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Abstract—Wireless LANs, especially WiFi, have been perva-
sively deployed and have fostered myriad wireless communication
services and ubiquitous computing applications. A primary con-
cern in designing each scenario-tailored application is to combat
harsh indoor propagation environments, particularly Non-Line-
Of-Sight (NLOS) propagation. The ability to distinguish Line-
Of-Sight (LOS) path from NLOS paths acts as a key enabler
for adaptive communication, cognitive radios, robust localization,
etc. Enabling such capability on commodity WiFi infrastructure,
however, is prohibitive due to the coarse multipath resolution
with mere MAC layer RSSI. In this work, we dive into the PHY
layer and strive to eliminate irrelevant noise and NLOS paths
with long delays from the multipath channel responses. To further
break away from the intrinsic bandwidth limit of WiFi, we extend
to the spatial domain and harness natural mobility to magnify
the randomness of NLOS paths while retaining the deterministic
nature of the LOS component. We prototype LiFi, a statistical
LOS identification scheme for commodity WiFi infrastructure
and evaluate it in typical indoor environments covering an area
of 1500m2. Experimental results demonstrate an overall LOS
identification rate of 90.4% with a false alarm rate of 9.3%.

I. INTRODUCTION

The ubiquitously deployed WiFi networks indoors serve
as more than a vehicle for communication. Fast emerging
applications, e.g. indoor localization [1], through-wall tomog-
raphy [2], human gesture recognition [3] etc., are continuously
revolutionizing the horizon. For each innovative design to
excel in multipath-dense indoor scenarios, Non-Line-Of-Sight
(NLOS) propagation lurks as a primary threat that cannot
be snapped shut outside. The severe attenuation of NLOS
propagation deteriorates communication link quality and de-
grades theoretical propagation models. The past decade has
witnessed extensive research to combat such a phenomenon
[4]–[7], where the ability to distinguish Line-Of-Sight (LOS)
and NLOS propagation acts as a fundamental primitive.

According to the NLOS/LOS conditions, PHY layer set-
tings can be tuned for high throughput and reliable commu-
nication. For instance, in case of LOS dominant propagation,
transmitters can switch to denser modulation and thus higher
data rates [8]. Under severe NLOS conditions, on the other
hand, particular receiver parameters (e.g. finger number of
Raker receiver [9]) can be configured to remain effective with
slightly higher complexity.

Besides adaptive wireless communication, numerous re-
search domains also rely heavily on or even build upon the
presence of the LOS path. For instance, NLOS propagation
induces positive bias in time and power based ranging [10]
[6], and generates spurious angular peaks for angle estimation
[11] [12]. Even for fingerprinting-based localization, the fierce

signal strength fluctuations due to multipath superposition
still pose substantial challenges in producing recurring radio
fingerprints [13] [14]. The availability of a clear and short-
range LOS path also benefits other novel applications such as
wireless energy harvesting by ensuring tight electromagnetic
coupling and thus high charging efficiency [15]. In a nutshell,
the awareness of LOS and NLOS conditions, and further
disentangling the LOS component, paves the way for and
enhances all these frameworks.

Achieving such capability with commodity WiFi infras-
tructure, however, entails a range of challenges. Although vast
theoretical channel models have been proposed for LOS and
NLOS propagation [16], a practical LOS identification scheme
either requires precise channel profiles, which involves dedi-
cated channel sounders, or assumes abundant randomness to
bring the statistical models in effect. Towards more pervasive
solutions, most existing approaches either employ extremely
wideband signals like UWB [17], or resort to relatively long-
range communications like cellular networks [18], and often
halt at simulations. Unfortunately, current WiFi operates with
a bandwidth of only 20MHz, thus unable to resolve paths
with distance difference shorter than 15m, yet often targets
at inbuilding services of meter-level accuracy. Such scale mis-
match of operating bandwidth and geographic space hampers
direct adoption of either category of existing approaches to
WiFi due to the coarse-grained channel measurements and
short-range indoor propagation environments. Pioneer works
[11] [12] extend to the spatial dimension leveraging MIMO
techniques, but still require hardware modification, impeding
immediate viability.

In this work, we aim to design a pervasive primitive to
identify the availability of the LOS path under multipath
propagation with only commodity WiFi devices. Since the
presence and obstruction of the LOS path are mutually exclu-
sive, we harness the hypothesis test framework for statistical
LOS identification [18]. To capture the distinctions between
LOS and NLOS conditions with merely off-the-shelf WiFi
infrastructure, we exploit two key observations. 1) The recently
exposed PHY layer information on commercial WiFi devices
reveals multipath channel characteristics at the granularity of
OFDM subcarriers [19], which is much finer-grained than
the traditional MAC layer RSSI. 2) The spatial disturbance
induced by natural mobility tends to magnify the randomness
of NLOS paths, while retaining the deterministic nature of the
LOS path, thus facilitating LOS identification via the statistical
characteristics of the received signals.

