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Abstract
Shopping behavior data are of great importance to under-
stand the effectiveness of marketing and merchandising ef-
forts. Online clothing stores are capable capturing customer
shopping behavior by analyzing the click stream and cus-
tomer shopping carts. Retailers with physical clothing s-
tores, however, still lack effective methods to identify com-
prehensive shopping behaviors. In this paper, we show that
backscatter signals of passive RFID tags can be exploited
to detect and record how customers browse stores, which
items of clothes they pay attention to, and which items of
clothes they usually match with. The intuition is that the
phase readings of tags attached on desired items will demon-
strate distinct yet stable patterns in the time-series when
customers look at, pick up or turn over desired items. We
design ShopMiner, a framework that harnesses these unique
spatial-temporal correlations of time-series phase readings
to detect comprehensive shopping behaviors. We have im-
plemented a prototype of ShopMiner with a COTS RFID
reader and four antennas, and tested its effectiveness in two
typical indoor environments. Empirical studies from two-
week shopping-like data show that ShopMiner could achieve
high accuracy and efficiency in customer shopping behavior
identification.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Shopping behavior, RFID, Backscatter communication

1. INTRODUCTION
Shopping behavior analysis is of great importance to un-

derstand the effectiveness of marketing and merchandising
efforts [2, 18]. With deep shopping behavior data, retailers
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can capture customers’ flavors, test new arrivals, and adjust
marketing strategy to optimize brand profitability. Mining
customer shopping behavior in online stores is easily achiev-
able by analyzing the click streams and customer shopping
carts [3, 10, 11]. However, retailers with physical stores still
lack effective methods to identify comprehensive customer
behaviors. The only information readily available to retail-
ers is the sales history, which fails to reflecting customer
behaviors before they check out, like how customers browse
the store, which products they show interest in, and what
products they match against. Therefore, it is essential to
explore new ways to capture customer behaviors in physical
stores.

Previous efforts have exploited video cameras to monitor
customer shopping behaviors in clothing stores [22, 23, 24].
However, such methods require densely deployed cameras
to capture human actions, and complicated computer vision
to recognize and analyze arm motions. Furthermore, video-
based methods are susceptible to non-line-of-sight (NLOS)
visual channels in crowded clothing stores where people fre-
quently move around to pick up or try on clothes. Another
brunch of methods tracks customer routes in stores, with the
goal of mining hot zones and popular products [17, 31]. For
example, the more people traverse along a route, the higher
attentions the items around this route gain. Unfortunate-
ly, these approaches fail to provide high-fidelity information
that is specifically relevant to shopping behaviors, like prod-
uct browsing, pick-up actions and clothes trying-on.

RFIDs are emerging as an essential component of Cyber
Physical Systems (CPS). Many well-known garment man-
ufacturers (e.g., Abercrombie & Fitch, Calvin Klein, De-
cathlon) adopt passive RFIDs for sales tracking and anti-
counterfeiting [30]. We envision the adoption of RFIDs will
sweep the clothing market in near future, and in this pa-
per, we explore the feasibility of mining customer behavior
in physical clothing stores with RFID devices. By carefully
analyzing the customer shopping process in clothing stores
(Section 2), we abstract three basic behavior mining func-
tionalities essential to retailers: discovering popular catego-
ry, identifying hot items and excavating correlated items.

• Popular category represents the clothes frequently
viewed by customers.Since customers pay more views
on items that meet their tastes, popular category da-
ta reveal customers’ flavor, hence providing valuable
information to retailers’ trading strategy.
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• Hot items are the clothes frequently picked up or
turned over by customers. Hot items reveal whether
customers show deeper interest in items after their first
glance.

• Correlated items are the clothes that are frequently
matched with or tried on together, which can facilitate
retailers to infer customer shopping habits and adopt
bundle-selling strategies to boost profit.

