing changes
due to reverting inappropriate subset of changes.

Another line of work are based on symbolic analysis
which regards the failure of a program execution as a
constraint solving problem. Banerjee et al. [45] propose
Golden to compute weakest precondition for the regression
version and report the change Yi et al. [20] propose AF-
TER in which they iteratively collect weakest preconditions,
compute unsatisfied core, and report the related changes as
failure inducing change. Qi et al. [33] propose DARWIN by
generating more passing test cases based on path constraints
so that they can improve the accuracy. Kim et al. [46]
propose Apex which can explain the program assignment
bugs by comparing the passing symbolic execution trace
of a correct implementation and the failing symbolic exe-
cution trace of the buggy implementation. They show that
their approach works well in small student programming
assignments, while its performance on large scale program
is yet investigated. Symbolic analysis based techniques are
usually novel and effective in isolating the failure-inducing
changes. Nevertheless, they usually suffer from scalability
problem.
Trace Alignment. The other line of work is to compare the
traces of the original and regression traces [23], [24], [28].
The work most similar to ERASE includes dual slicing [24],
and comparative causality [14], [23], [28]. Given two sched-
ules, one inducing the failure and the other not, the tech-
nique collects the two traces and compares them to identify
the differences. The causal relation between the differences
is connected by using dual slicing algorithm. Differential
slicing [23] produces a causal difference graph that captures
the input or environment differences that cause the target
differences, as well as a sequence of differences that lead
the program from the input or environment differences to
the target differences. comparative causality targets for two
executions with different test inputs. The major difference
is that existing approach is designed for aligning traces
derived from same program under execution of different
inputs or schedules, while our approach works is designed

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

for aligning traces derived from two version of programs of
the same input.
Change Impact Analysis. Change impact analysis [47], [48],
[49] determines the part of program will be affected by
applying certain change. Its researches mainly include call
graph based analysis [47], static slicing [50], dynamic slicing
and so on. However, applying all the above technique
in regression fault localization leads to over-approximated
impact sets. For example, dynamic slicing identifies change
impact with respect to the specific program executions.
In contrast, ERASE compares the original and regression
traces to avoid a lot of unnecessary program impact to be
inspected.

7 CONCLUSION

We presented a trace-based technique to isolate the failure-
inducing changes and generate a causality graph for ex-
plaining the failure. Given two versions of a program and a
test case that passes the old version while fails the new ver-
sion, ERASE aligns the passing and failing traces, and con-
ducts alignment slicing and mending to isolate the failure-
inducing changes. The experiments show that ERASE is
more accurate than the state-of-the-art techniques. In the
future, we will extend our work as an interactive approach
for more practical use.

8 APPENDIX

A traversal is a continuous dynamic walking process
on a CFG. Thus, we have the following matching crite-
ria: Two steps T [m] and T ′[m′] can be matched if and
only if (1) Tm−1 and T ′m′−1 are well aligned and (2)
match(T [m].node) = T ′[m′].node. Note that it is a recursive
definition in which matches T [m] and T ′[m′] based on
the alignment of Tm−1 and T ′m′−1. In this regard, we let
T [k] match T ′[k′] if there @i < k and i′ < k′ such that
match(T [i].node) = T ′[i′].node. That is, T [k] and T ′[k′] are
the first matched steps in each trace. Let the loop head of the
statically matched loops be lh and lh, and match(lh) = lh′

(e.g., the node 2 and 2’ in Fig. 8). Assume that (1) the first
iteration I in T starts at T [s] and ends at T [e], (2) the first
iteration I ′ in T ′ starts at T ′[s′] and ends at T ′[e′], and
(3) Ts−1 and T ′s′−1 are well aligned. Thus, T [s] is matched
to T ′[s′], further indicating that iteration I is matched to
iteration in I ′ (because of iteration boundary).

As we are discussing aligning steps running into repet-
itive CFG nodes, we can assume that the traverses T and
T ′ walk back to the loop heads after the first iterations.
Therefore, we have that T [s].node = T [e + 1].node = lh
and T ′[s′].node = T ′[e′+1].node = lh′. Thus, match(T [e+
1].node) = match(lh) = lh′ = T ′[e′+1].node. Moreover, Te
and Te′ are expected to be well aligned because of iteration
boundary. Hence, T [e+1] and T ′[e′+1] must be matched. As
they are the start of second iterations, the second iteration
in T is matched to the second iteration in T ′.

The same logic applies for the kth iterations until one
of two loops stop deriving new iteration (i.e., the traversal
walk out of the loop).