We prototype LiFi, a LOS identification scheme for com-
modity WiFi infrastructure. Leveraging the PHY layer channel
state information reported by the off-the-shelf Intel 5300
Network Interface Card (NIC), we eliminate irrelevant noise978-1-4799-3360-0/14/$31.00 c© 2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 2688



2

and NLOS paths with large delays. On observing that mobility
magnifies the discrepancies between LOS and NLOS paths
due to their intrinsic difference in spatial degree of freedom,
we involve natural receiver movement (e.g. walking with an
ultrabook at hand) to enhance LOS identification. Combined
with mobility, we extract representative features from the
envelope distribution of the filtered channel state information
to quantify its distinctions under LOS and NLOS conditions.
Through extensive evaluation, LiFi achieves an overall LOS
detection rate of 90.42% with a false alarm rate of 9.34%, and
proves to be robust to different propagation distances, channel
attenuation and blockage diversity.

The main contributions of this work are summarized as
follows:

• We exploit PHY layer channel state information to
identify the availability of the LOS component in
multipath-dense indoor scenarios. As far as we are
aware of, this is the first LOS identification scheme
built upon merely commodity WiFi infrastructure
without hardware modification leveraging PHY layer
information, which allows pervasive adoption.

• We harness natural mobility to magnify the distinc-
tions between LOS and NLOS conditions, and put
LOS identification into mobile context, indicating vi-
ability with truly mobile devices.

• We prototype LiFi, a pervasive LOS identification
scheme and validate its performance in various indoor
office environments covering a total area of 1500m2.
Experimental results demonstrate that LiFi outper-
forms RSSI based approaches, achieving both LOS
and NLOS detection rates of above 90%.

In summary, the existence of the LOS path can be regarded
as a primary characteristic of wireless channels. We envision
the primitive to identify LOS and NLOS dominant conditions
as an enhancement for current 802.11 standards and future
communication protocols, and a synergy for myriad appli-
cations including AP association, network routing, topology
maintenance, human-computer interaction, etc.

In the rest of this paper, we first provide preliminary back-
ground in Section II, introduce feature extraction in Section
III, and detail our design in Section IV. Section V presents
the performance evaluation. We review the related work in
Section VI. Section VII concludes this work.

II. PRELIMINARIES

In essence, LOS identification is tasked to infer the channel
state via certain feature metrics of the received signals. In
this section, we review the statistical decision framework of
LOS identification, followed by candidate features from both
theoretic analysis and commodity WiFi infrastructure.

A. The LOS Identification Problem

Twisty corridors, capsuled rooms and scattering furniture
indoors often create a labyrinth for radio signals, where they
have to propagate via multiple intricate NLOS paths. As
shown in Fig. 1, it is common for the LOS path to be
mixed with multiple aliased NLOS paths (Case 1), or too

Fig. 1. An illustration of multipath propagation and LOS/NLOS conditions.

harshly attenuated to be perceivable against the noise floor
(Case 2). Hence the LOS identification problem is to discern
the availability of the LOS path under multipath propagation.
Mathematically, the identification procedure is formulated as
a binary hypothesis test with LOS hypothesis (H0) and NLOS
hypothesis (H1) [20]. Given a generic feature metric ξ, the
conditional Probability Density Function (PDF) under the two
hypotheses p(ξ|LOS) and p(ξ|NLOS) are then applied to the
classical decision theory with a likelihood ratio test:

p(ξ|LOS)

p(ξ|NLOS)

H0

≷
H1

P (NLOS)

P (LOS)
(1)

where P (LOS) and P (NLOS) denote the prior probabilities
of LOS and NLOS propagation, respectively.

A distinctive feature ξ, therefore, lies in the core of ef-
fective LOS identification schemes. Intuitively, since the LOS
path, if present, always arrive ahead of NLOS paths, the delay
characteristics of received signals differ under LOS and NLOS
conditions. For instance, received signals under LOS condition
normally experience smaller average delay, and this forms the
basis for most UWB based LOS identification schemes, where
high resolution channel information is available [21] [9]. In the
time domain, the multipath channel is modeled as a temporal
linear filter, known as Channel Impulse Response (CIR) [16]
h(τ):

h(τ) =
N∑
i=1

aie
−jθiδ (τ − τi) (2)

where ai, θi and τi are the amplitude, phase and time delay of
the ith path, respectively. N is the total number of paths and
δ(τ) is the Dirac delta function. Various statistics depicting
the average delay (e.g. mean excess delay [21]) are then
utilized as indicators for LOS/NLOS conditions. Nevertheless,
commodity wireless infrastructure often fails to support precise
CIR estimation [6] [7]. Theoretical analysis hence resorts to
modeling the distributions of the received signal envelope. For
instance, received signal envelope exhibits Rician distribution
under LOS propagation yet Rayleigh distribution in case of
NLOS condition [20]. In practice, due to the noisy readings of
conventional signal strength indicators (e.g., MAC layer RSSI),
such frameworks generally halt at simulations or only partially
applicable to long-range outdoor communications like cellular
networks.