These comprehensive shopping data reflect what items the
customers browse, which items they show interest in, and
which items they match with. By jointly analyzing these
three kinds of shopping data with readily available sales his-
tory, the physical retailer can acquire much deeper business
value. For example, popular items with little trying-on (i.e.,
not hot) may indicate the designs of these items are not run
of the mill, while the hot item with unsatisfying sales vol-
ume may suggests an unacceptable price, which indicates
sales promotion or discount should be taken.

In this paper, we present ShopMiner that enables cus-
tomer shopping behavior sensing using commercial off-the-
shelf (COTS) RFID devices. The basic principle is that the
phase readings of tags attached on desired items demon-
strate distinct yet stable patterns when customers look at,
pick up, turn over, or match desired items. These patterns
are viable for an accurate shopping behavior mining service
in clothing stores. Specifically, customers are likely to stand
still for a while in front of attractive items, and hence block
the wireless links between reader antennas and attractive
items. Therefore, the phase reading of popular tags show a
distinct pattern from those unpopular ones (i.e., not viewed
by customers). Similarly, the phase reading of hot tags will
change dramatically when customers pick them up or turn
them over, e.g., observing pictures on the face/real side.
The correlated items are brought together by one customer,
thus experiencing a similar moving trail and temporal phase
changes.

ShopMiner’s design harnesses these unique spatial-temporal
phase reading correlations. The key techniques of ShopMin-
er are a novel foreground/background segmentation scheme
for popular category detection, a robust statistical model
for hot item identification, and a clustering algorithm for
correlated items excavation. We implement ShopMiner on
COTS RFID devices including an ImpinJ R420 reader, four
Yeon antennas model YAP-100CP and a set of Alien UH-
F passive tags. We test ShopMiner’s performance in two
scenarios. Experimental results show that ShopMiner can
detect popular items with a True Positive Rate (TPR) of
92%, identify hot items with an accuracy of 94% and 87%
for pick-up and turn-over, respectively, and achieve over 85%
accuracy for correlate item excavation in multiple users case.

Contributions. (1) ShopMiner is a unified sensing frame-
work. Although some previous works have explored RFID-
based shopping behavior sensing [5, 16], none have incor-
porated the three key factors that are essential to retailers,
i.e., what items the customers browse, which items they
show interest in, and which items they match with. (2)
As a long-term running system, ShopMiner considers both
computational intensity and storage overhead. We design a
hierarchical architecture and a set of efficient algorithms for
multistage customer behavior detection. (3) We implement
ShopMiner on COTS RFID devices, and conduct compre-
hensive experiments in two shopping-like scenarios. Empiri-

(a) (b) (c) (d)

Figure 1: (a): hanging out and staying still in front
of the interested item; (b), (c): browsing the inter-
ested item; (d): matching and trying items on in the
fitting room;

cal studies show that ShopMiner achieves over 90% TPR for
customer behavior detection.

Roadmap. The rest of paper is organized as follows.
Section 2 presents the scope of ShopMiner. We present the
detailed design of ShopMiner in Section 3 and the system
implementation in Section 4. In Section 5, we interpret the
experiment methodology, followed by detailed performance
evaluation. Section 6 reviews related work, Section 7 dis-
cusses the limitations and we conclude in Section 8.

2. SCOPE
We envision ShopMiner can be deployed in clothing s-

tores to monitor customer behaviors during shopping with-
out body instrument. Figure 1 shows the typical shopping
process in clothing stores before customers check out. It
contains the following steps: browsing items and standing
still in front of the attractive items; examining interested
items by picking them up or turning them over; unsling de-
sired items and trying them on in fitting rooms. These three
steps contain comprehensive data and can help to optimize
the retailer strategies. For example, by counting which items
are mostly viewed by customers, the retailer could find those
popular categories; by identifying and counting which items
are picked up or turned over, the retailer could find those hot
items; while by detecting which items are frequently picked
up together or matched with, the retailer could find implicit
correlation among clothes hence adopting tie-in promotion.

