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Abstract—Passive human detection and localization serve as
key enablers for various pervasive applications such as smart
space, human-computer interaction and asset security. The pri-
mary concern in devising scenario-tailored detecting systems is
the coverage of their monitoring units. In conventional radio-
based schemes, the basic unit tends to demonstrate a directional
coverage, even if the underlying devices are all equipped with
omnidirectional antennas. Such an inconsistency stems from the
link-centric architecture, creating an anisotropic wireless propa-
gating environment. To achieve an omnidirectional coverage while
retaining the link-centric architecture, we propose the concept
of Omnidirectional Passive Human Detection, and investigate to
harness the PHY layer features to virtually tune the shape of the
unit coverage by fingerprinting approaches, which is previously
prohibited with mere MAC layer RSSI. We design the scheme
with ubiquitously deployed WiFi infrastructure and evaluate it
in typical multipath-rich indoor scenarios. Experimental results
show that our scheme achieves an average false positive of 8%
and an average false negative of 7% in detecting human presence
in 4 directions.

I. INTRODUCTION

The ubiquity of wireless devices has triggered the triple

convergence of pervasive, context-aware and human-centric

computing, where the ability to detect nearby human presence

plays a central role in various scenario-tailored applications.

Particularly, the situation where the person carries no devices,

is termed as Device-free [1] or Passive Human Detection
(PHD). Device-free detection is especially advantageous in

secured region monitoring and emergency response like fire

alarms. Such passive detecting manner is also crucial in

context-aware computing, due to the raising demand for differ-

entiated quality of location-based services (LBS). For instance,

infrared devices are commonly employed for directional hu-

man detection applications (e.g. the doors of elevators), while

museum exhibitions might expect disk detection range so as

to display item-specific information for surrounded visitors

in all directions. Although disk-like proximity detection can

be achieved by radar based techniques, the expense for the

dedicated infrastructure hampers viability. The pervasively

deployed WLAN, in contrast, also holds potential for such

purpose without extra cost. As an illustration, a laptop store

might exploit the computers on the shelves to detect nearby

customers in order to display their new properties, while

simultaneously rating the computers’ popularity according to

the total customer staying time.

The state-of-the-art in passive human detection varies in

the underpinning infrastructure [1] [2] [3] [4] [5], and the

monitoring unit can be either a single RX in camera-based

solutions or a TX-RX link in infrared and radio based methods.

In radio-based schemes, the impact of human presence on the

radio signals is correlated to certain variation of the received

signals, where RSSI enjoys sheer prevalence due to its handy

accessibility [1] [3] [6]. Nevertheless, RSSI tends to be a

fickle indicator. To compensate for its unreliability, Wilson

et al. [3] proposed the Radio Tomographic Imaging (RTI),

which embraces the redundancy introduced by dense-deployed

sensors to visualize the human induced RSSI attenuations.

However, as the links are interweaved to create a redundant

network to ensure performance, failures of several links might

degrade the whole system. A disk coverage unit, on the

contrary, potentially decomposes the network and is more

flexible in providing high-quality detection performance only

at the spots of interests.

Despite vast literature on radio-based passive human de-

tection and localization [1] [2] [3] [6], it is non-trivial to

obtain a disk detection coverage. The primary hurdle lies in

the transmitter-receiver (TX-RX) link architecture, which nat-

urally demonstrates a link-centric coverage. More concretely,

most experimentally fitted coverage models for passive human

detection tend to have boundary shapes similar to a directional

ellipse along the TX-RX link [3] [6], rather than a disk

centered at the RX (Fig. 1). We therefore introduce the concept

of Omnidirectional Passive Human Detection (Omni-PHD), in

referring to the problem of realizing passive human detection

with a coverage of disk-like boundary, by employing link-

centric detecting unit architectures. Besides the application-

driven motivations for Omni-PHD, we also envision our work

as an effort towards bridging the gap between the theoretical

analysis of coverage problems in wireless sensor networks

(WSN) and the practical hardware performances [7] [8] [9],

as well as guidelines for applications such as monitoring [10]

localization [11], data collection [12], topology analysis [13],

etc.

We ground our Omni-PHD scheme on the fine-grained

PHY layer features to virtually tune the coverage shape into

a more omnidirectional one by fingerprinting the signatures

within the coverage. The advantages are twofold. On the one

hand, the PHY layer features portray the small-scale multi-

path components, and are more sensitive to human presence.