B. Channel State Information

Towards a practical LOS identification scheme with com-
modity WiFi infrastructure, we explore the recently available
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Fig. 2. Distributions of Mean Excess Delay Fig. 3. Distributions of Kurtosis of CIR Fig. 4. CIR under LOS/NLOS Conditions

PHY layer information. Leveraging the off-the-shelf Intel 5300
NIC and a modified driver, a sampled version of Channel
Frequency Response (CFR) within WiFi bandwidth is revealed
to upper layers in the format of Channel State Information
(CSI) [19]. Each CSI depicts the amplitude and phase of a
subcarrier:

H(fk) = ‖H(fk)‖ej sin(∠H(fk)) (3)

where H(fk) is the CSI at the subcarrier with central frequency
of fk, and ∠H(fk) denotes its phase.

Since CFR can be converted into CIR via Inverse Fourier
Transform (IFT), an estimation of CIR with time resolution of
1/20MHz = 50ns is exposed. Although its time resolution
remains capable of discriminating only clusters of multipath
components [6], CSI holds potential to eliminate the impact
of irrelevant noise and NLOS paths with large delays when
identifying the LOS path.

Compared with the conventional MAC layer RSSI, CSI
portrays a finer-grained temporal and spectral structure of
wireless links. However, the insufficient bandwidth and time
resolution of WiFi with respect to UWB pose a series of
challenges to codify the new information into effective fea-
tures. We strive to extract proper features from CSI for LOS
identification in the following section.

III. FEATURE EXTRACTION

Despite elegant theories underpinning delay characteristics
based LOS identification, we demonstrate its limitations on
bandwidth-constrained WiFi infrastructure even with PHY
layer CSI. Combined with natural mobility, though, we observe
the potential feasibility of envelope distribution based features.
This section presents primary measurements from a typical
office building, and focuses on mobility-enhanced envelope
features for LOS identification.

A. Crude Delay Characteristics of CSI

The rationale for delay characteristics based LOS identi-
fication is twofold. (1) For a particular wireless link, signals
transmitted via the LOS path always arrive first. (2) If the
LOS path is not obstructed, it usually experiences weaker
attenuation compared with NLOS paths. Prevalent feature
metrics include mean excess delay [21] and kurtosis [9],
which approximate the weighted average and peakedness of
the received signal power delay profile, respectively. The
limited bandwidth of current WiFi, however, yields insufficient
multipath resolution, thus impeding direct adoption of this
thread of features even with PHY layer CSI.

We extracted CSIs from 5000 packets measured under
typical LOS and NLOS dominant conditions, and calculated
the corresponding CIRs via IFFT. Fig. 2 and Fig. 3 illustrate
the CDFs of the mean excess delay and kurtosis metrics,
respectively. In general, LOS dominant conditions have shorter
mean excess delay (i.e., shorter average delay) and larger
kurtosis (i.e., a more sharply distributed power delay pro-
file). However, a threshold to discriminate LOS and NLOS
conditions would always lead to high false identification rate.
The primary hurdle lies in the crude CIR samples. Given an
operating bandwidth of 20MHz, commodity WiFi yields a time
resolution of 50ns. Therefore paths with length difference s-
maller than 15m might be mixed in one CIR sample. Moreover,
as shown in Fig. 4, there is an uncertain time lag at the start
of measured CIR samples. In case of low time resolution and
lack of synchronization, it is rather error-prone to align the
CIR samples with respect to the first arriving path.

Although the CSI on current WiFi fails to estimate precise
CIR, the emerging trend towards wider bandwidth WiFi (e.g.
802.11ac up to 160MHz) holds potential for practical LOS
identification via delay characteristics. On the other hand, it
suffices to extract signals of the dominant paths and eliminate
irrelevant noise [6]. The following subsection hence explore
the envelope distribution features of the dominant paths.

B. Envelope Distribution of Dominant Paths with Mobility

Unlike delay characteristics based LOS identification
which models the time domain distinctions between LOS and
NLOS conditions, envelope distribution based schemes explore
the spatial domain. The intuition is that NLOS paths often
involve large numbers of obstacles that reflect, refract and
diffract wireless signals. Consequently, signals travelling along
NLOS paths tend to behave more randomly compared with
those along a clear LOS path. Therefore, from a statistical
perspective, the distributions of received signal envelope differ
under LOS and NLOS conditions due to varied extent of
spacial randomness. In the communications communities, the
envelope distribution is often modeled as Rayleigh fading for
NLOS dominant conditions and Rician fading for LOS domi-
nant conditions [16], and this has been numerically verified via
simulation for long-range communication (e.g. cellular) [22].
For indoor WiFi networks, though, two challenges remain.

