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Abstract—Wireless-based device-free human sensing has raised
increasing research interest and stimulated a range of novel
location-based services and human-computer interaction appli-
cations for recreation, asset security and elderly care. A primary
functionality of these applications is to first detect the presence of
humans before extracting higher-level contexts such as physical
coordinates, body gestures, or even daily activities. In the
presence of dense multipath propagation, however, it is non-trivial
to even reliably identify the presence of humans. The multipath
effect can invalidate simplified propagation models and distort
received signal signatures, thus deteriorating detection rates and
shrinking detection range. In this paper, we characterize the
impact of human presence on wireless signals via ray-bouncing
models, and propose a measurable metric on commodity WiFi
infrastructure as a proxy for detection sensitivity. To achieve
higher detection rate and wider sensing coverage in multipath-
dense indoor scenarios, we design a lightweight subcarrier and
path configuration scheme harnessing frequency diversity and
spatial diversity. We prototype our scheme with standard WiFi
devices. Evaluations conducted in two typical office environments
demonstrate a detection rate of 92.0% with a false positive of
4.5%, and almost 1x gain in detection range given a minimal
detection rate of 90%.

I. INTRODUCTION

Recent advances in wireless techniques have extended the

abstraction of wireless channels from a sole communication

medium to a vehicle for device-free human sensing. It works

by analyzing human-induced radio shadowing and reflection

conveyed in received signals to detect, localize or track the

presence of humans, while users carry no radio-enabled de-

vices [1]–[5]. Unlike conventional paradigms using cameras,

infrared detectors or wearable devices, wireless-based device-

free human sensing reuses the ubiquitously deployed wire-

less infrastructure, operates in a non-invasive and privacy-

preserving mode, and can work through-walls and in dim

lighting. In addition to extracting physical coordinates for

location-based services, pioneering work has also succeeded

in identifying higher-level contexts such as gestures [6], [7],

location-aware activities [8] and breath monitoring [9], [10].

For device-free human sensing to excel indoors, multipath

propagation lurks as a major concern. As these applications

assume that users carry no radio-enabled devices, a primary

step towards higher-level human sensing tasks is to first detect

the motion or the presence of the target users. Detecting

human presence is relatively easy with a strong Line-Of-

Sight (LOS) path along a wireless link in an open area.

Yet offices, homes, shopping malls, and the like are often

enclosed and have twisted corridors, capsuled rooms piled with

furniture and commodity goods, creating multiple intricate

propagation paths. Such a multipath propagation phenomenon

can invalidate theoretical propagation models [11], distort

received signal signatures [12], and fundamentally constrain

the sensitivity and coverage of a wireless link even when

inferring the presence of humans [13]–[15]. To explicitly elim-

inate any adverse impact of multipath propagation, researchers

resort to customized signals [5] and specialized software-

defined radios [6] for radar-like signal processing. To enable

device-free applications on commodity infrastructures, existing

approaches exploit a dense deployment of wireless links [4],

[12], where each link can only detect a human presence along

the LOS path.

In this paper, we ask the question: Instead of avoiding mul-

tipath to tradeoff detection reliability with sensing coverage,

can we harness multipath for a higher detection rate and wider

sensing range with standard WiFi devices? We do an in-depth

analysis on how human presence alters wireless signals under

different propagation mechanisms, and demonstrate that (1)

human-induced reflections potentially extend detection range;

(2) multipath superposition status can lead to varied detection

sensitivity. To deliver these observations into practical solu-

tions for wider coverage and higher detection rates, multiple

challenges arise. (1) How to characterize and adjust detection
sensitivity via measurable metrics and configurable settings on
commercial WiFi infrastructure? (2) How to distinguish and
further optimize reflected paths to extend detection range?

To address the above challenges, we take advantage of

two trends: (1) Channel State Information (CSI) offered by

IEEE 802.11a/g/n standards depicts multipath propagation at

the granularity of OFDM subcarriers [16] in the frequency

domain. (2) An increasing number of commercial wireless

devices have been manufactured with multiple antennas to

bolster capacity [17], bringing in an orthogonal dimension to

discern multipath components from the spatial domain.

Through ray-bouncing model analysis and real-world mea-

surements, we derive the multipath factor as a proxy for

detection sensitivity, which is directly measurable at runtime
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from one packet. We demonstrate the feasibility to predict and

improve detection sensitivity using the multipath factor metric

and the frequency diversity offered by OFDM signals. Since

the detection coverage is often constrained by the impact of

human presence on Non-Line-Of-Sight (NLOS) paths, it is

natural to emphasize the impact of reflected paths for wider

coverage. The prerequisite, however, is to distinguish NLOS

and LOS paths, which is no easy task for the bandwidth-

limited WiFi. The key insight here is to utilize multiple

antennas and discern the LOS path from others by identifying

the arriving angles. As a proof-of-concept application, we

design a lightweight subcarrier and path configuration scheme

for device-free human detection. We prototype our scheme

with commercial WiFi Network Interface Cards (NICs) and

validate its viability in typical office environments. Extensive

evaluations demonstrate a detection rate of 92.0% and a

corresponding false positive of 4.5% with around 1x gain in

detection range given a minimal detection rate of 90% in two

office scenarios.