On the other hand, the structure of PHY layer signatures

is more temporally stable than the MAC layer RSSI, thus

possessing stronger resistance to background dynamics. Unlike
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conventional RSSI-based schemes which strive to mitigate
the rich multipath effects indoors, we exploit the multipath

components as signatures to detect human presence in a

reliable and omnidirectional manner. Our scheme is prototyped

with existing WiFi infrastructure leveraging the off-the-shelf

Intel 5300 NIC. Experimental results show both average false

positive and false negative along 4 directions of below 9% by

fingerprinting, and around 10% by threshold based detection.

Our main contributions are summarized as follows.

• We introduce the concept of Omnidirectional Passive

Human Detection (Omni-PHD), which serves as an early

effort in breaking the limit of the link-centric unit archi-

tecture.

• We exploit the finer-grained subcarrier information, i.e.,

the channel frequency response from the PHY layer, and

utilize it in the context of device-free passive human

detection. Our scheme is implemented on existing WLAN

infrastructure with off-the-shelf Intel 5300 NIC, requiring

no extra hardware support.

• We validate our scheme in various indoor scenarios,

including a vacant conference hall and a clustered com-

puter laboratory, and consider both stationary presence

and mobile user detection. Experimental results show an

average false positive of 8% and an average false negative

of 7% in detecting human presence in 4 directions.

In the rest of the paper, we first provide a preliminary in

Section II, and detail our scheme in Section III and IV. Section

V presents the performance evaluation, Section VI discusses

the related work, and Section VII concludes this work.

II. PRELIMINARIES

Passive human detection refers to identifying the presence

of a person by already deployed monitors, while the intruder

carries no detectable devices. It usually correlates the vari-

ations of certain signal features measured at a single or a

set of fixed receivers with the environmental changes due to

human locomotion [1]. Two factors significantly affect the

performance of device-free passive detection: (1) the basic

monitoring units, and (2) the measured signal features.

The primary concern in devising scenario-tailored appli-

cations is the coverage of the underlying monitoring units,

which is denoted as cell coverage. A crucial characteristic

of the cell coverage, is its boundary shape, which pictorially

delineates the directivity of the cell coverage. For instance,

infrared devices naturally possess a unidirectional cell cover-

age, and are commonly used in directional human detection

applications (e.g. the doors of elevators). However, a disk-

like cell coverage is preferable in other application scenarios.

That is, as depicted in Fig. 1, instead of the unidirectional cell

coverage Ω with sharp directionality along the TX-RX link,

we expect an omnidirectional coverage centred at RX with

radius r, like the region of A.

Achieving omnidirectional cell coverage, though, is non-

trivial in the context of device-free detection, which leads to

the omnidirectional passive human detection problem.

�

A

rrr

Fig. 1. The Omnidirectional Passive Human Detection Problem

A. The Omnidirectional Passive Human Detection Problem

In the literature of radio-based device-free passive human

detection, most cell coverage models for monitoring units are

experimentally fitted, and vary in directivity, even if the under-

lying devices are equipped with omnidirectional antennas [3]

[6]. This phenomenon stems from the link-centric monitoring

unit architecture and the passive nature of human induced

impact on wireless signals.

More specifically, given a fixed distance from the RX,

the measured signal would undergo larger deviation from

the normal profile with human obstruction in the direction

of the dominant paths (the paths with less attenuation). The

human body, though, acts as a near-constant signal absorber

at a specific location. Therefore, with human as the passive

source for signal deviation, while the TX-RX link sketches

the anisotropic propagating circumstance, the cell coverage

for omnidirectional devices tends to demonstrate sharper di-

rectionality in the direction of the dominating paths.

Therefore, the term of omnidirectional passive human detec-
tion refers to the problem of device-free detection with a disk-

like cell coverage, by employing link-centric monitoring unit

architectures with only omnidirectional devices. Two levels of

detection are envisioned:

• Equalized Decision: Determine whether a person presents

within a near-disk region or not, with equally guaranteed

confidence along all directions.

• Azimuth Distinction: Discriminate the particular azimuth

of the human presence within a near-disk region, with

equally guaranteed confidence along all directions.