• Conventional MAC layer RSSI usually contains enor-
mous noise, thus inducing irrelevant interference to
the LOS path, making it less deterministic.

• Constrained by particular indoor floor plans and the
relatively short transmission distances, the NLOS
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Fig. 5. Impact of Mobility
on LOS/NLOS Propagation
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(a) RSS under Static Links
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(b) CSI under Static Links
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(c) CSI under Mobile Links

Fig. 6. Received Envelope Distribution under LOS/NLOS Conditions

paths may not be adequately random, which poten-
tially degrades the viability of theoretical models.

To wipe out unwanted interference when identifying the
LOS path, we explore the PHY layer CSI instead of traditional
MAC layer RSSI. As pointed out in [6], CSI provides a time
resolution of multipath-clusters. We therefore exploit CSI to
disentangle the dominant paths to mitigate the impact of NLOS
paths with long delays as well as irrelevant noise to enhance
the deterministic nature of the LOS path.

More specifically, we filter the CIR samples obtained from
CSI as follows:

• Although the CSI tool [19] provides an estimation
of the noise floor, which facilitates a threshold based
signal arrival detection scheme, we find it more reli-
able to detect signal arrival by finding the maximum
slope in a CIR sequence. The reason is that the slope
based detection better captures the energy switch from
noise to signals, even if the signal power is not strong
enough.

• Since typical indoor maximum excess delay is smaller
than 500ns [23], given a time resolution of 50ns, only
the first 10 out of the 30 accessible CIR samples are
relevant to multipath propagation. Accounting for the
alignment errors due to uncertain time lag, the CIR
sample next to the first detected path may contain
the LOS path as well. We thus summate over the
CIR sample with the maximum slope along with
the next CIR sample for envelope distribution feature
extraction.

Fig. 6a and Fig. 6b plot the distributions of received
envelopes as well as Rician and Rayleigh fitting of overall
RSS and filtered CSI for a static link. As is shown, the
envelope of filtered CSI distributes more narrowly than that
of overall RSS, indicating that weeding out irrelevant paths
enhances the deterministic nature of the LOS path. However,
although the empirical distributions are well fitted by Rician
fading, Rayleigh fitting almost fails even for NLOS conditions.
This seemingly counter-theoretical result indicates that it is
possible for NLOS paths to behave deterministically in static
environments with relatively short propagation distances and
insufficient scatters. Therefore, it is still infeasible to simply
employ filtered CSI for LOS identification, since it also
reduces the randomness of NLOS paths.

To induce more randomness on NLOS paths, we explore to
involve mobility into our scheme. The intuition is that, mobility
may induce notable spatial disturbance on NLOS paths. As
illustrated in Fig. 5, when Receiver1 moves from RX1 to RX ′

1,
the LOS path experiences only slight variation, while NLOS
paths suffer notable changes in transmission distances, arriving
angles, channel attenuation, etc. Such mixture of a clear LOS
path with randomly attenuated NLOS paths is well captured
by Rician fading. On the other hand, in case of undeceivable
LOS path, almost all paths would fluctuate considerably during
Receiver2’s movement from RX2 to RX ′

2, which would better
fit Rayleigh fading due to the abundant randomness. Fig. 6c
plot the envelope distributions of filtered CSI for a mobile link
(by moving the receiver back and forth). As is shown, with
natural mobility, the received envelope under LOS condition
distributes almost symmetrically, while the distribution exhibits
a notable skew under NLOS conditions and better fits Rayleigh
fading.

C. Candidate Envelope Distribution Features

To codify the above observations into quantitative features,
an intuitive method is to measure the envelope distribution
of filtered CSI for a mobile link, and compare it with the-
oretical Rician and Rayleigh distribution. However, it often
involves large amounts of measurement to obtain an accurate
probability density estimation [20], which limits its realtime
applicability. Towards a light-weight yet effective feature, we
propose two candidates, Rician-K factor and skewness, for our
LOS identification scheme.

1) Rician-K Factor: Rician-K factor [8] is defined as the
ratio of the power in the LOS component to the power in
the scattered NLOS paths. In theory, if the PDF of received
signal envelope r obeys Rician distribution, it is associated
with Rician-K factor K as follows:

p(r) =
2(K + 1)r

Ω
e(−K− (K+1)r2

Ω )I0(2r

√
K(K + 1)

Ω
) (4)

where I0(·) is the zero order modified Bessel function of the
first kind, and Ω denotes the total received power.

Although the concept of Rician-K factor is built upon
Rician distribution, its calculation does not involve probability
density estimation and fitting. However, as demonstrated in Eq.
4, it involves a function inverse operation when obtaining an
accurate Rician-K factor estimation from the sampled received
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envelopes. In this paper we utilize a practical estimator for the
Rician-K factor [8] leveraging only the empirical moments.

