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Sensor-free Corner Shape Detection by
Wireless Networks
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Abstract—Due to the rapid growth of the smartphone ap-
plications and the fast development of the Wireless Local Area
Networks (WLANs), numerous indoor location-based techniques
have been proposed during the past several decades. Floorplan,
which defines the structure and functionality of a specific in-
door environment, becomes a hot topic nowadays. Conventional
floorplan techniques leverage smartphone sensors combined with
WiFi signals to construct the floorplan of a building. However,
existing approaches with sensors cannot detect the shape of a
corner, and the sensors cost huge amount of energy during the
whole floorplan constructing process. In this paper, we propose
a sensor-free approach to detect the shape of a certain corner
leveraging WiFi signals without using sensors on smartphones.
Instead of utilizing traditional wireless communication indicator
Received Signal Strength (RSS), we leverage a finer-grained
indicator Channel State Information (CSI) to detect the shape
of a certain corner. The evaluation of our approach shows that
CSI is more robust in sensor-free corner shape detection, and
we have achieved over 85% detection accuracy in simulation and
over 70% detection accuracy in real indoor experiments.

Keywords—Wireless, Channel State Information, Smartphone,
Localization, Floorplan

I. INTRODUCTION

Location based services (LBS) in indoor environment (e.g.
floorplan, localization) have received increasing attention with
the rapid development of wireless technology. New types
of indoor mobile applications are being developed, covering
a wide range of indoor personal and social scenarios. A
key requirement to these location-based applications is the
availability of a map which displays the user location.

In the case of indoor location-based applications, we need
a floorplan. Whereas in outdoor applications, a street map is
needed. Traditionally, outdoor location-based service providers
(e.g. Google Maps, Baidu Maps) provide outdoor street maps
for almost all regions [1]. However, the indoor equivalent
floorplans are currently extremely limited, which places re-
strictions on the ubiquity and spread of indoor location-
based applications. Recently, researches have been conducted
to build indoor floorplan in efficient approaches. However,
acquiring indoor floorplan information is challenging, since
many buildings do not have floorplans in easily-interpretable
digital form, and the internal structures together with the
corresponding functionalities inside a building often evolve
over time. Therefore, only few researches have made progress
in indoor floorplans so far.

Conventional methods construct the floorplan by lever-
aging sensors (e.g. accelerator, gyroscope) on smartphones

and WiFi data. However, current methods can only recover
corners whose shape is right-angled due to the inaccuracy of
smartphone sensors, and they cannot detect the exact shape of a
corner sometimes, which is a serious limitation [2]. Moreover,
to detect the shape of a corner, sensors on smartphones must
be kept on all the time during the entire detection period,
which costs plenty of energy in smartphone location-based
services [3]. Fig. 1 presents the ichnography layout of the
Yellow River Hall and its adjacent rooms on the third floor of
the Shanghai International Convention Center. Conventional
floorplan methods, which leverage smartphone sensors and
WiFi signals, can only construct the layout of the corridor
shape the same as that shown in dash lines. However, compared
with the actual floor layout, some of the constructed corridor
positions are inside the rooms where people cannot reach in
real life scenarios. To deal with the limitation in corner shape
detection of the conventional floorplan methods and to manage
energy efficiency on smartphones, we propose a sensor-free
corner shape detection approach by leveraging WiFi signals
with physical layer information only.

Fig. 1: Example of a Corner Shape Wrong Detection

Different from conventional floorplan approaches, we
leverage wireless signals as indicator to perform corner shape
detection. However, to detect the real corner shape using
wireless signals is challenging since there are various wireless
signals and they are sensitive to indoor environment. In our ap-
proach, we leverage physical layer Channel State Information
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(CSI) instead if Received Signal Strength used in conventional
indoor LBS services, and decide the shape of the corner by
comparing the CSI variation pattern with that of each defined
corner shape. To the best of our knowledge, this is the first
work to detect corner shape using WiFi data only. We perform
both simulation and real indoor experiments on RSS and CSI
to classify the corner shapes into the following three types:
straight-line, right-angle, and quadrant-arc. The simulation and
experimental results show that our sensor-free corner shape
detection approach leveraging CSI is accurate and efficient.