Besides the challenges entailed by the link-centric architec-

ture and the passive source nature, it poses strict discriminative

requirements on the signal signatures to distinguish particular

azimuth. Yet we still consider omnidirectional passive human

detection promising for the following reasons. (1) Recent

advances in communication communities have shed light upon

extracting fine-grained and robust signatures from the PHY

layer, while the state-of-the-art exploits the coarse MAC layer

features. (2) With fingerprinting approaches, it is possible to

harness the anisotropic radio propagation circumstances to

virtually tune the shape of the cell coverage instead of avoiding

the multipath effects.

Although we mainly focus on Equalized Decision in this pa-

per, we also achieve reasonable results for Azimuth Distinction.

As detailed in Section V, our scheme achieves below 9% false

negative and false positive for Equalized Decision and above
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75% direction distinction accuracy for Azimuth Distinction.

However, we defer more comprehensive studies of the Azimuth
Distinction level in future work.

B. Signal Power Features

Before closing this section, we concisely review the avail-

able signal features on a commercial receiver.

RSSI dominates in current device-free detection schemes,

yet acts as a fickle power feature. As a superposition of

multipath, it yields limited resistance to environmental noise,

thus derailing the accuracy of cell coverage models and

offering little flexibility for omnidirectional detection. Diving

into the PHY layer, though, it is possible to resolve the alias

versions of superposed signals.

In typical indoor scenarios, a transmitted signal propagates

to the receiver through multiple paths, each introducing a

different time delay, amplitude attenuation, and phase shift.

To distinguish individual paths from the time domain, wireless

channel is portrayed as a temporal linear filter h(τ), known

as Channel Impulse Response (CIR).

h(τ) =
N∑

i=1

|ai| exp(−jθi)δ(τ − τi) (1)

where ai, θi and τi represent the amplitude, phase and time

delay of the ith multipath component, respectively, and N
denotes the total number of paths. δ(τ) is the Dirac delta

function. Nevertheless, constrained by the system bandwidth,

the time resolution remains at the granularity of discriminating

clusters of multipath components [14].

Alternatively, in the frequency domain, modern multi-carrier

radio such as OFDM provides a sampled version of Channel

Frequency Response (CFR) within the band of interest.

H(f) = [H(f1), ..., H(fK)] (2)

where each H(fk) is a complex number depicting the ampli-

tude and phase of the sub-carrier fk. CFR correlates with CIR

by Fourier transform:

H(f) = FFT (h(τ)) (3)

Leveraging the off-the-shelf Intel 5300 NIC with a publicly

available driver as in [15], a group of CFRs on K = 30
subcarriers is exported to uplayer users in the format of

Channel State Information (CSI).

In a nutshell, channel response exposes a finer-grained

temporal and spectral structure of wireless links. The next

section strives to extract proper features from channel response

information for omnidirectional passive human detection.

III. FEATURE EXTRACTION AND CLASSIFICATION

Recently, there is an increasing interest in fingerprinting

based indoor localization with PHY layer information [16]

[17]. Despite the literally similar requirements on signatures

for conventional indoor localization and passive human detec-

tion, there is a subtle yet fundamental distinction in between,
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Fig. 2. Amplitude of CIR and CFR

which impedes direct transplanting of the signatures adopted

in the former to the latter problem.

In indoor localization, the chosen signature is expected to

stay stable with all other persons’ presences in the environment

except the served user’s presence. Nevertheless, it is the

task for passive human detection to distinguish users near

the receiver and those faraway. Consequently, the extracted

features ought to be both (1) sensitive to human presence in

the vicinity and (2) robust to external background dynamics.

The above two requirements are the basis for our omnidirec-

tional passive detection scheme. The omnidirectional coverage

is further enhanced by the rich multipath effects indoors, which

sort of blur the link-centric property. For instance, a reflected

path from the back of the RX might also lead to detectable

variations on the received signals if one person presents there.

Nevertheless, RSSI features tend to be unreliable and coarse-

grained, thus unable to distinguish such variations from back-

ground dynamics. PHY layer features, in contrast, naturally

possess richer distinction and therefore are capable of reliably

discriminating variations induced by even subordinate paths in

all directions from background interferences.

For our scheme, we employ a K-dimensional vector of the

amplitude histograms of CFRs as the PHY layer signature,

and leverage the Earth Mover’s Distance (EMD) [18] as the

metric for signature classification.