The main contributions are summarized as follows:

• We characterize and measure the diverse impact of human

presence on multipath links via PHY layer CSI, and

propose a directly measurable and configurable proxy

for detection sensitivity on commodity WiFi devices. We

envision this work to provide guidelines for infrastruc-

ture assessment and deployment of wireless device-free

human sensing applications.

• We harness frequency and spatial diversity to tune de-

tection sensitivity and coverage. The proposed schemes

are lightweight and compatible with WiFi standards, thus

enabling pervasive adoption.

• We prototype our schemes with commercial WiFi NICs

and validate them in different indoor environments. Ex-

perimental results demonstrate a 30% improvement in

detection rate and 1x enhancement in coverage compared

with baseline CSI-based detection schemes.

We first provide a preliminary in Section II, characterize the

impact of human presence on multipath links in Section III,

and then detail our subcarrier and path configuration scheme

in Section IV. Section V presents the detailed performance

evaluation. We review the related work in Section VI and

conclude this work in Section VII.

II. PRELIMINARIES

Wireless-based device-free detection identifies human pres-

ence by radio devices deployed in-advance, while the target

carries no devices [1]. It relates the impact of human presence

to certain changes of the received signals. This impact is

often modeled as human-induced shadowing along the LOS

path. In the presence of multipath propagation, such an over-

simplified model may lead to contradictory link behaviors

[14] and unreliable detection results [12]. In this section, we

qualitatively illustrate how human presence affects a multipath

link via different propagation mechanisms, and briefly review

channel information available on commodity WiFi devices.
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Fig. 1. An illustration of human presence across a wireless link: (a) Ideal
model only considers only the impact of shadowing; (b) In multipath-rich
indoor scenarios, human presence affects a link via either shadowing or
reflection; A multipath link (c) with no human presence, (d) with human
shadowing and (e) with human-induced reflection.

A. Multipath Propagation and Device-free Detection

Radio signals can propagate to the receiver via reflection,

diffraction and scattering. As the size of a typical human body

is larger than the wavelength of WiFi signals, shadowing dom-

inates the impact when a person blocks the LOS path while

reflection dictates with human presence near the transmitter-

receiver (TX-RX) link [14]. Most device-free detection models

assume that signals propagate via the LOS path only. For

instance, when a person traverses a link from A to C as in

Fig. 1a, the Received Signal Strength (RSS) is expected to drop

dramatically only when the person obstructs the LOS path at

B. In multipath-dense indoor environments, however, human

presence alters signal propagation in a more sophisticated

manner. As illustrated in Fig. 1b, human presence may block

certain reflected paths at A or create a new reflected path near

the link at C. Even with human presence along the LOS path

at B, the RSS may experience either a drop or an increase due

to different phase superposition. In summary, multipath brings

new opportunities for device-free human detection:

• Both environment and human induced reflections poten-

tially expand the detection range.

• Different multipath superposition states may lead to var-

ied detection sensitivity.

To harness multipath propagation for a wider detection

range and higher detection sensitivity, we first review channel

measurements available on commercial WiFi devices.

B. Channel State Information

A multipath wireless channel is often portrayed as Channel

Impulse Response (CIR), which is a linear filter h(τ):

h(τ) =
N−1∑
i=0

aie
−jθiδ(τ − τi) (1)

where ai, θi, τi, N , δ(τ), denote the amplitude, phase, delay of

the ith path, the number of paths, and the Dirac delta function,

respectively. The Fourier Transform of CIR, H(f) = F (h(τ)),
is called Channel Frequency Response (CFR). Leveraging
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(a) RSS change with different human locations.
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Fig. 2. An illustration of diverse RSS change trends in multipath-dense indoor scenarios. (a) CDF of RSS change measured with 500 different human
presence locations. (b) RSS from 1000 packets measured when a person moves across a 4m link. The left figure demonstrates that human-induced RSS change
varies across the 30 subcarrires and over time. The right figure shows the RSS change trends differ on two specific subcarriers. Subcarrier 15 mainly exhibits
RSS drop due to human motion while subcarrier 25 experiences either RSS drop or RSS rise with different human locations.

commodity NIC with a modified driver, a discrete version of

CFR, Ĥ = {H(fk)} is revealed to upper layers in the format

of Channel State Information (CSI) [16], where each H(fk)

is a complex number depicting the amplitude and the phase

of subcarrier fk.

Compared with MAC layer RSS, CSI portrays a finer-

grained temporal and spectral structure of wireless links. In

the subsequent sections, we explore to extract measurable

metrics and configurable parameters from CSI to characterize

and adjust link sensitivity and range for device-free detection.

III. LINK CHARACTERISTICS ANALYSIS

In general, device-free human detection schemes work in

two steps: calibration and monitoring. During calibration, the

receiver measures and stores the RSS when there is no human

presence, denoted as s(0). Then at the monitoring stage, the

receiver measures a RSS sequence s = {s(t)}Tt=1 , and infers

the presence of a human by comparing whether the RSS

difference Δs(t) = s(t)−s(0) exceeds a pre-defined threshold.