The rest of the paper is organized as follows. In Section
II, we provide the preliminary work including channel models
for simulation, together with an overview of Channel State
Information. We present the detailed methodology of this work
in Section III, which describes the detailed design of the work.
After that, we provide the simulation and experimental results
on both RSS and CSI of this work in Section IV, followed by
the related work in Section V. Finally, in Section VI, we draw
a conclusion on this paper.

II. PRELIMINARY

Channel modeling and measurement are fundamental for
wireless communication. In this section, we provide a quick
review on two typical channel models that will be used for
our simulation, and Channel State Information (CSI), a fine-
grained channel measurement on OFDM based WiFi devices
for our scheme design and evaluation.

A. Channel Models

Ideally, the received signal power Pr(d) at a propagation
distance of d is calculated by Friis free space equation [4]:

Pr(d) =
PtGtGrλ

2

(4π)2d2
(1)

where Pt, Gt and Gr are the transmitted power, transmitter and
receiver antenna gain, respectively. λ is the wavelength in me-
ters. The Friis free space model only considers Line-Of-Sight
(LOS) propagation. In typical indoor environments, however,
signals transmit through multiple reflected or scattered paths
(i.e. Non-Line-Of-Sight, NLOS paths). In this paper, we resort
to two more generalized channel models for simulation.

1) Log-normal Shadowing: Log-normal shadowing model
is adopted to predict average large-scale path loss for a wide
range of environments as a function of propagation distance d
and path loss exponent n:

PL(d) = PL(d0) + 10nlog(d) +Xσ (2)

where PL(d) is the power at distance d, PL(d0) is the power
at close-in reference distance d0, and Xσ is a zero-mean
Gaussian distributed random variable with standard deviation
σ. We apply log-normal shadowing model in our simulation
for the case of slight multipath propagation.

2) Rayleigh Fading: When signal propagation is dominated
by multipath, the channel exhibits Rayleigh fading. When the
environment is rich in multipath, each path is modeled as a
circularly symmetric complex Gaussian random variable by

the Central Limit Theorem. The form of a circularly symmetric
complex Gaussian random variable is:

Z = X + Y j,

where X and Y are zero mean i.i.d. Gaussian random vari-
ables. For a circularly symmetric complex Gaussian random
variable Z,

E[Z] = E[ejθZ] = ejθE[Z],

The statistics of this variable can be specified by the variance,

σ2 = E[Z2],

The magnitude |Z| is called a Rayleigh random variable, which
has a probability density:

p(z) =
z

σ2
e

−z2

2σ2 (3)

Rayleigh fading model assumes that the signal magni-
tude fades according to Rayleigh distribution. And we apply
Rayleigh fading model to simulate our corner shape detection
scheme under rich multipath conditions.

B. Channel State Information

MAC layer Received Signal Strength (RSS) is widely
adopted as an indicator for channel quality. As the superposi-
tion of multiple paths, RSS tends to be a fickle and unreliable
channel measurement for both wireless communication [5] and
indoor localization [6].

Modern modulation such as Orthogonal Frequency Di-
vision Multiplexing (OFDM) has revealed channel measure-
ments at the granularity of subcarrier in the form of Chan-
nel State Information (CSI). CSI depicts the amplitude and
phase of each subcarrier, and characterizes frequency selective
fading due to multipath propagation. In a narrowband flat-
fading channel, the OFDM system in the frequency domain
is modeled as:

y = Hx+ n (4)

where y is the received vector, x is transmitted vector, H is
the channel matrix, and n is the additive white Gaussian noise
(AWGN) vector. The CSI matrix of all subcarriers, which is
an estimation of the matrix H in the above formula, can be
estimated as:

Ĥ =
y

x

Leveraging the off-the-shelf Intel 5300 network card with a
publicly available driver [7], a group of CSIs of 30 subcarriers
are exported to the upper layer, and the CSI of a single
subcarrier can be mathematically represents as:

h = |h|ej sin θ (5)

where |h| and θ are the amplitude and phase of the CSI
subcarrier, respectively.