A. Sensitivity to Human Presence

As discussed in Section II, the rationale for passive human

detection is that a fraction of propagating paths would be

affected due to intruder presence. In the time domain, this

contributes to changes on the corresponding paths, which are

portrayed as the disturbances of CIR. From the frequency

perspective, these changes are captured by the variations of

frequency diversity, which are reflected by CFR.

Although CIR and CFR are equivalent in modeling channel

responses, their amplitudes differ in sensitivity to human

presence. We collect CSIs for situations with one person
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Fig. 3. Density Distributions of CFR Amplitude

presents at two spots in a conference hall (Spot 1 and 2 in

Fig. 2), and also for the normal course with no one around.

For each case, raw CSIs from 2000 packets are recorded,

which are then transformed into CIRs and CFRs as in Section

II. Fig. 2 depicts the average CIR and CFR amplitudes in

dB. As is shown, notable fluctuations of CIR locate narrowly

around the 5th time index, while the deviations of CFR span

across the entire subcarrier indices. The physical underpinning

is that the temporally separable multipath components twist

in the frequency domain. Although human locomotion usually

changes only a subset of paths, even a small portion of affected

paths would significantly change the CFR amplitudes across

all the subcarriers, since an impulse function δ(τ) contributes

to a constant across the entire frequency range. Hence CFR

is more preferable in passive human detection due to its

sensitivity to human locomotion.

Furthermore, CIR features extracted from current commer-

cial WiFi infrastructure suffer two limitations:

• The 20MHz bandwidth in 802.11n yields a time resolu-

tion of 50ns, while the typical indoor maximum excess

delay is smaller than 500ns [19]. Hence only the first

10 out of the 30 available CIR components are relevant

to multipath effects. Instead, each component in CFR

represents the amplitude and phase on one subcarrier.

• The lack of TX-RX synchronization makes it difficult to

align the multipath components w.r.t. the first arriving

path. CFR naturally avoids this problem as each compo-

nent corresponds to a fixed subcarrier.

B. Resistance to Environmental Dynamics

Another major concern for passive human detection is how

to derive CFR features that are resistant to irrelevant dynamics

while retaining sensitive to humans in the vicinity. And we

mainly exploit the structure of CFR.

To identify the CFR amplitude structure’s resistance to

environmental noise, we collect three sequences of CFR

amplitudes, each derived from 1000 packets. The first case

is measured with no one around while in the second case,

3 men stroll at random in the room but keep away from

the TX-RX link (3-5m away). The third case denotes the

situation where one person stands 0.5m away from the RX

(Note that although the azimuth of the person matters, the

following qualitative results still hold). Fig. 3 demonstrates

the density distributions of the CFR amplitudes. The upper

two figures verify the stability of the CFR structures as in

[17] while the uppermost and the lowermost confirm that the

CFR structures would disperse in case of close obstruction.

Therefore, the amplitudes of CFRs discriminate the irrelevant

background unstableness from the desired local perturbations

due to human locomotion, which is almost impossible with

RSSI based descriptors [20].

Moreover, despite dispersing, the probability density distri-

bution (pdf) of CFR on each subcarrier still acts as a discrim-

inative signature. As validated in Section V, the histograms of

CFR amplitudes alone have offered adequate discrimination

for both the Equalized Detection and Azimuth Distinction

levels of omnidirectional detection.

C. Modeling CFR Amplitude Features

Although CFR consists of both amplitude and phase in-

formation, we only adopt the amplitude of CFRs for two

concerns.

• Despite that phase information enriches the feature space,

it needs careful calibration to mitigate dramatic drifts

due to external noise [21]. The amplitude of CFR, in

contrast, remains sensitive to human activities in the

vicinity, yet pertains the spectral structures in case of

external perturbation.

• According to our measurements, the phases on a portion

of subcarriers tend to be uniformly distributed, which

possess limited location-dependent distinctions.

Fig. 4 demonstrates the pdf of the complex CFRs measured

in the third case of Fig. 3. While the complex CFRs on

subcarrier 30 can be well represented by a single cluster,

the complex CFRs on subcarrier 4 demonstrate a circle-like

distribution, with almost uniformly distributed phases within

the entire (−π, π) range. The only difference is that the

amplitudes of CFRs on subcarrier 30 spreads out to near zero

values, while for subcarrier 4, the amplitudes of CFRs vary

within a range relatively faraway from zero, which contributes

to a circle like distribution in the complex plane.