Typically, the mean of the RSS difference is used to detect

stationary targets, while the corresponding variance is adopted

for mobile targets [18]. In outdoor scenarios, human presence

dominates the impact on Δs and often induces a notable drop

in RSS. In multipath-dense indoor environments, however,

human presence is no longer the only influencing factor

on Δs. Since multipath components can superpose either

constructively or destructively, Δs can vary even for human

presence at a fixed location. In this section, we demonstrate

through measurements that a multipath link reacts differently

to human presence, and further analyze the link characteristics

via an one-bounce multipath propagation model.

A. Measuring Impact of Human on a Multipath Link

We use a Tenda W3000R wireless router as the transmitter

operating in IEEE 802.11n AP mode at 2.4GHz Channel 11.

A mini PC equipped with Intel 5300 NIC and the CSI tool

[16] is employed as the receiver pinging packets from the AP.

A group of 30 CSIs are extracted from each data packet. We

fix the TX-RX distance to 4m and collect CSI data for (1) 500

static human presence locations both along the LOS path and

in the vicinity of the LOS path, and (2) a person moving across

the link. We also collect CSIs when there is no human present

within the monitored area. The measurements are conducted

in a 6m x 8m classroom.

Fig. 2a plots the Cumulative Distribution Function (CDF)

of the measured subcarrier RSS change (i.e. Δs) for the 500

human presence locations. Unlike a LOS link, where human

presence is expected to induce notable RSS drop, a multipath

link exhibits diverse RSS change trends in response of human

presence. Fig. 2b plots the subcarrier RSS changes when a

person moves across the link. As is shown, not all subcarriers

suffer from a drop in RSS when the person moves near the

link (e.g. subcarrier f25 exhibits notable RSS rise at packet

450 to 600). In addition, while the subcarriers may behave

similarly at certain time stamps (e.g. both subcarrier f15 and

f25 see dramatic RSS drop around packet 350), yet differ at

other time periods (e.g. RSS decreases on subcarrier f15 yet

increases at subcarrier f25 from packet 450 to 600). Also the

RSS change trend may fluctuate even for the same subcarrier.

The seemingly uncertain link reactions to human presence

tend to break down the basic assumption of RSS mean based

device-free detection applications, and motivate us to take a

deeper analysis on the characteristics of a multipath link.

B. Characterizing Multipath Link Behaviors

To facilitate quantitative analysis, we consider a simplistic

case where signals propagate via the LOS path and a single-

bounce reflection as in Fig. 1c. When no one is present near

the link, the corresponding CIR can be represented as:

hN = aLe
−jφL + aRe

−jφR (2)

where aL, aR, φL, and φR are the amplitudes and phases of

the LOS and reflected paths, respectively.

To indicate the phaser superposition status of multipath

components, we define a multipath factor μ as the ratio

between the power of the LOS path and the total power when

there is no person around. Denote γ = aL
aR

> 1 as the ratio

between the amplitudes of the LOS path and the reflected

path, and further suppose that the receiver is synchronized to

the transmitter, i.e. φL = 0. Let φR = φ. Then the multipath
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(a) Multipath factor distribution.
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(b) Multipath factor vs. RSS change.
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(c) Fitting across frequency.

Fig. 3. Measurements of multipath factor and its relationship with RSS change along a 4m link from 500 human presence locations. (a) Distribution of
multipath factor of all the 500 locations. (b) An illustration of the relationship between RSS change and multipath factor with logarithmic fitting at Subcarrier
f5. (c) The fitting results at 5 separated subcarriers.

factor μ can be substituted as:

μ =

(
aL
hN

)2

=
γ2

γ2 + 1 + 2γ cosφ
(3)

We analyze the impact of μ on Δs for both human-induced

shadowing and reflection.
1) Shadowing: When a person obstructs the LOS path as

in Fig. 1d, shadowing dominates the impact [19]. Assume the

amplitude and phase of the shadowed LOS path are a′L and

φ′L. Then the CIR under human-induced shadowing is:

hS = a′Le
−jφ′

L + aRe
−jφR (4)

Since human body is often modeled as a dielectric elliptic

cylinder [19] and human tissues have sizes no larger than the

WiFi wavelength, the impact of human presence on the LOS

path can be simplified as solely amplitude attenuation by β =
a′
L

aL
< 1, while the phase is deterministic, hence φL = 0 [20].

Thus the link sensitivity under human-induced shadowing ΔsS
(measured in dB) can be approximated as:

ΔsS = 10 lg

(
hS

hN

)2

= 10 lg
β2γ2 + 1 + 2βγ cosφ

γ2 + 1 + 2γ cosφ
(5)

Note that the phase shift of the reflected path with respect

to the direct path, φ, is error-prone to noise and hardware

uncertainties with commodity WiFi devices, we substitute φ by

the multipath factor μ, whose measurement is comparatively

more stable and accurate:

ΔsS = 10 lg

[
β + (1 − β)

(
1− βγ2

γ2

)
μ

]
(6)

2) Reflection: When a person moves in the proximity to the

LOS path as in Fig. 1e, he tends to create a new single-bounce

reflected path with amplitude a′R and phase φ′R. Accordingly,

the CIR under human-created reflection is:

hS = aLe
−jφL + aRe

−jφR + a′Re
−jφ′

R (7)

Suppose η =
a′
R

aR
and Φ′

R = φ′. The corresponding link

sensitivity ΔsR (measured in dB) can be calculated as:

ΔsR = 10 lg

(
hR

hN

)2

(8)

= 10 lg

{
1 +

η2 + 2η[γ cosφ′ + cos(φ′ − φ)]

γ2
μ

}

3) Discussions: We make the following discussions on the

link sensitivity models derived above.