Compared with RSS, CSI provides finer-grained chan-
nel measurements, and can resolve multipath via frequency
diversity [6]. Thus we employ CSI to eliminate multipath
interference in our corner shape detection scheme.



III. METHODOLOGY

RSS or CSI is a function of the distance from the trans-
mitter to the receiver for a typical indoor environment. When
the receiver passes the corner at a constant moving speed,
different corner shapes will lead to different RSS or CSI
changing rates. Generally, the corner shapes inside a building
can be classified as the following types: straight-line, right-
angle, and quadrant-arc, shown in Fig. 2. This section depicts
the methodology to distinguish the above three corner shapes
via wireless networks. We first provide the feasibility of
distinguishing corner shapes using wireless networks. Then,
we present the CSI propagation model in indoor environment,
which is utilized to simulate the CSI changing rate for different
corner shapes. Finally, we provide a brief introduction on
Gaussian smoothing used to filter the noise of the simulated
and collect RSS and CSI signals in our approach, and the max
correlation method to classify a specific corner shape as one
of the defined three corner shapes in Fig. 2.

Fig. 2: Corner Shapes

A. Free Space Path Loss

In a typical indoor environment, there is one line-of-sight
(LoS) path, which suffers the free space path loss. Meanwhile,
due to the reflection of the surroundings such as floor, ceiling
and walls, there exist several non-line-of-sight (NLoS) paths.
This multipath propagation phenomenon causes constructive
and destructive interference, and phase shifting of the signal.

Under idealized conditions, considered the path loss of LoS
path only, the received power at the receiver antenna is given
by the Friis free space equation [4]:

Pr(d) =
PtGtGrλ

2

(4π)2d2
,

where Pr(d) is the received power, d is the distance from
the transmitter to the receiver, Pt is the transmitted power,
Gt is the transmitter antenna gain, Gr is the receiver antenna
gain, λ is the wavelength in meters and d is the distance from
transmitter to receiver in meters.

When the receiver is passing the corner at a constant
moving speed, the shape of the corner will lead to different
power changing rates among the paths. Fig. 3a shows the
theoretical power changing rate of different corner shapes
when transmitter is placed at (0, 0). It is obvious that there
are relationships between the receiver antenna’s received power
changing rates Rs of different shapes with respect to the time
t, which can be formulated as:

RSL =
PrGtGrλ

2

(4π)2(v2t3 −
√
2d0vt2 + d0

2t)
(6)

RRA =


PrGtGrλ

2

(4π)2(v2t3+d02t)
, t∈(0, d0

v
),

PrGtGrλ
2

(4π)2(v2t3−4d0vt2+5d02t)
t∈( d0

v
, 2d0
v
)

(7)

RQA =
PrGtGrλ

2

(4π)2(d0
2t)

(8)

where d0 is the distance from the transmitter to the start point
of the receiver, v is the specific speed which is constant,
and RSL, RRA, and RQA represent the power changing
rates of shape Straight-line, Right-angle, and Quadrant-arc,
respectively. The power changing rates of different shapes can
form into different power changing rate patterns. Therefore, the
corner shapes can be distinguished by leveraging the patterns
of power changing rate.

Apart from the corner shape, the location of the transmitter
AP also affects the received power changing pattern. Assume
the receiver passes the corner from point A to point B in
Fig. 2 along the three defined paths, and we define A as
the ‘starting-point’ and B as the ‘ending-point’. The power
changing patterns of the three corner shapes become similar
when AP is closed to either starting-point or ending-point. As
shown in Fig. 3, if we define the distance between (0,0) and the
starting-point/ending-point as 5m, when AP is placed at (0,0)
or (0,2), we can still distinguish the corner shapes using power
changing patterns theoretically. However, the power changing
patterns of different shapes become similar when AP is placed
at(0,4). By observation, Fig. 4 shows that when setting the
location of AP on x-axis/y-axis with the distance to origin
point dAP no more than 0.4d0, we can distinguish the corner
shapes leveraging power changing patterns even with little
noise, where d0 is the distance between origin point (0,0)
and the starting-point/ending-point in Fig. 2. However, power
changing pattern cannot help in shape detection when dAP
becomes larger. Therefore, in this paper, we define an effective
zone for the location of AP in our approach, which requires
dAP is no more than 0.4d0. In the rest of this paper, we only
consider scenarios under the effective zone condition.