K̂ =
−2μ̂2

2 + μ̂4 − μ̂2

√
2μ̂2

2 − μ̂4

μ̂2
2 − μ̂4

(5)

where μ̂2 and μ̂4 are the empirical second and fourth order
moments of the measured data, respectively. A large K indi-
cates strong LOS power and thus, a high probability of LOS
dominant conditions.

2) Skewness: Skewness is a general metric depicting the
the skewed shape of a distribution. Mathematically, skewness
s is defined as:

s =
E{x− μ}3

σ3
(6)

where x, μ and σ denote the measurement, mean, and standard
deviation, respectively. A positive (negative) skewness indi-
cates that the measured data spread out more to the right (left)
of the sample mean.

As the received envelope of filtered CSI distributes more
asymmetrically in NLOS conditions (Fig. 6c), we employ
skewness as a candidate feature, which is agnostic to specific
distributions and is more computation-effective. The skewed
distribution of received signal envelope for NLOS paths has
also been observed in [24], and modeled as a skewed Laplace
distribution with respect to fade level, but it involves the
prerequisite of transmitter-receiver distance between a static
link. Conversely, we do not assume specific distribution and
only calculate the skewness from filtered CSI for mobile links,
which is irrespective of propagation distances, transmission
power, and channel attenuation.

In summary, both Rician-K factor and skewness quantify
the differences of the skewed envelope distribution under LOS
and NLOS dominant conditions. In the next section we first
present a generic LOS identification framework and postpone
the detailed performance comparison between the two features
to Section V.

IV. LOS IDENTIFICATION

In this section, we present our LiFi LOS identification
scheme. The CSI samples reported from the receiver are
first preprocessed to mitigate random phase noise and are
normalized to eliminate the impact of transmitting power. The
reassembled CFRs are then converted into CIR via IFFT. The
two candidate features are extracted from a set of filtered
CIR samples from N packets. The identification procedure is
formulated as a statistical hypothesis test with a pre-calibrated
threshold for each of the feature metrics. The following subsec-
tions elaborate on the detailed operations for each processing
stage.

A. Preprocessing

The lack of time and frequency synchronization induces
random phase noise when measuring the complex channel re-
sponse at each subcarrier [25] [26]. Given the carrier frequency
f , initial phase of φt(f) and propagation time t, the ideal
received phase φr(f) is equal to φt + 2πft. However, the
clock offset Δt and frequency difference Δf result in unknown
phase shifts 2πfΔt and 2πΔft, respectively [25]. Since phase

shifts in the frequency domain is equivalent to delays in the
time domain, the random phase noise leads to unknown time
lags when calculating CIR samples from raw CSI samples as
shown in Fig. 4. We hence utilize the linear revision as in [26]
to mitigate the CIR aligning errors incurred by random phase
noise, where the revised phase φ′

r(f) is equal to φr(f)−αf−β
and α and β denote the slope of the phase change and average
phase change over all the subcarriers, respectively.

The revised phase information is thereafter reassembled
with the amplitude measurement as the complex CFR samples.
The corresponding CIR samples are obtained via a 32-point
IFFT on the CFR samples. Envelope distribution features are
thereafter extracted from the dominant paths detected by the
maximum slope scheme as discussed in Section III-B.

B. Normalization

One advantage of the PHY layer CSI over the tradi-
tional MAC layer RSSI is that CSI eliminates the unknown
transmission power and only characterizes the attenuation of
the propagation channel. However, it is well-known that the
radiation power decreases with propagation distance in free
space. To make the LOS identification scheme independent of
the power attenuation of the channel, we normalize the CIR
samples measured at one time by dividing them by the average
amplitude, i.e., setting the mean signal amplitude to 1, before
extracting envelope distribution features from the CIR samples.
The rationale for normalizing the mean signal amplitude to 1
instead of 0 is that the received signal amplitude is always
greater than 0 (not in dB).

C. Identification

Given a set of normalized and filtered CIR samples from N
packets, the Rician-K factor K and skewness s are calculated
as introduced in Section III-B. Then LOS identification is
formulated as a classical binary hypothesis test with LOS
condition H0 and NLOS condition H1.

For the Rician-K factor, the hypothesis test is:{
H0 : K > Kth

H1 : K < Kth
(7)

and for skewness based LOS identification,{
H0 : s < sth
H1 : s > sth

(8)

where Kth and sth represent the corresponding identification
threshold for Rician-K factor and skewness, respectively. The
thresholds are pre-calibrated and according to our measure-
ments, a unified threshold for each feature metric would fit
various scenarios including different propagation distances,
channel attenuation, and blockage diversity.

V. PERFORMANCE

In this section, we first interpret the experiment setup and
the methodology, followed by detailed performance evaluation
of LiFi in various indoor scenarios, as well as comparative
studies against RSS based approaches.
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Fig. 7. Floorplan of the Testing Building Fig. 8. Floorplan of the Testing Office

A. Methodology

We conduct the measurement campaign over one week
in typical office environments including corridors and rooms,
covering an area of approximately 1500m2. The corridors
are enclosed with concrete bearing walls and hollow non-
bearing walls. The rooms are furnished with cubicle desks
partitioned by glass and metal boards, computers, and other
plastic, wooden and metallic furniture. The doors are kept open
during the measurements and occasionally there are people
passing by.