Diverse Link Behaviors. With a single LOS path along

the wireless link, human presence poses a drop in RSS by

Δs = 10 lg β2 < 0 (since β < 1). However, as shown in Eq. 5

and Eq. 8, Δs can be either negative (i.e. RSS decreases) or

positive (i.e. RSS increases) for a multipath link. For instance,

if the phase shift φ is large enough such that cosφ < −γ(β+1)
2 ,

then ΔsS > 0 and hence human presence along the LOS path

incurs an increase in RSS. A multipath link may also improve

detection sensitivity compared with solely a LOS path. For

example, if cosφ < − 1+β
2βγ , then |ΔsS | > |10 lg β2|.

Predictable Link Characteristics. Given a multipath link

and certain human presence location, the amplitude attenuation

and phase shifts of all propagation paths are fixed. Thus

the amplitude ratio γ is determined by the environmental-

constants including propagation distances, reflection and path

loss coefficients [20]. The human-induced attenuation ratio β
can be pre-calculated via human body models [19]. Therefore,

the link sensitivity changes approximately logarithmically with

the multipath factor, and the multipath factor may act as a

proxy for link sensitivity to human presence in a particular

multipath superposition status.

Configurable Link Sensitivity. For a fixed human presence

location, link detection sensitivity Δs is proportional to the

multipath factor μ. A key observation to adjust sensitivity

is that the status of multipath superposition not only relates

to the spatial characteristics of propagation paths, but is

also a function of frequency. Specifically, note φ = 2πfΔd
c ,

where f , Δd, and c denote the signal frequency, the excess

propagation distance of the reflected path, and the speed of

light, respectively. Hence according to Eq. 3, Eq. 6 and Eq. 8,

both the multipath factor μ and the link sensitivity Δs are

configurable if multiple frequencies are available.

In summary, we demonstrate through measurements and

analysis that a wireless link may react differently to human

presence due to varied multipath superposition status and we

explore directly measurable and tunable proxy for such link

characteristics in the subsequent sections.
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(a) Measurements from 2 packets.
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(b) Temporal stability with one human location.
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(c) Temporal stability with another human loca-
tion.

Fig. 4. Temporal stability of multipath factor. (a) Measurements of multipath factor and the corresponding RSS change derived from two packets (Packet
1 and Packet 200) at the same human presence location. (b) Distribution of multipath factor and RSS change of 5000 packets measured with one human
presence location. (c) Distribution of multipath factor and RSS change of 5000 packets measured with another human presence location.

IV. EMBRACING MULTIPATH VIA DIVERSITY

In this section, we exploit both frequency diversity and

spatial diversity to tune the detection sensitivity and coverage

of a multipath link for device-free human detection.

A. Improving Sensitivity via Frequency Diversity

The sensitivity of a multipath link can vary for human

presence at a fixed location due to the constructive or destruc-

tive superposition status. In Section III-B, we show that the

multipath superposition status relates to the transmission fre-

quency and is configurable given multiple frequencies. Modern

modulation schemes such as OFDM simultaneously transmit

information via multiple subcarriers, and naturally offer an

opportunity to improve detection sensitivity via frequency
diversity. We first interpret how to measure the multipath factor

μ, which acts as a proxy for link sensitivity, and propose a

subcarrier weighting scheme for higher detection sensitivity.

1) Measuring Multipath Factor: The multipath factor μ is

defined as the ratio between the power of the LOS path and

the total received power. Note in previous analysis, we assume

a single frequency. For OFDM-based WiFi signals, we define

one multipath factor μk for each subcarrier fk. Although the

received power can be directly obtained from CSI amplitudes,

it is difficult to measure the power of the LOS path for each

subcarrier due to limited bandwidth of WiFi. Here we follow

previous efforts [11], [21] and use the power of the dominant

paths across all subcarriers |ĥ(0)|2 as an approximation.

To further derive the subcarrier-level LOS power, we har-

ness the fact that the power attenuation for the same transmis-

sion channel (the LOS path in our case) is inverse-proportional

to the transmission frequency. Specifically, the received signal

power radiated in free-space is given by [22]:

Pr =
PtGtGrc

2

(4πd)
n
f2

(9)

where Pr, Pt, Gr, Gt are the received and transmitted signal

power, the antenna gains at the receiver and transmitter, respec-

tively. The signals propagate with speed c and frequency f , d is

the transmitted distance and n is the environmental attenuation

factor. Since in OFDM modulation, the transmission power

within the operating band is relatively flat, thus we can assume

the same transmission power for each subcarrier. Therefore,

the LOS power on subcarrier fk can be calculated as:

PL(fk) =
f−2
k∑
f−2
i

· |ĥ(0)|2 (10)

where fi is the frequency of the ith subcarrier1. Accordingly,

the multipath factor μk can be represented as:

μk =
PL(fk)

|H(fk)|2 (11)

where H(fk) is the complex CSI on subcarrier fk.