The circle-like distribution makes it difficult to model the

CFR signatures by clustering. We thus leave out the uniformly

distributed phase information and employ the amplitude dis-

tribution on each subcarrier only, and model it as a histogram.

Albeit simple, the histogram representation avoids the over-

fitting problems induced by pdf estimation. We validate the

feasibility of the histogram approach in Section V.
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To sum up, we employ the histograms of all the CFR ampli-

tudes for a group of K accessible subcarriers
−−→
hist(‖H(f)‖)

as the proposed PHY layer features:

−−→
hist(‖H(f)‖) = [hist(‖H(f1)‖), ..., hist(‖H(fK)‖)] (4)

where K = 30 in our case, and each hist(‖H(fk)‖) is

calculated within a pre-defined time window W .

D. Signature Classification

In comparing the similarity between two histograms, we

adopt the Earth Mover’s Distance (EMD) [18], which is a

cross-bin similarity metric to calculate the distances between

histograms or probability distributions. EMD is analogous

to the minimal effort to transform one pile of earth into

another one. In general, the EMD measures the dissimilarity

between two signatures P = {(pi, ui)}mi=1 of size m and

Q = {(qj , vj)}nj=1 of size n, where ui and vj denote the

positions of the ith and jth elements in each signature, and pi
and qj represent the corresponding weights, respectively. The

EMD between P and Q is then calculated as [18]:

EMD(P,Q) = min
F={fij}

∑
i,j fijdij∑
i,j fij

(5)

with the constraints:
∑

j

fij ≤ pi,

∑

i

fij ≤ qj ,

∑

i,j

fij = min{
∑

i

pi,
∑

j

qj},

fij ≥ 0

To compare the distance between two histograms, each

histogram is regarded as a signature, for each histogram bin

can be considered as an element in a signature. Accordingly,

the histogram values act as the corresponding weights in the

signature, while the indices of bins serve as the positions in

the signature.

Since the raw CSI data reported are at the granularity of

1dBm (equivalent to the precision of 1dB when comparing

the differences between two amplitudes), the number of bins

to calculate the histograms is also set to ensure the granularity

of 1dB. In our measurements, the fluctuation range of most

CFR amplitudes on a single subcarrier is around 20dB, we

therefore set the number of bins for each histogram as 20.

We then calculate the EMD for each subcarrier before

adding the K = 30 EMDs into a single distance as the

similarity between signatures s1 and s2. The rationale to

calculate the EMD separately for each subcarrier is to preserve

the spectral structure. The final summation is due to the

fact that the subcarriers in OFDM fade independently. As a

consequence, each subcarrier weighs equally in calculating the

total dissimilarity between the two vectors.

IV. HUMAN DETECTION

In this section, we detail our Omni-PHD scheme. The CSI

sequences reported from the RX are first converted into the

amplitudes of CFRs (measured in dBm). The histograms of

CFR amplitudes for K subcarriers are calculated for a set of

packets within a fixed time window W .

To determine whether there is an intruder within the cell

coverage, we adopt the prevalent fingerprinting based approach

in literature of indoor localization.

The fingerprinting approach consists of two phases: training

(a.k.a. calibration) and monitoring [22]. The first stage in-

volves a site-survey process, in which a tuple 〈s, l〉 is recorded

to correlate a location l with a measured signature s. The

signature for all intruder locations are measured and pre-stored

in advance to construct a fingerprint database. Next during the

monitoring stage, the RX measures a new signature st within

a time window W and calculates the distance between st and

the normal profile Sout (termed as d(st, Sout)) as well as the

distance between st and all the signatures Sin = {si|i ∈ I},

where

d(st, Sin) = min
si∈Sin

d(st, si) (6)

And I is the set of the indices for all signatures in the database

with an intruder within the cell coverage. If d(st, Sout) is

smaller than d(st, Sin), then a ’detected’ event is announced.

To improve the reliability of detection, we employ a slid-

ing window approach with step size s. More specifically, if

the signatures calculated for N consecutive sliding windows

{W1,W2, ...,WN}, all resembles more to the signatures with

intruders, then a ’detected’ event is announced. As for the

Azimuth Distinction level, the direction (including the normal

profile) with the highest similarity to the measured signature

is returned as the estimated intruder’s azimuth.