The floor plan of the testing building is illustrated in Fig. 7.
For the corridors, we collect CSIs for LOS, through-wall
and around-corner propagation with a maximum transmitter-
receiver distance of 30m. For the rooms, we select a grid of 23
testing locations separated by 2m and 2 AP locations (Fig. 8).
The direct link between one transmitter and one receiver could
be a clear LOS path, partially blocked by furniture and humans,
or through-wall propagation, as shown in Fig. 8. Different
AP heights are also tested including 0m, 0.8m and 2m above
the floor. To simulate natural human mobility, the receiver is
placed on a wheeled desk of 0.8m in height, and is pushed by 2
different volunteers. For each measurement, the receiver moves
randomly for 1m to 2m. We collect 2000 packets for each
measurement, and in total we conduct 1000 measurements. For
fair comparison, we also collect 1000 measurements for static
links, with each measurement collected roughly along the user
moving traces. Each category of measurements include 500
LOS dominant conditions and 500 NLOS dominant conditions.

During the measurements, a TP-LINK TLWR741N wire-
less router is employed as the transmitter operating in IEEE
802.11n AP mode at 2.4GHz. A LENOVO laptop equipped
with Intel 5300 NIC and modified firmware as in [19] is used as
the receiver pinging packets from the AP. A group of 30 CSIs
are extracted from each packet and processed as in Section
IV-A.

We mainly focus on the following metrics to evaluate our
scheme. (1) LOS Detection Rate PD: The fraction of cases
where the receiver correctly identifies a LOS condition for
all LOS cases. (2) False Alarm Rate PFA: The fraction of
cases where the receiver mistakes a NLOS condition for LOS
condition for all NLOS cases. (Note that the NLOS detection
rate is thus simply 1−PFA.) The LOS detection rate and false
alarm rate for Rician-K factor are defined as:

PD,K =

∫ +∞

Kth

fK(ξ|H0)dξ

PFA,K =

∫ +∞

Kth

fK(ξ|H1)dξ

where Kth, fK(ξ|H0) and fK(ξ|H1) denote the identification
threshold and conditional probability densities under the two
hypothesesfor Rician-K factor, respectively, while for skew-
ness:

PD,s =

∫ sth

−∞
fs(ξ|H0)dξ

PFA,s =

∫ sth

−∞
fs(ξ|H1)dξ

where sth, fs(ξ|H0) and fs(ξ|H1) represent the corresponding
identification threshold and conditional probability densities
under the two hypotheses for skewness, respectively.

B. Overall Identification Performance

Fig. 9 and Fig. 10 demonstrate the distributions of Rician-
K factor and skewness under LOS and NLOS dominant
conditions for (a) overall RSS1 of static links (b) filtered CSI
of static links (c) overall RSS of mobile links (d) filtered CSI
of mobile links, respectively.

Static Links vs. Mobile Links: In general, the histograms
of both Rician-K factor and skewness of static links span a
larger range compared with mobile links, indicating mobility
decreases the variations of the feature estimation. The rationale
is that static links occasionally suffer from environmental
dynamics (e.g. pedestrians), whereas the locomotion of mobile
links tend to mask the impact of background instability. There-
fore, mobile links are more robust to accidental disturbance
since receiver motion dominates the changes of propagation
paths. The disadvantage of mobile links, though, is that the
LOS component also experiences fluctuations, thus leading to
potential ambiguity between LOS and NLOS conditions. As
shown in Fig. 9 and Fig. 10, the distributions of Rician-K
factor under LOS conditions demonstrate a notable negative
shift while those of skewness do a slight positive shift. The
shifts under NLOS conditions, on the other hand, vary for the
two features. According to our measurements, the distributions
of Rician-K factor under NLOS conditions seem to experience
less shift compared with those under LOS conditions, leading
to more ambiguity for LOS identification (Fig. 9a and Fig. 9c).
In contrast, the distributions of skewness under NLOS con-
ditions are more sensitive to mobility induced path changes
compared with those under LOS conditions, and hence, result
in more distinguishable feature distributions.