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for im-
proving this manuscript. This research has been partially
supported by the National Research Foundation, Prime
Ministers Office, Singapore, under its Corporate Labora-
tory@University Scheme, National University of Singapore
and under its National Cybersecurity R&D Program (Award
No.NRF2014NCR-NCR001-30) , Singapore Telecommunica-
tions Ltd., the Singapore Ministry of Education (MOE)
Academic Research Fund (AcRF) Tier 2 Grant, the Na-
tional Cybersecurity R&D Directorate, the National Satel-
lite of Excellence in Trustworthy Software Systems funded
by NRF Singapore under National Cyber-security R&D
(NCR) programme, National Key R&D Program of China
(2016YFB1000903), and National Natural Science Founda-
tion of China (61632015, 61721002, U1766215, 61833015).

REFERENCES

[1] Fabrizio Pastore, Leonardo Mariani, Antti EJ Hyvärinen, Grig-
ory Fedyukovich, Natasha Sharygina, Stephan Sehestedt, and Ali
Muhammad. Verification-aided regression testing. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014.

[2] Hiralal Agrawal, Joseph Robert Horgan, Edward W Krauser, and
Saul London. Incremental regression testing. In ICSM, pages 348–
357. Citeseer, 1993.

[3] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao,
Yangfan Zhou, and Lu Zhang. How does regression test prioriti-
zation perform in real-world software evolution? In Proceedings of
the 38th International Conference on Software Engineering, 2016.

[4] John Backes, Suzette Person, Neha Rungta, and Oksana Tkachuk.
Regression verification using impact summaries. In Model Checking
Software, pages 99–116. Springer, 2013.

[5] Valerio Terragni, Shing-Chi Cheung, and Charles Zhang. Recon-
test: Effective regression testing of concurrent programs. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, volume 1, pages 246–256. IEEE, 2015.

[6] Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and De-
wayne E Perry. An information retrieval approach for regression
test prioritization based on program changes. In Proceedings of the
37th International Conference on Software Engineering, pages 268–279.
IEEE Press, 2015.

[7] Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khur-
shid. Directed incremental symbolic execution. ACM Transactions
on Software Engineering and Methodology (TOSEM), 24(1):3, 2014.

[8] Bogdan Korel and Janusz Laski. Dynamic program slicing. Infor-
mation Processing Letters, 29(3):155–163, 1988.

[9] Mark Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, pages 439–449. IEEE Press, 1981.

[10] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. An efficient
relevant slicing method for debugging. In ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, pages 303–321, 1999.

[11] Yi Li, Julia Rubin, and Marsha Chechik. Semantic slicing of
software version histories. In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering, pages 686–696. IEEE,
2015.

[12] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng., 28, 2002.

[13] Andreas Zeller. Yesterday, my program worked. today, it does
not. why? In ACM SIGSOFT Symposium on Foundations of Software
Engineering, pages 253–267, 1999.

[14] William N Sumner and Xiangyu Zhang. Comparative causality:
Explaining the differences between executions. In Proceedings of
the 2013 International Conference on Software Engineering, pages 272–
281. IEEE Press, 2013.

[15] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Practical
isolation of failure-inducing changes for debugging regression
faults. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 20–29. IEEE, 2012.

[16] James C King. Symbolic execution and program testing. Commu-
nications of the ACM, 19(7):385–394, 1976.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee:
Unassisted and automatic generation of high-coverage tests for
complex systems programs. In OSDI, volume 8, pages 209–224,
2008.

[18] Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. Proba-
bilistic symbolic execution. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, pages 166–176. ACM,
2012.

[19] Saswat Anand, Corina S Păsăreanu, and Willem Visser. Jpf–se: A
symbolic execution extension to java pathfinder. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 134–138. Springer, 2007.

[20] Qiuping Yi, Zijiang Yang, Jian Liu, Chen Zhao, and Chao Wang.
A synergistic analysis method for explaining failed regression
tests. In IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 257–267. IEEE, 2015.

[21] W. N. Sumner and X. Zhang. Identifying execution points for
dynamic analyses. In 2013 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 81–91, 2013.

[22] D. H. Ahn, B. R. de Supinski, I. Laguna, G. L. Lee, B. Liblit,
B. P. Miller, and M. Schulz. Scalable temporal order analysis for
large scale debugging. In Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–
11, 2009.

[23] Noah M Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen
McCamant, Pongsin Poosankam, Daniel Reynaud, and Dawn
Song. Differential slicing: Identifying causal execution differences
for security applications. In 2011 IEEE Symposium on Security and
Privacy (SP), pages 347–362. IEEE, 2011.