B. Distinguish Corner Shape with CSI

The radio propagation model for RSS is not suitable for
CSI since it is obtained from the baseband on the receiver, the
models described above cannot be used for the relationship
between the path shape and the CSI value at unit time. In
[6], the authors proposed a refined indoor propagation model
to represent the relationship between CSI and the distance d.
Given a packet with 30 groups of subcarriers, the effective CSI
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(c) Coordinate (0,4)

Fig. 3: Theoretical Power Changing Rate Patterns at coordinate (0,0), (0,2), and (0,4)
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Fig. 4: Power Changing Rate Patterns with noise at coordinate (0,0), (0,1), and (0,2)

of this packet is given as:

CSIeff =
1

K

K∑
k=1

fk
f0
×|A|k, k∈(−15, 15), (9)

where K is the number of subcarriers, f0 is the central
frequency, fk is the frequency of the k-th subcarrier, and |A|k
is the amplitude of the k-th subcarrier. The distance from the
transmitter to the receiver is calculated as:

d =
1

4π

[(
c

f0×|CSIeff |

)2

×σ

] 1
n

, (10)

where c is the wave velocity, σ is the environmental factor and
n is the path loss fading exponent. We leverage this proposed
model to establish the relationship between path shape and
CSI.

C. Decision of Corner Shape

To distinguish the corner shapes leveraging the received
power changing pattern, we choose to use max correlation
method. In our approach, we store the power changing patterns
of each corner shape at various AP locations within the
effective zone in a training data matrix. Each row of the matrix
represents the power changing pattern of a certain corner shape

for a specific AP location. When a new set of test data comes
in, we compute the correlation value between the test data and
the data of each row in the training matrix. The corner shape
type with the highest correlation value is chosen as the type
for the testing corner shape data. To make the detection more
precise, we leverage Gaussian smoothing to filter the noise of
the signals before detection. Gaussian filter modifies the input
signal by convolution with a Gaussian function to remove the
noise.

We simulate the Wi-Fi propagation leveraging Log-normal
Shadowing model and Rayleigh Fading model for RSS, and
using CSI propagation model in [6] for CSI simulation. We
also conduct experiments to evaluate the relationship between
path shape and RSS or CSI in real indoor environment.

IV. EXPERIMENTS AND RESULTS

In this section, we presents the results of RSS and CSI
simulations with different propogation models, and the results
of RSS and CSI experiments in real indoor environment.

A. Experiment Setup

The simulation platform is Matlab 2013a installed on a
3.40GHz Intel(R) Core(TM) i7-4770 CPU 16G RAM desktop.



Log-normal Shadowing model is selected to simulate the signal
propagation for an indoor environment with less multipath
effect, and Rayleigh Fading model for an rich multipath indoor
environment.

The experiments are conducted in a lobby area in the cam-
pus of the Hong Kong University of Science and Technology.
We leverage a TP-LINK TL-WDR4300 wireless router with 3
detectable antennas as the transmitter, and a 3.20GHz Intel(R)
Pentium 4 CPU 2GB RAM desktop equipped with Intel 5300
NIC as the receiver. The transmitter operates in IEEE 802.11n
AP mode at 5GHz. The receiver has 3 working antennas and
the firmware is modified as in [5] to report CSI to upper
layer. RSS is calculated using CSI. During the experiment,
the receiver continuously pings packets from the AP at the
rate of 100 packets per second.