Note that in passive detection, users carry no devices. Hence

unlike in conventional indoor localization, the calibration stage

for passive detection is less error-prone to improper usage

of devices and thus relies less on professionals to conduct

the calibration. Also, for Equalized Detection, since it only

involves two scenarios (user detected and no one around),

it is possible to only randomly measure a few signatures as

fingerprints for the case with intruders, especially the direction

backwards the TX-RX link. In all, the calibration efforts in
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Fig. 5. Multipath-scarce Scenario Fig. 6. Multipath-rich Scenario

passive detection is comparably reasonable with respect to

those in traditional fingerprinting.

V. PERFORMANCE

In this section, we evaluate the performance of the proposed

device-free detection scheme in various indoor scenarios, con-

sidering multipath-rich environments, background dynamics

and both stationary presence and mobile user detections.

A. Experiment Methodology

During our evaluations, we employ a TP-LINK TL-

WR741N wireless router as the transmitter operating in IEEE

802.11n AP mode, and a LENOVO laptop equipped with

Intel 5300 NIC as the receiver downloading packets from

the AP. The firmware is modified as [15] to export channel

state information (CSI) of each packet, i.e., a group of 30

channel frequency response (CFR) for further analysis. The

transmission rate is 20 packets per second. We elaborate the

settings of experiments in detail as follows.

The measurements are conducted in two representative

indoor scenarios: a conference hall and a small computer lab

(Fig. 5, Fig. 6). The former is relatively vacant, while the latter

is piled with desks and computers, creating rather complex

wireless propagating environment.

During the experiments, we denote one pair of AP location

and laptop location as a link. In the hall scenario, we first put

the AP 2m above the floor and on the floor, respectively, and

fix the laptop 0.6m above the floor. For each AP placement,

we pick two different laptop locations. For the lab case, the

AP is about 1.2m above the floor, and we choose 3 laptop

locations. Therefore, we have measured 4 links in the hall and

3 links in the lab.

For each link, we collect data with a person standing in 4

directions around the laptop at the distances of 0.5m and 1.0m,

respectively. We also record the normal profile, i.e., when there

is no one around. Hence, each link has 9 testing cases.

For each of the 9 testing cases, we collect CSIs for 1 minute

and employ them for the fingerprint database. To collect test

samples, we measure CSIs for the 9 testing cases for about 30

seconds on each link, from which the CSIs of 6 seconds are

randomly picked as one test sample. We repeat the collection

with 9 different persons at the 4 directions for both the range of

0.5m and 1.0m, thus obtaining 9 test samples for each intruder

case. Finally, we collect 9 sets of CSIs when there is no one

around as the test samples for the normal profiles for each

link. To identify the robustness to background dynamics, half

of the test data are measured when there are 3 men strolling

in the test room, but keeping away from the TX-RX link for

at least 2.5m.

The fingerprint database for each link is built up as follows.

For database within coverage of radius 0.5m, only the training

data collected within 0.5m are employed (i.e., 4 intruder cases

and those for the normal profile). For the database of 1.0m,

all training data are used.

To evaluate the scheme’s realtime performance, we let

one person faraway from the receiver (about 2.5m away)

walk towards the receiver and then walk away again, from 4

directions w.r.t. the receiver for one link in the hall scenario.

We mainly focus on the following metrics to evaluate our

detection scheme. (1) False Positive (FP): The fraction of cases

where the receiver announces a ’Detected’ event when there

is no one within the disk range. (2) False Negative (FN): The

fraction of cases where there is an intruder within the disk

range, but the receiver fails to detect him.

Further, to represent how ’directional’ the cell coverage is,

we borrow the mathematical form to measure the directivity

of a radiation pattern in the antenna jargon. For instance, a

monitoring unit capable of detecting intruders in all directions

within a disk range of radius r0 with equal detection rate

P , would hold zero effective directionality, and therefore the

directivity D of this monitoring unit at radius r0 would be 1

or 0 dB. Mathematically, the directivity of a monitoring unit

at radius r is defined as:

Dr =
1

1
2π

∫ 2π
0

pr(θ)dθ
(7)

where pr(θ) is the normalized with maximal equal to 1.

pr(θ) =
Pr(θ)

Pr,max
(8)

where Pr(θ) is the detection rate in the direction of θ at radius

of r and Pr,max is the maximum detection rate in all directions

at radius of r.
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Fig. 7. FN/FP of Fingerprinting based Detection
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B. Static Detection Performance

Fig. 7 demonstrates the false positive (FP) and false negative

(FN) of the 7 links at radius of 0.5m and 1.0m, respectively.