[24] Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner, and
Suresh Jagannathan. Analyzing concurrency bugs using dual
slicing. In International Symposium on Software Testing and Analysis,
pages 253–264, 2010.

[25] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv
Gupta. Towards locating execution omission errors. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 415–424. ACM, 2007.

[26] Bin Xin, William N Sumner, and Xiangyu Zhang. Efficient pro-
gram execution indexing. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 238–248. ACM, 2008.

[27] Ulf Kargén and Nahid Shahmehri. Towards robust instruction-
level trace alignment of binary code. In IEEE/ACM International
Conference On Automated Software Engineering, ASE 2017, pages
342–352, 2017.

[28] Jens Meinicke, Chu-Pan Wong, Christian Kästner, and Gunter
Saake. Understanding differences among executions with vari-
ational traces. CoRR, abs/1807.03837, 2018.

[29] Java version of erase. https://github.com/llmhyy/tregression.
Accessed: 2018-07-02.

[30] C++ version of erase. https://github.com/macromachine/
ERASE. Accessed: 2018-07-02.

[31] Rylan Cottrell, Joseph J. C. Chang, Robert J. Walker, and Jörg
Denzinger. Determining detailed structural correspondence for
generalization tasks. In ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 165–174, 2007.

[32] Yun Lin, Xin Peng, Zhenchang Xing, Diwen Zheng, and Wenyun
Zhao. Clone-based and interactive recommendation for modifying
pasted code. In ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 520–531, 2015.

[33] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil
Vaswani. Darwin: An approach to debugging evolving programs.
ACM Transactions on Software Engineering and Methodology, 21(3):19,
2012.

[34] Yun Lin, Zhenchang Xing, Yinxing Xue, Yang Liu, Xin Peng, Jun
Sun, and Wenyun Zhao. Detecting differences across multiple
instances of code clones. In International Conference on Software
Engineering, pages 164–174, 2014.

[35] Pin. https://software.intel.com/sites/landingpage/pintool/
docs/81205/Pin/html/. Accessed: 2018-07-02.

[36] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A
database of existing faults to enable controlled testing studies for
java programs. In International Symposium on Software Testing and
Analysis, pages 437–440, 2014.

[37] Marcel Böhme and Abhik Roychoudhury. Corebench: Study-
ing complexity of regression errors. In Proceedings of the 23rd

ACM/SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA, pages 105–115, 2014.

[38] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong.
Feedback-based debugging. In International Conference on Software
Engineering, pages 393–403, 2017.

[39] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing.
ACM SIGPLAN Notices, 42(6):112–122, 2007.

[40] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic
slicing algorithms. In 25th International Conference on Software
Engineering, pages 319–329. IEEE, 2003.

[41] Haijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li,
Shengchao Qin, Yang Liu, and Ting Liu. Locating vulnerabilities
in binaries via memory layout recovering. In ESEC/FSE’9, pages
718–728, 2019.

[42] Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and
Jinsong Dong. Break the dead end of dynamic slicing: Localizing
data and control omission bug. In ASE 2018, pages 509–519, 2018.

[43] Ghassan Misherghi and Zhendong Su. Hdd: hierarchical delta
debugging. In Proceedings of the 28th international conference on
Software engineering, pages 142–151. ACM, 2006.

[44] Cyrille Artho. Iterative delta debugging. International Journal on
Software Tools for Technology Transfer, 13(3):223–246, 2011.

[45] Ansuman Banerjee, Abhik Roychoudhury, Johannes A Harlie, and
Zhenkai Liang. Golden implementation driven software debug-
ging. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, pages 177–186.
ACM, 2010.

[46] Dohyeong Kim, Yonghwi Kwon, Peng Liu, I. Luk Kim,
David Mitchel Perry, Xiangyu Zhang, and Gustavo Rodriguez-
Rivera. Apex: Automatic programming assignment error explana-
tion. In OOPSLA 2016, pages 311–327, 2016.

[47] Robert Arnold and Shawn Bohner. Software Change Impact Analysis.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1996.

[48] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg
Rothermel, and Mary Jean Harrold. An empirical comparison of
dynamic impact analysis algorithms. In Proceedings of the 26th
International Conference on Software Engineering, pages 491–500,
Washington, DC, USA, 2004. IEEE Computer Society.

[49] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia
Chesley. Chianti: A tool for change impact analysis of java
programs. In Proceedings of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, pages 432–448, New York, NY, USA, 2004. ACM.