We plot the calculated multipath factors using the same

measurements as Section III in Fig. 3a. The multipath fac-

tors distribute diversely over locations and across subcarriers,

which accords with the diverse distribution of RSS change

in Fig. 2a. We further illustrate the relationship between

the RSS change Δs (proxy for detection sensitivity) and

the multipath factor μ (indicator for multipath superposition

status) on a single subcarrier in Fig. 3b. As expected, the

RSS change roughly falls monotonously with the increase

of the multipath factor. Fig. 3c demonstrates the logarithmic

fitting results between Δs and μ at 5 separated subcarriers. We

only display 5 subcarriers for the following reasons: (1) Ease

of demonstration; (2) Adjacent subcarriers often have similar

fitting results; (3) Some subcarriers only vary within a small

range, which may lead to error-prone fitting. As is shown, the

monotonous relationship holds for all subcarriers. Although

the fitting results vary, the overall trend remains stable. We

make the following comments on the multipath factor:

• For a particular link and monitoring area, the fluctuation

range of each subcarrier varies. This might indicate the

impact of human presence on multipath superposition

can differ across frequency. Some subcarriers are more

sensitive to human presence within the monitoring range

and are more distinctive.

1The subcarrier indices {i} measured in the CSI tool are -28, -26, -24, -22,
-20, -18, -16, -14, -12, -10, -8, -6, -4, -2, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
21, 23, 25, 27, 28, respectively [16].
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(b) MUSIC pseudospectrum.
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(c) RSS change over different angles.

Fig. 5. Impact of angle-of-arrival on signal strength along a 3m link. (a) Illustration of multipath propagation with different angle-of-arrival. (b) Pseudospectrum
output by MUSIC algorithm with a 3-antenna array. (c) Distribution of subcarrier RSS change along different angle-of-arrival.

• Although the monotonous decreasing trend roughly holds

for all subcarriers, the fitting parameters only fall into a

certain range. Therefore it is difficult to deduce consistent

evaluating metrics across frequency. However, we will

show in the subsequent sections how to leverage such

monotonous trend only to adjust link sensitivity at run-

time.

To summarize, the multipath factor is directly measurable

at runtime from one packet. Due to its momentous trend with

respect to RSS change (i.e. an indicator for link sensitivity),

and its diversity across subcarriers, it holds potential to adjust

link sensitivity at runtime by weighting the power of each

subcarrier according to the measured multipath factor.

2) Subcarrier Weighting: As discussed above, subcarriers

with larger absolute value of multipath factor seem more

sensitive to human presence. Hence it is reasonable to penalize

the subcarriers with smaller multipath factor by reducing

their weights. On receiving a group of CSIs {H(fk)} from

one packet and calculating the subcarrier RSS difference

{Δs(fk) = |H(fk)|2 − s(0)(fk)}, where s(0) denotes the

subcarrier RSS on subcarrier fk measured with no persons

around, we weight the RSS differences as follows:

Δs̃(fk) = | μk∑
k μk

| · Δs(fk) (12)

Although multipath factor is measured on a per-packet basis,

device-free human detection schemes often require multiple

packets to average out noise and environmental unstableness

for more reliable decisions. To assess the potential temporal

fluctuation of multipath factors extracted from multiple packet-

s, we collect CSIs along a 3-meter link with a person standing

at 2 fixed locations, each with 5000 packets. Fig. 4 plots

the distributions of subcarrier RSS changes and the multipath

factors. As shown in Fig. 4a, the subcarrier with the maximal

multipath factor can vary for packets measured at the same

location (from subcarrier f11 to f15). Fig. 4b and Fig. 4c plot

the distributions of multipath factor and the corresponding RSS

changes for 2 different human presence locations. While the

subcarriers with large multipath factors are more temporally

stable with certain human presence locations (e.g. subcarrier

f1 Fig. 4b), they may exhibit dramatic temporal fluctuation

with other human presence locations (e.g. subcarrier f16 and

f17 in Fig. 4c). Since highly unstable subcarriers may lead

to unreliable detection results, we assign higher weights to

subcarriers with constantly large multipath factor.

To simultaneously reflect link sensitivity and temporal sta-

bility, we rectify the subcarrier weights as follows. Assuming

a sequence of M CSIs, we first calculate the multipath factors

{μ(m)
k }Mm=1 for each packet as Eq. 11. Then the temporal

mean of multipath factor μ̄k = 1
M

∑M
m=1 μ

(m)
k accounts for

the average detection sensitivity. To assign higher weight on

consistently sensitive subcarriers, we calculate the percentage

of times when the multipath factor is greater than the median

of the multipath factors on all subcarriers μ̂(m). Concretely,

we maintain a ratio rk for subcarrier fk as:

rk =

∑M
m=1 δm
M

(13)

where

δm =

{
1 if μ

(m)
k > μ̂(m)

0 otherwise
(14)

Finally, we combine the two weights and obtain the adjusted

RSS change Δs̃(fk) for subcarrier fk as:

Δs̃(fk) = | μ̄krk∑K
k=1 μ̄k

∑K
k=1 rk

| · Δs(fk) (15)

B. Extending Coverage via Spatial Diversity

The previous subsection enhances the detection sensitivity

of a multipath link leveraging frequency diversity. As in Fig. 1,

subcarrier weighting increases the impact of human presence

at all the 3 locations (i.e. locations A to C). However, since

the decision of human presence is typically drawn based on a

unified threshold, the detection coverage is often constrained

by the impact of human presence on NLOS paths. For instance,

the RSS change with human presence at C (a reflected path)

is usually orders-weaker than that with human presence at A
(the LOS path). If the pre-defined threshold is larger than the