1We summate over all the CIR samples to approximate the overall RSS.
Note that such approximation in decibel is proportional to the MAC layer
RSSI. The difference is that the summation of CIR samples characterizes only
the overall channel attenuation, whereas RSS also contains unknown transition
power. Therefore we believe that its relative performance would be at least
comparable with RSS.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

2693



7

100 200 300 400
0

0.1

0.2

P
D

F

Rician−K Factor

LOS

100 200 300 400
0

0.1

0.2

P
D

F

Rician−K Factor

NLOS

(a) Overall RSS/Static

0 5 10 15 20 25
0

0.1

P
D

F

Rician−K Factor

LOS

0 5 10 15 20 25
0

0.1

P
D

F
Rician−K Factor

NLOS

(b) Filtered CSI/Static

0 10 20 30 40 50
0

0.1

0.2

P
D

F

Rician−K Factor

LOS

0 10 20 30 40 50
0

0.1

0.2

P
D

F

Rician−K Factor

NLOS

(c) Overall RSS/Mobile

0 5 10
0

0.1

P
D

F

Rician−K Factor

LOS

0 5 10
0

0.1

P
D

F

Rician−K Factor

NLOS

(d) Filtered CSI/Mobile

Fig. 9. Distribution of Rician-K Factor under LOS/NLOS Conditions
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Fig. 10. Distribution of Skewness under LOS/NLOS Conditions

Overall RSS vs. Filtered CSI: As shown in Fig. 9
and Fig. 10, the feature distributions of filtered CSI are
more consistent than those of overall RSS. This is because
the irrelevant noise and NLOS paths with long propagation
distances are eliminated. Consequently, only the changes of
the LOS path (if present) and NLOS paths with short delays
are preserved. One exception, is that the distribution of Rician-
K factor with overall RSS seems to span more concentratedly
than that with filtered CSI under NLOS dominant conditions
as shown in Fig. 9a and Fig. 9b. A partial explanation might
be that Rician-K factor is more representative and effective
for NLOS conditions in case of sufficient scatters. For static
and relatively short distance indoor propagation scenarios, the
noise and other NLOS paths in the overall RSS potentially
compensate for the insufficient randomness, which possibly
contributes to more consistent estimate of Rician-K factor.

Rician-K Factor vs. Skewness: To quantitatively eval-
uate the overall LOS identification performances of the two
features, we plot the Receiver Operating Characteristic (ROC)
curves of the two features in Fig. 11 and Fig. 12 for the above 4
combinations. ROC curves plot the LOS detection probability
PD against the probability of false alarms PFA. It is a classical
graphical view of the tradeoff between false positives and false
negatives of a detection algorithm by evaluating a wide range
of thresholds. In general, the ROC curve closer to the upper
left corner indicates better overall detection performance.

As shown in Fig. 11 and Fig. 12, given a constant false
alarm rate of 10%, the LOS detection rates using Rician-K
factor are all below 60%, with the highest detection rate of
58.75% for mobile links with filtered CSI. With skewness
features, in contrast, the highest detection rate is 90.83%.
The reasons for such performance gap are as follows. The
effectiveness of Rician-K factor implicitly relies on how the
data fits Rician (or Rayleigh) fading. Despite human mobility
compensated spatial disturbance, the abundance of scatters

between an indoor AP and a laptop is still incomparable with
that within a base station and a mobile client at the center of
the densely-built Manhattan, where these theoretical models
cater for [27]. Conversely, skewness is applicable for any
distributions, depicting the extent of leans of a distribution
to one side of its mean. Therefore, skewness is a lightweight
and general metric, and when combined with natural human
mobility, outperforms other schemes and achieves an overall
LOS identification accuracy of 90.42% and NLOS identifica-
tion accuracy of 90.66%, respectively.

In the following subsections, we only utilize skewness
and evaluate the impact of distances, number of packets and
different obstacles on the identification performance using the
optimal threshold of -0.205.

C. Impact of Propagation Distance

As LiFi aims to provide a generic LOS identification
scheme, it is envisioned that a single threshold would fit a
wide range of propagation distances. We collect data in the
corridor with transmitter-receiver distances ranging from 5m
to 30m. The corresponding LOS detection rates and false alarm
rates are shown in Fig. 13. There is no direct correlation
between the LOS identification performance and propagation
distances, indicating a single pre-calibrated threshold tends to
be independent of propagation distances and is applicable to
most of the tested locations. Modest performance degradation,
however, is observed for both short distance (5m) and relatively
long distance (25m). The degeneration in short distance cases
is partially due to the lack of randomness as discussed before,
since short distance between the transmitter and the receiv-
er would constrain the potential paths that wireless signals
propagate, especially in the relatively narrow corridors. With
distant receivers, on the other hand, the low SNR would
incur enormous noise when estimating CSI, and consequently,
degenerated skewness features.
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Fig. 12. ROC Curve of Skewness

Fig. 13. Impact of Propagation Distances Fig. 14. Impact of Packet Number Fig. 15. Impact of Obstacle Diversity

D. Impact of Packet Quantity

To evaluate the realtime performance of LiFi, we calculate
the LOS and NLOS detection rate with different number
of packets, ranging from 500 packets to 2000 packets per
measurement. Since the receiver is downloading packets from
the AP at the rate of 500 packets per second, this corresponds
to a time range of 1s to 4s. As shown in Fig. 14, both the
LOS and NLOS detection rates retain around 90% with 3
to 4 seconds of measurements. Even with measurements of
only about 1s, LiFi demonstrates reasonable LOS and NLOS
detection rates of 77.65% and 82.5%, respectively. The reason
for the moderate performance degradation is that, although an
effective skewness does not depend on a particular distribution,
a stable estimation of skewness relies on adequate received
envelope samples, especially with mobile links, unpredictable
human behaviors and uncertain background dynamics.