The average FN / FP across all the 7 links are 7.9% / 4.8%

for the 0.5m range, and 6.9% / 6.4% for the 1.0m range. The

reasons for such low FP and FN are twofold. One the one hand,

fingerprinting approach compensates for the potential FN since

it occurs only when the intruder’s impact on wireless signals is

quite different from all the fingerprints in the database. Further,

with finer-grained CFR features, the distinction and location-

dependence of the signatures have both improved considerably,

compared with a single valued and unstable RSSI. On the other

hand, the low FP owes to the resistance of the CFR feature to

irrelevant noise.

Comparing the performance of the range of 0.5m and 1.0m,

we see a slight rise of average FP from 0.5m to 1.0m. This

is because the farther the intruder presents to the RX, the less

severe impact the received signals would undergo. As a result,

some test samples might resemble more to the fingerprints at

1.0m in the database, which contributes to a FP. We find no

obvious performance gap between the relatively vacant hall

and the clustered lab, which indicates that the feasibility of our

scheme even in scenarios without abundant multipath effects.

Taking a closer look at the detection performance in detail,

we evaluate the directivity of the cell coverage, i.e., the

average detection rate for each direction w.r.t. the TX-RX link.

Fig. 8 demonstrates the detection rate (DR) and the direction

distinction accuracy along 4 directions (denote the direction

along the TX-RX link as 0 degree, and follow a clockwise

direction) including both the hall and lab scenarios.

As depicted in Fig. 8, the detection rate for each direction

is around 90%, while the direction distinction accuracies

reasonably ranges from 76% to 85%. The directivity at radius

1.0m is therefore approximately DDR,1m ≈ 0.17dB with the

metric of detection rate while DDA,1m ≈ 0.58dB with the

metric of direction distinction accuracy. The sharper directivity

measured in direction distinction accuracy reveals that the

signatures against the TX-RX link (0 degree) still holds less

distinction compared with those along the TX-RX link (180

degree), which is ruled by the underlying anisotropic signal

propagations. That is, when the user stands backwards the

TX-RX link (0 degree of azimuth), it might be classified into
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other directions or the normal profile, since a user with such

location tends to introduce similar extent of variations on the

received signals. For the Equalized Detection level, though,

the differences between the normal profile and all cases when

there is a user nearby is comparatively larger. Hence the

CFR signature proves to provide sufficient distinction from

the normal profile, and the detection rate along each direction

is comparably uniform.

C. The Impact of Window Size

Since the window size represents the realtime performance

of the detection, we measure the variation of FP and FN with

different window sizes. Fig. 9 demonstrates the avearage FP

and FN across 7 links at the radius of 1.0m with a window

size range of 2 seconds to 10 seconds. Both FP and FN

drop gracefully with the increasing window sizes since the

histograms measured within longer time intervals generally

incur less random noise. On the other hand, both FP and FN

retain within 10% even with a window size of only 2 seconds.

This indicates that the fingerprinting based scheme is feasible

for realtime detection as long as the intruder stays within the

range for about 3 to 4 seconds (accounting for both the window

size and software delays).

Fig. 10 further illustrates the detection rate and direction

distinction accuracy across each direction. Again, the per-

formance along each direction tends to be insensitive to the

variation of window size. Furthermore, for direction distinc-

tion, the direction towards the TX-RX link (180 degree) still

enjoys the highest classification accuracy, indicating that the

coverage shape of the proposed scheme is still not perfectly

omnidirectional. Finer-grained and more effective features ex-

tracted from channel responses might ultimately contribute to

a perfect disk-like coverage, even for the Azimuth Distinction

level.