RSS change incurred by human presence at C, the system

would fail to detect the person. In fact, when considering the

LOS path only, the “sensitivity region” is restricted to 5 to

6 wavelengths around the LOS path [19]. Thus the detection

coverage can be expanded by re-assigning the weights of the

LOS and the reflected paths.
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To re-assign the weights of the LOS and the reflected paths,

the first step is to distinguish the two, which is no easy task

using WiFi. The LOS and reflected paths are twisted in the

frequency domain and unresolvable in the time domain due to

insufficient resolution on WiFi devices [21]. Note that current

WiFi devices are often equipped with multiple antennas. Thus

we may distinguish the LOS and other paths from the spatial

domain by identifying their arriving angles.

1) Measuring Angle-of-Arrival: Typical angle-of-arrival es-

timation algorithms analyze the phases received by multiple

antennas [23]. As illustrated in Fig. 5a, signals transmitting

through a reflected path arrive at the antennas with an incident

angle θ. Compared with the uppermost antenna, signals arrive

at the antenna in the middle with an extra propagation distance

of Δd = λ
2 sin θ, where the antennas are spatially separated by

semi-wavelength λ
2 . The additional propagation distance Δd

imposes a phase shift Δφ = 2π
λ Δd = π sin θ. Therefore, by

measuring the relative phase shifts between two antennas Δφ,

the incident angle can be solved by:

θ = arcsin

(
Δφ

π

)
(16)

To simultaneously estimate multiple angles from multiple

paths, we apply the MUltiple SIgnal Classification (MUSIC)

algorithm [23]. It operates on observations from multiple an-

tennas and outputs an angular pseudospectrum, with each peak

corresponding to the angle for one incoming signal. Fig. 5b

plots the angular pseudospectrum with a 3-antenna array. The

two peaks represent the direction of the LOS and a reflected

path, respectively. While the smoothed MUSIC algorithm [17]

[24] can achieve better performance for correlated signals

(as is the case for multipath signals), it also relegates three

antennas to only two, thus unable to detect more than one

path. Hence we only adopt the original MUSIC algorithm

to distinguish at least two paths with only three antennas.

One drawback of the MUSIC algorithm is that the angular

resolution is limited by the number of antennas. However, we

may benefit from two potentials: (1) Devices are equipped with

increasing numbers of antennas to support MIMO operations

[17]. (2) Mobile devices can emulate a large antenna array via

Synthesis Aperture Radar (SAR) techniques [25].

2) Path Weighting: To evaluate the impact of human pres-

ence from different directions, we collect CSIs along a 3m

link as in Fig. 5a. The link is placed in the proximity to a

concrete wall to create notable reflected paths. The angular

pseudospectrum with no human presence is shown in Fig. 5b.

We test 16 human presence locations with incident angles

from -90 degrees to 90 degrees one meter away from the

receiver. The subcarrier RSS changes (averaged across the

three antennas) for the 16 locations are plotted in Fig. 5c. As is

shown, most subcarriers exhibit dramatic RSS changes along

the direction of the LOS path. In addition, another notable

RSS change occurs at approximately the same direction of

the NLOS path estimated in Fig. 5b. Also, the average RSS

change is proportional to the amplitude of the pseudospectrum
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Fig. 6. Illustration of testing scenarios. The measurements were conducted
in two rooms in an academic building, including 5 links (cases). For each link
(case), we tested human presence locations covering a 3x3 grid.

peaks.

Intuitively, path weights inversely proportional to the an-

gular pseudospectrum can be adopted for uniform detection

coverage. However, a linear antenna array can only distinguish

angles within 180 degree, and the angular estimation for

large angles is often error-prone [17]. Hence we choose the

path weights to only enhance the impact of reflected paths

within a certain angular range for higher reliability. Given the

pseudospectrum measured with no human presence Ps(θ), the

weighting function w(θ) is calculated as:

w(θ) =

{ 1
Ps(θ)

if θmin < θ < θmax

0 otherwise
(17)

where θmin and θmax are empirically determined. The weights

are then assigned to the angular pseudospectrum to improve

the impact of reflected paths.

C. Human Detection with Subcarrier and Path Weighting

As discussed in Section III, a typical device-free human

detection scheme works in two stages: calibration and mon-

itoring. During the calibration stage, the receiver starts by

collecting CSI samples, and the raw CSI data are calibrated

as in [26] to mitigate the impact of random phase noise. After

collecting N CSI samples, the receiver calculates the angular

pseudospectrum for the static environments using the MUSIC

algorithm, and derives the path weights as in Eq. 17, where

θmin = −60◦ and θmax = 60◦ in our implementation. The

mean of the CSI samples s(0) is also stored as the profile

when there is no human presence.