E. Impact of Obstacle Diversity

To evaluate the robustness of LiFi under different obstruc-
tion scenarios, we investigate the identification performance
with different blockage: (1) through wall (concrete bearing
walls and hollow non-bearing walls), (2) around the corners
(could partially be trough wall propagation) and (3) office
(obstructed by metallic and wooden furniture). For each s-
cenario, we test two AP locations as shown in Fig. 7 and
Fig. 8, and plot the overall detection performances of the 3
scenarios as in Fig. 15. As is shown, there is no clear per-
formance gap among the 3 scenarios with lowest LOS/NLOS
detection rate of 85.42% for the 6 tested cases. The two wall
cases slightly outperform the others partially because through
wall propagation magnifies the difference between LOS and
NLOS conditions. And although furniture blockage induces
weaker attenuation and disturbance on the LOS component,
the relatively open space in offices compared with narrow
corridors allows more freedom of the propagation paths. Hence
the detection performance is comparable with the other two

scenarios even with short propagation distances.

VI. RELATED WORK

The design of LiFi is closely related to the following three
categories of research areas.

Channel Statistics based LOS Identification: To distin-
guish NLOS and LOS propagation via channel characteristics,
various features have been proposed [20]. Since signals travel-
ling along LOS paths always arrive earlier than those travelling
along NLOS paths, delay characteristics such as mean excess
delay [21] and kurtosis [9] are proposed. However they assume
high resolution channel response and are thus primarily used in
UWB systems. Narrowband and wideband systems often resort
to analyzing the distributions of the more accessible signal
envelopes from multiple packets at the cost of longer latency
[22]. However, most of them mainly focused on analysis and
simulation, with few practical solutions available, especially
for WiFi. The aim of our work is therefore to implement a per-
vasive LOS identification scheme on commercial bandwidth-
limited WiFi devices.

Leveraging MIMO and Mobility: Besides boosting wire-
less capacity [19], [28], the ever-increasing numbers of an-
tennas on WiFi APs have also extended the context of LOS
identification to the spatial dimension. The key insight is
that a slight movement of the transmitting link induces little
change for the LOS path, yet usually significant deviations
for the NLOS paths. Xiong et al. [11] proposed a multipath
suppression algorithm by removing peaks in the angle spectra
that experience significant angular changes measured by two
adjacent antenna arrays. Joshi et al. [12] determined the exis-
tence of LOS component via clustering on the angle and delay
measurements calculated by cyclic correlation techniques. Sen
et al. [7] weeded out NLOS components by verifying the
angular changes at two distinct locations with the one extracted
by distance measurements. Our work also grounds upon the
stableness of LOS path and the random variations of NLOS
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paths in case of slight link movements. However, instead of
deriving angle information, our scheme analyzes the channel
characteristics extracted from multiple packet and can be
combined with MIMO based frameworks.

PHY assisted Indoor Localization: The availability of
finer-grained channel state information on commercial WiFi
devices has fostered thriving enthusiasm on utilizing PHY
layer features for indoor localization with meter-level accuracy
[29]. Sen et al. [26] and Xiao et al. [30] employed channel
statistics as fingerprints for spot localization and fine-grained
device-free motion detection. In this work, we exploit the
channel state information available to capture the distinctive
characteristics of LOS and NLOS conditions. Wu et al. [6]
and Sen et al. [7] extracted the power and the arriving angle of
the direct path for accurate ranging and direction estimation,
respectively. In the absence of the LOS path, though, these
frameworks might potentially mistake the first arriving signals
along a NLOS path for those along the LOS path. Our work
thus can serve as a prerequisite to first validate the existence
of the LOS path.

VII. CONCLUSION

In this study, we explore PHY layer information to identify
LOS dominant conditions with commodity WiFi infrastructure.
On observing that natural mobility magnifies the randomness
of NLOS paths while retaining the deterministic nature of the
LOS component, we leverage the skewed distribution features
of the received envelopes in mobile links, and prototype LiFi, a
statistical LOS identification scheme with off-the-shelf 802.11
NIC. Extensive experimental evaluation considering various
propagation distances, channel attenuation and obstruction
diversity have validated the feasibility of LiFi, with an overall
LOS detection rate of 90.42% and a false alarm rate of 9.34%.
We envision this work as an early step towards a generic,
pervasive, and fine-grained channel profiling framework, which
paves the way for WLAN based communication, sensing and
control services in complex indoor environments.
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