D. Mobile Detection Performance

This experiment shows the realtime performance of our

scheme with real mobile traces. Fig. 11 illustrates the detection

results for a mobile user. The window size is set to 2 seconds,

with a sliding step size of 0.5 seconds. At first, the measured

signatures bear more resemblance to the normal profile, i.e.,

with smaller EMD to the signatures for the normal profile. In

the time interval of 5.5 to 9.0 seconds, the distances between

the measured signatures in each time window and the intruder

signatures drop smaller. Therefore the RX announces a series

of ’detected’ events during this interval. The variation trends

of the two sequences of EMDs demonstrate the feasibility

of the proposed scheme in detecting mobile users who are

approaching and walking away from the receiver for Equalized

Detection. Nevertheless, the accuracy in discriminating the

direction of the mobile user is less satisfactory due to the small

window size and the uncertainty induced by mobility. We

leave the more quantitative study on the mobile user detection,

especially the Azimuth Distinction level to future work.

VI. RELATED WORK

Device-free Passive Systems. The concept of radio-based

device-free passive localization stems from the seminal work

by Youssef et al. [1], which localizes or tracks a person

carrying no radio enabled devices based on his impact on

the wireless signals. Most device-free systems exploit the

handy signature, RSSI, from either WiFi enabled monitors

[23], or ZigBee sensors [6]. Despite its easy accessibility,

RSSI fluctuates considerably even at a stationary link [14],

which makes it an unreliable indicator to human presence.

To achieve high robustness, Wilson et al. [3] proposed the

radio tomographic imaging (RTI) technique, which exploits

the redundancy introduced by sensor arrays surrounding the

monitored region to visualize the human-induced RSSI fluctu-

ations. Nevertheless, the dense deployment of sensors impedes

its viability. To provide guidelines in devising optimal sensor

deployment topology and placement, an in-depth scrutiny on

the performance of the basic monitoring unit is indispensable,

which grounds the primary purpose of our work.

Coverage Modeling. The coverage modeling serves as

a fundamental issue in the coverage problems of wireless

sensor networks [7] [8] [9]. Both disk-like [7] and non-disk

[9] models are used, yet these coverage models tend to be

the compromise between theoretical simplicity and practical

feasibility. In the literature of device-free systems, most cov-

erage models of monitoring units are experimentally fitted and

vary in shapes. Zhang et al. [6] employed an eclipse coverage

centered in the middle of the TX-RX link, while Wilson et

al. [3] used an oval coverage with foci at TX and RX. These

models demonstrate a link-centric property [24], even with

omnidirectional antennas. Only very recently did Patwari et

al. [25] propose a spatial model for human induced RSSI

variance from a statistical perspective. We also target at the

detection performance in the context of device-free systems,

yet our effort deviates from previous research in that we strive

to extract PHY layer information instead of the dominant MAC

layer RSSI, and target at an omnidirectional range.
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PHY assisted Indoor Localization. Originated from wire-

less channel sounding, Nerguizian et al. [16] leveraged the

finer-grained PHY layer signal power features for indoor

localization with dedicated infrastructure like Vector Network

Analyzer (VNA). The PHY layer feature, channel impulse

response (CIR) and its frequency domain counterpart, channel

frequency response (CFR), are capable of discriminating mul-

tipath components, which is impossible with RSSI alone, the

MAC layer superimposition of multipath signals. Recently, a

thriving trend in PHY assisted indoor localization is to exploit

modern radios such as OFDM to obtain PHY layer features

with off-the-shelf hardware. Sen et al. [17] employed the rich

multipath information in CFR for fingerprinting based spot

localization, while both Wu et al. [14] and Sen et al. [26]

extracted information about the direct path from CIR. The

former takes the direct path power for accurate ranging, and

the latter transforms the body blocking effect with respect to

the direct path into reliable AoA information for triangulation.

Our work builds upon this thread of research in device-based

localization, but emphasizes more on the interplay between

directional properties and the signal power features in device-

free scenarios.

VII. CONCLUSION

In this study, we demonstrate that the PHY layer information

unfolds new possibilities for passive human detection, hence

holding potential for breaking the limit restricted by link-

centric architecture. On observing that the statistical spectral

structures of small-scale multipath signals possess resistance

to irrelevant background dynamics while retaining sensitivity

to nearby human locomotion, we propose to leverage the

histogram feature of the subcarrier amplitudes as signatures

for our omnidirectional passive human detection. Experimental

evaluations considering the richness of multipath, background

dynamics and mobility have validated the feasibility of the

Omni-PHD scheme, with an average false positive of 8%

and false negative of 7% in detecting human presence in 4

directions. We envision this work as an early step towards

passive human detection with flexible coverage, which acts as

a crucial concern in human-centric computing.
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