During the monitoring stage, the receiver collects M packets

and calculate the subcarrier weights as in Eq. 15. The subcar-

rier weighted signal strengths from multiple antennas (three

in our case) are then processed to output the angular pseu-

dospectrum, which is further weighted by the pre-calculated

path weights obtained from the calibration stage. Due to the

linear properties of the transforms involved in our scheme, we

can assign the subcarrier weights separately on the subcarrier

signal strengths in the monitoring stage and those during the

calibration stage before subtracting them to calculate, e.g.,

Euclidian distance. To infer human presence, the static profile

s(0) is first subcarrier weighted and then transformed into
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Fig. 7. Overall detection performance.
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Fig. 8. Performance in different cases.
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Fig. 9. Performance within different range.

angular pseudospectrum. Afterwards various distance metrics

can be employed to quantify their similarity and compare the

calculated similarity with a predefined threshold to decide

human presence. Here we use the Euclidian distance for its

simplicity. The threshold is determined by the variations of

the static profile with respect to certain false positive and false

negative requirements.

V. EVALUATION

In this section, we first interpret the experiment setup and

methodology, followed by detailed performance evaluation.

A. Methodology

Testing Scenarios: We conduct the measurement campaign

in two rooms in an academic building. The rooms are furnished

with desks, computers, and other furniture. As shown in Fig. 6,

we collect date from 5 TX-RX links (Case 1 to 5) with diverse

TX-RX distances and AP heights in total. For each link (case),

we test human presence locations within a 3x3 grid to cover

different distances and angles with respect to the receiver.

For each human presence location, we ping packets from the

transmitter for 3 times, with 5000 packets per time. We also

collect the same amount of packets with no human presence

within the area of interests as static profiles. To account for

background dynamics, we allow up to 5 students work at their

desks and occasionally walk around in the testing rooms, but

remain about 5 meters away from the testing link during the

measurement campaign. We also take temporal dynamics into

account by (1) pausing for 5 minutes before measuring the

next 5000 packets and (2) repeating the above measurements

both in the daytime and at night, and after two weeks.

Infrastructure Setup: We employ a Tenda wireless router

with one omnidirectional antenna as the transmitter operating

in IEEE 802.11n AP mode at 2.4GHz Channel 11. A mini

desktop equipped with Intel 5300 NIC and three external

omnidirectional antennas running Ubuntu 10.04 works as the

receiver, pinging packets at a rate of 50 packets per second.

The received packets are processed by the CSI tool [16] and

we implemented the human detection scheme with MATLAB

running on the mini desktop.

Evaluation Metrics: We mainly focus on the following

metrics. (1) True Positive (TP): The fraction of cases where the

receiver correctly detects human presence. (2) False Positive

(FP): The fraction of cases where the receiver announces a

“detected” event when there is no one around.

We compare the performance of the following schemes. (1)

Baseline: Calculate the Euclidian distance of CSI amplitudes.

(2) Subcarrier weighting: Calculate the Euclidian distance of

subcarrier weighted RSS changes as in Eq. 15. (3) Combining

subcarrier and path weighting: Calculate the Euclidian distance

of weighted pseudospectra as in Section IV-C. Since the for-

mer two schemes require only one antenna, their performances

are averaged across the three antennas for fair comparison.

B. Performance

1) Overall Detection Performance: Fig. 7 plots the Re-

ceiver Operating Characteristic (ROC) curves of the three

schemes. The ROC curve depicts the tradeoff between the

true detection rate and the false positive rate over a wide

range of thresholds. The closer the ROC curve is to the upper

left corner, the better the detection performance. The results

in Fig. 7 show that the baseline obtains balanced detection

accuracy of about 70% with a false positive rate of 30%.

With subcarrier weighting, the balanced detection accuracy

boosts to 88.2% with a false positive of 13.0%. Combined

with path weighting, the balanced detection accuracy further

rises to 92.0% with a false positive of 4.5%. This indicates

subcarrier weighting dramatically improves link sensitivity,

while path weighting offers moderate gain by enhancing the

impact of human presence on NLOS paths. We note, however,

a plateau on the ROC curves adopting the weighting schemes.

A partial reason might be that although the weighting schemes

improve the sensitivity of human presence, certain environ-

mental dynamics (e.g. occasional walks of students during

the measurements) might also be magnified. To mitigate the

impact of such magnified background dynamics, one solution

is to model the static profiles as well, e.g. via hidden Markov

models [27]. From the ROC curves, we derive a general

threshold for balanced detection accuracy, and use it in the

subsequent evaluations.

Fig. 8 plots the detection rates for the 5 testing cases

separately using the threshold for balanced overall detection

performance in Fig. 7. We see no clear performance gap

among these cases. Yet all the 3 schemes in Case 3 slightly

outperform the others. This is because the measurements in

Case 3 were conducted in a relatively vacant area with a strong
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Fig. 10. Angle estimation errors.
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Fig. 11. Performance of path weighting.
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Fig. 12. Impact of packet numbers.

LOS path (since it is a 3m link). Lacking of NLOS propa-

gation, however, path weighting brings marginal performance

gain for Case 3. Also note that the detection accuracy exhibits

a modest drop with path weighting in Case 1. This might be

caused by angle estimation errors, as will be discussed shortly.

2) Detection Range: Detection range is critical for device-

free human detection systems. We tested human presence

locations with distances from approximately 1m to 5m to

the receiver and plotted the detection rates in Fig. 9. As

is shown, the baseline suffers sharp detection performance

degradation for human presence faraway, with a detection

rate of lower than 60% for human presence 5m away from

the receiver. In contrast, with both subcarrier weighting and

path weighting, the detection rate retains above 90% even for

human presence 5m away. Path weighting also demonstrates

the highest performance gain of 12% for distant humans.