In both simulation and experiments, we define d0 in Fig. 2,
which is the distance between the origin point (0,0) and the
starting-point/ending-point, as 5m. AP is set to be placed at
(0,0), (0,1), (0,2), (1,0) and (2,0) during simulation, and is
placed only at the origin point (0,0) during the entire experi-
ment. The moving speed of the receiver is defined as 0.5m/s,
and we set one reference point on the paths representing
different corner shapes every second corresponding to the
moving speed. Since different corner shapes lead to different
time duration of passing the corner, we only select data within
the shortest corner passing time duration (14s) for evaluation.
The power changing rate for evaluation is defined as the slope
of the received power waveform.

B. Simulation Results

In this section, we describe the simulation results of RSS
under Log-normal Shadowing Model and Rayleigh Fading
Model, as well as simulation results of CSI.

1) RSS Log-normal Shadowing Simulation: Log-normal
Shadowing Model is chosen to simulation the corner shape
detection using RSS in an indoor environment with slight
multipath effect. We first filter the noise of the signal data,
and then calculate the correlation between each type in training
data matrix and the test data. TABLE I shows the correlation
value between the training data matrix and five groups of test
data of Straight-line shape which are selected randomly. From
the table, we can obviously figure out that the correlation
values in column “Straight-line” are around 0.9, which means
the test data almost has a perfect direct linear relationship with
the training data of type “Straight-line”. Meanwhile, from the
values in the other two columns, we know that there is weak
perfect increasing linear relationship between the test data and
the training data of other two types. Therefore, we classify the
test data into type “Straight-line”. For the other groups of test
data, we can also use the max correlation method to classify
them into specified types.

Fig. 5 shows the corner shape detection predict rates with
respect to the corresponding types of the three defined corner
shapes. The simulation shows that in an indoor environment
with slight multipath effect, the predict rates of shape Straight-
line and Right-angle are both 99%, and the predict rate of
corner shape Quadrant-arc is 93.8% even using RSS as the
transmission indicator. Therefore, it can be concluded that it
is reliable to utilize RSS to distinguish the corner shape using

TABLE I: Correlation of Three Defined Types with Test Data
of Straight-line using Log-normal Shadowing Model

Type STRAIGHT-LINE RIGHT-ANGLE QUADRANT-ARC

Data1 0.916 -0.524 0.555

Data2 0.913 -0.511 0.537

Data3 0.892 -0.533 0.496

Data4 0.942 -0.542 0.549

Data5 0.931 -0.542 0.549

Fig. 5: Predict Rates of Different Corner Shapes for
Log-normal Model

the max correlation method from the defined three types in an
ideal environment.

2) RSS Rayleigh Fading Simulation: Rayleigh Fading
Model is chosen to simulation the corner shape detection using
RSS in an indoor environment with rich multipath effect. We
calculate the correlation values after filter the noise of the
signals using Gaussian smoothing. Fig. 6 shows the corner
shape detection predict rates of the three defined corner shapes.

The simulation shows the predict rate using RSS as indica-
tor in an indoor environment with rich multipath effect, which
is the common indoor scenarios in real life. The figure shows
that the predict rate of shape Straight-line is 46%, and the rate
of Right-angle is 47%. Although the predict rate of Quadrant-
arc is a little bit higher, which is about 61%. Therefore, we
can conclude that it is unreliable to utilize RSS to distinguish
the corner shape from the defined three types in real cases.

3) CSI Simulation Result: Since we have proved that RSS
is unreliable to be used as the indicator in corner shape
detection in real cases, a finer-grained indicator CSI is a
reasonable choice for us. We simulate the CSI-based corner
shape detection by leveraging the model proposed in [6], which
is a well-defined model for CSI propagation in rich multipath
effect indoor environment.