[50] Mithun Acharya and Brian Robinson. Practical change impact
analysis based on static program slicing for industrial software
systems. In Proceedings of the 33rd International Conference on
Software Engineering, pages 746–755, New York, NY, USA, 2011.
ACM.

Haijun Wang received the Ph.D. degree in sys-
tem engineering from School of Electronic and
Information, Xi’an Jiaotong University, China. He
is currently a Research Fellow at Nanyang Tech-
nological University, Singapore. His research
interests include program analysis, regression
testing, fault localization and software security.

Yun Lin is a Senior Research Fellow in School of
Computing, National University of Singapore. He
received his Ph.D. degree from Fudan University,
China. His research interest is software engi-
neering, his work includes code recommenda-
tion, software testing, and software debugging.

https://github.com/llmhyy/tregression
https://github.com/macromachine/ERASE
https://github.com/macromachine/ERASE
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Zijiang Yang is an associate professor in com-
puter science at Western Michigan University.
He holds a Ph.D. from the University of Penn-
sylvania, an M.S. from Rice University and a B.S.
from the University of Science and Technology of
China. Before joining WMU he was an associate
research staff member at NEC Labs America.
He was also a visiting professor at the University
of Michigan from 2009 to 2013. His research
interests are in the area of software engineering
with the primary focus on the testing, debugging

and verification of software systems. He is a senior member of IEEE.

Jun Sun is currently an associate professor at
Singapore University of Technology and Design
(SUTD). He received Bachelor and PhD degrees
in computing science from National University of
Singapore (NUS) in 2002 and 2006. In 2007,
he received the prestigious LEE KUAN YEW
postdoctoral fellowship. He has been a faculty
member of SUTD since 2010. He was a visiting
scholar at MIT from 2011-2012. Jun’s research
interests include software engineering, formal
methods, program analysis and cyber-security.

He is the co-founder of the PAT model checker.

Yang Liu graduated in 2005 with a Bachelor of
Computing (Honours) in the National University
of Singapore (NUS). In 2010, he obtained his
PhD and started his post doctoral work in NUS,
MIT and SUTD. In 2012 fall, he joined Nanyang
Technological University (NTU) as a Nanyang
Assistant Professor. He is currently an associate
professor and Director of the cybersecurity lab in
NTU. Dr. Liu specializes in software verification,
security and software engineering. His research
has bridged the gap between the theory and

practical usage of formal methods and program analysis to evaluate the
design and implementation of software for high assurance and security.
By now, he has more than 250 publications in top tier conferences and
journals. He has received a number of prestigious awards including
MSRA Fellowship, TRF Fellowship, Nanyang Assistant Professor, Tan
Chin Tuan Fellowship, and 8 best paper awards in top conferences like
ASE, FSE and ICSE.

Jinsong Dong is a Professor in School of Com-
puting, National University of Singapore. He
received his Ph.D. degree from University of
Queensland, Australia. His research interest is
software engineering, program analysis, formal
verification, and model checking.

Qinghua Zheng is a professor in School of
Computer Science, Xian Jiaotong University,
China. He received the B.S. degree in computer
software in 1990, the M.S. degree in computer
organization and architecture in 1993, and the
Ph.D. degree in system engineering in 1997
from Xian Jiaotong University, China. He was a
post-doctoral researcher at Harvard University in
2002. His research areas include computer net-
work security, intelligent e-learning theory and
algorithm, multimedia e-learning, and trustwor-

thy software.

Ting Liu is a professor in School of Cyber Sci-
ence and Engineering, Xian Jiaotong University,
China. He received his B.S. and Ph.D. degree
from Xian Jiaotong University, in 2003 and 2010.
He was a visiting professor at Cornell from 2016-
2017. His research interests include software
engineering and cyber-physical system.

	Explaining regressions via alignment slicing and mending
	Citation
	Author

	Introduction
	Motivating Example
	Illustrating ERASE
	Comparing to Other Approaches

	Methodology
	Code Alignment
	Trace Alignment
	Iteration Order Based Principle
	Adapting Source Code Change
	Extension to Function Call
	Overall Alignment Algorithm
	Alignment Result Taxonomy

	Difference with Existing Approaches
	Alignment Slicing and Mending

	Implementation
	Evaluation
	Comparative Experiment
	Experiment Setup
	Results
	Threats to Validity

	Applicability Experiment
	Subject Bugs
	Result
	Discussion
	Threats to Validity

	Related Work
	Conclusion
	Appendix
	References
	Biographies
	Haijun Wang
	Yun Lin
	Zijiang Yang
	Jun Sun
	Yang Liu
	Jinsong Dong
	Qinghua Zheng
	Ting Liu