Therefore our scheme can potentially increase the detection

range of a single TX-RX link by more than 1x given a minimal

detection rate of 90%.

3) Impact of Angle Estimation Errors: As shown in Fig. 8

and Fig. 9, while path weighting generally contributes to

higher detection rate, it can cause slight performance drop

sometimes, e.g. case 1 in Fig. 8. The reason might lie in

the angle estimation errors. With only three antennas, the

median estimation errors can be more than 20 degrees [11].

Fig. 10 plots the CDF of the angle errors. By averaging over

multiple packets, the estimation errors decrease moderately.

This is because the person during the measurements was

not completely static. Thus averaging the measurements with

slight user movements helps to improve the precision of angle

estimation. However, the resolution of angle estimation is

primarily determined by the antenna aperture, which can only

improve via a larger antenna array or SAR techniques. Hence

we still see large tail errors even by averaging, which may

lead to unstable performance gain via path weighting.

Fig. 11 portrays the detection performance of human pres-

ence locations at different angles with the same radius from

the receiver. Despite notable improvement at relatively large

angles, the performance gain is marginal near the LOS path

(around the angles of zero degree). Nevertheless, with the

increasing number of antennas on commercial devices [17],

we envision more accurate angle estimation via larger antenna

arrays or advanced SAR technique [25] would contribute to

more robust path weighting for wider coverage.

4) Impact of Packet Quantity: Fast response time is impor-

tant if the device-free detection systems are for surveillance

or security purposes. We plot the impact of packet quantity on

the detection rates in Fig. 12. Since the weighting schemes are

low in computation complexity, the dominating constraint lies

in the number of packets required for reliable detection. As is

shown, at a pinging rate of 50 packets per second, the detection

rates retain almost stable and tend to saturate with only 0.5

seconds of measurements. Thus the proposed detection scheme

can accomplish accurate human detection with less than one

second delay.

VI. RELATED WORK

Our work is related to the following categories of research.

CSI based Device-free Applications: Device-free systems

detect, localize and track a user via his impact on the received

wireless signals [1]. Conventional schemes employ MAC layer

RSSI as signal features to infer human presence. However,

RSSI proves to be a fickle feature since it can fluctuate dra-

matically even at a stationary link [21]. A promising alternative

is to exploit the fine-grained PHY layer CSI available on

commercial WiFi devices [8]. Previous CSI based device-free

systems mostly focus on specific applications such as gesture

recognition [7] and breath detection [9]. Instead, this work

studies the concerns on detection sensitivity and coverage,

and aims to provide guidelines for optimal deployment and

parameter configurations in multipath-dense indoor scenarios.

Spatial Human Models: To improve the reliability of

RSSI based device-free applications, numerous efforts have

explored to model the relationship between signal strength

change and human presence location. In [13], the authors

empirically demonstrated the link-centric detection coverage,

which is then theoretically verified under the assumption of

uniformly distributed scatter and reflection [14]. Both human-

induced shadowing [19] and reflection [20] have been modeled

exploiting ray-bouncing propagation models. Our analysis

builds upon this thread of research, yet takes one step further

by extracting configurable parameters to adjust link sensitivity

and coverage leveraging diversity techniques.

Multipath Link Adaptation: Despite extensive research

on human impact modeling, few metrics are tunable on com-

modity wireless infrastructure. Wilson et al. [12] proposed

fade level as an indicator for different link behaviors. It is
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defined as the difference between the RSSI measured by a

link and that calculated via propagation formulas. Primarily

designed for ZigBee radios, fade level can be adjusted by

sequentially sweeping channels [28]. Our multipath factor

also depicts the status of multipath superposition, yet differs

in two aspects. (1) The multipath factor is independent of

propagation formulas which might lose effect in practice.

(2) We can obtain the multipath factors simultaneously for

all subcarriers from one packet at runtime, thus incurring

negligible network throughput degradation. Some CSI-based

work also explored tuning detection coverage. Zhou et al. [15]

took a fingerprinting approach for omnidirectional coverage.

Xi et al. [29] utilized a time-domain metric to control the width

of the detection range. In contrast, we extend the detection

coverage via frequency diversity (by subcarrier weighting) and

spatial diversity (by path weighting), and require no labor-

intensive site-survey.

VII. CONCLUSION

In this study, we demonstrate that PHY layer channel

information opens new opportunities for device-free human

detection. Instead of avoiding multipath, we harness multipath

for higher detection rates and wider coverage. We conduct an

in-depth analysis on the impact of human presence on wireless

signals under different propagation mechanisms, and propose

a measurable metric on commodity WiFi devices as proxy

for detection sensitivity. We propose a lightweight subcarrier

and path configuration scheme harnessing both frequency and

spatial diversities. We prototype our scheme with standard

WiFi devices, and validate its performance in typical indoor

environments. Experimental results demonstrate a detection

rate of 92.0% with a false positive of 4.5%, and almost a

1x gain in detection range given a minimal detection rate of

90%. We envision this work as an early step towards robust

and tunable device-free human detection in practical indoor

settings, and would benefit a range of higher-level device-free

human sensing tasks in complex propagation environments.
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