Fig. 6: Predict Rates of Different Corner Shapes for Rayleigh
Model

Fig. 7 shows the predcit accuracies using CSI as the
indicator in a real indoor environment with rich multipath
effect with the model proposed in [6]. The figure shows that the
predict rate of shape Straight-line is 92%, the rate of Right-
angle is 90%, and the predict rate of Quadrant-arc is 87%.
Though the predict accuracies are not as high as those with
Log-normal Shadowing model and RSS, the accuracies are
all above 85%, which is acceptable. Therefore, the simulation
results can illustrate that corner shape detection using CSI is
reliable in indoor environment with rich multipath.

Fig. 7: Predict Rates of Different Corner Shapes using CSI

C. Experimental Results

We conduct experiments in an open lobby environment,
and collect CSIs for evaluation. We first use Gaussian Filter
to filter the noise of the collected data. The filtered CSIs are
used for experimental evaluation. The RSS values used for
evaluation are calculated from the filtered CSIs.
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Fig. 8: Power Changing Rate of Experimental RSS Data

Fig. 8 shows the power changing rate of a group of RSS
values calculated from CSIs, which is selected randomly. Since
multipath effect has strong influence on RSS, it cannot keep
its theoretical power changing pattern. Therefore, we cannot
leverage RSS to detect the corner shape in real experiment. Fig.
9 shows the power changing rates of RSS and CSI of Quadrant-
arc shape compared with power changing rate simulated using
Log-normal Shadowing model. It is obviously that CSI has a
more similar power changing pattern than RSS. Fig. 10 shows
the predict rates using CSI. We can achieve over 70% of the
predict accuracy, which is acceptable.
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Fig. 9: Shadowing Model, CSI and RSS Power Changing
Rate Comparison of Quadrant-arc

V. RELATED WORK

This work is closely related to the following two research
categories.

Floor Plan Construction. Floor plan is a key pre-requisite



Fig. 10: Experimental CSI Predict Rates of Different Shapes

for various indoor location based services, yet is not always
available. Extensive research in robotics has explored Simul-
taneous Localization and Mapping (SLAM) techniques [8],
while a new trend is to automatically construct the floor plan
with sensor-rich smartphones in a crowdsourced manner [9]
[2] [10] [11]. The main principle is to combine and segment
multiple user trajectories into hallways and rooms by unique
physical (e.g. elevator and stairs) [9] or wireless landmarks
[10] [11]. However, due to the noisy data of phone-embedded
inertial sensors and the unconstrained orientation of smart-
phones [12], inertial based trajectories are often segmented by
right-angled turns, and most floorplan construction schemes
degrade in case of curved hallways or irregular shapes [11].
Our work is inspired by this thread of research and serves as a
complement for inertial based turn/corner detection schemes.
We exploit the unique received signal characteristics of WiFi
to infer curved or right-angled hallway structures, as radio
propagation trend is more stable w.r.t. human locomotion.

CSI-based Indoor Localization. Multipath effect resides
as a primary challenge for wireless indoor localization. An
emerging trend to combat such phenomenon is to leverage
finer-grained Channel State Information (CSI), which implic-
itly characterizes multipath propagation via frequency diversity
[13]. CSI helps to extract the power of the dominant (often
line-of-sight) path for accurate ranging [6], angle-of-arrival
estimation [14], and has also been employed to infer line-of-
sight propagation [15] and calculate path loss exponent [16].
In this work, we also utilize CSI to extract the power of the
direct propagation path. But instead of using the signal power
at a fixed location to estimate propagation distance or direction,
we exploit the signal power trend of the direct path along a
trajectory to infer the geometric structure of the hallway.

VI. CONCLUSION

Understanding the indoor environments is important for a
wide range of mobile personal and social applications, which
often requires knowledge of indoor floorplans. Conventional
floorplan approaches leverage smartphone sensors combined

with wireless signals to construct the indoor map of a building,
which causes a serious limitation that they cannot detect the
real shape of a corner shape precisely. In this paper, we propose
a trivial sensor-free method to detect the corner shape. Our
approach leverages physical-layer information CSI to classify
the shapes of the corners into the defined three types. This
approach can also save the energy consumption caused by
smartphone sensors, and has achieved promising corner shape
detection accuracy.
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