3. DESIGN
In this section, we elaborate on the design and the process-

ing flow of ShopMiner. Throughout this paper we assume
each piece of clothes is attached with a passive tag.

3.1 Discovering Popular Category
Popular items are the clothes frequently viewed by cus-

tomers. The more times an item is viewed by customers,
the higher attention it gains. Such information may serve as
the baseline to examine the success of new products. In ad-
dition, it can also capture the flavor changing of customers
and further help to optimize the product designing.

3.1.1 Shadowing effect of human body
We explore RF signal changes of multiple tag-to-antenna

links to discover those popular categories. As Figure 2(a)
shows, when a customer stands still in front of an item,
his/her body naturally blocks the line-of-sight (LOS) link
between the reader antenna and the focused item. Accord-
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LOS blocked

(a): LOS path blocked/multipath

M1 M2 M3

A1 A2 A3 A1 A2 A3

(b): moving trail of a user

M1 M16……

User1
trail 01

trail 02
M4M5M6

Multipath

Figure 2: Illustration of popular zone discovering

ingly, the links that pass through the human body will, on
average, experience higher shadowing losses [15].

As an illustrative measurement, we deploy 48 backscatter
links in an office environment. The link topology is shown in
Figure 2(b). We use a commercial RFID reader ImpinJ R420
with three directional antennas as the power source and the
receiver to interrogate RFIDs. The antenna is placed 3 me-
ters away from the items and 1.2 meters above the floor. We
conduct the following measurement. One volunteer hangs
out along the trail 01, stands still for about 8s to browse
item 04, and then leaves away. We collect the phase trend
along each link and explore their temporal dynamics.

Figure 3 plots the phase measurements of four tags in this
measurement study, namely tag 04, 05, 06 and 07. In accor-
dance with our analysis, we find that during the first 4s, the
phase patterns of these four tags maintain in a different yet
stable level, indicating a relative steady link state. Within
the period of 4s to 12s, the phase trend of tag 04 changes to
another stable level, manifesting that a blocker stands still
in front of tag 04 and blocks its LOS link. During the last 6
seconds, the phase patterns of tag 05, 06 and 07 change se-
quentially, indicating that a blocker leaves away and blocks
these tags’ LOS paths sequentially. The measurement re-
sult shows that the body shadowing effect holds potential
for non-invasive popular category discovery.

3.1.2 Noise statistics
The wireless propagation channel is affected by both the

body shadowing and the ambient dynamics. As an example
in Figure 2(a), people stand near the clothing rack will create
a new signal propagation path, leading to multi-path effect.
In multi-path environments, small changes of a few multi-
path components, even outside of the backscatter communi-
cation area can impact the measured phase.

To model the multi-path effect on the phase dynamics, we
ask three volunteers to walk back and forth along trail 01 and
02 for 10min. Over 20,000 phase readings are recorded from
48 backscatter links. We randomly choose five tags and ex-
plore their temporal dynamics. As Figure 4 shows, the phase
values fluctuate continuously and form a Gaussian-like dis-
tribution. We further test the distribution of the five tags’
phases against the standard Gaussian distribution. The lin-
earity of the points on the Q-Q plot, as shown in Figure 5,
demonstrates that the data are normally distributed.

In a nutshell, both the body shadowing and the multipath
effect will introduce temporal phase dynamics. The phase
dynamics exerted by the multipath effect is relatively slight
and follows Gaussian distribution, whereas the phase value
changes significantly when the LOS path is blocked.

3.1.3 Detection scheme
To capture the items in popular category (termed as popu-

lar items), we are inspired by the foreground detection prob-
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Figure 4: phase value distribution of five tags

lem in image processing. This problem aims to capture the
foreground pixels that show significantly different values be-
tween contiguous image frames. In the context of Shop-
Miner, we need to distinguish the popular items that show
remarkable phase changing from the temporal phase trend.
The similarity between the two problems motivate us to de-
sign a foreground detection based scheme for popular items
discovery. Without loss of generality, time is partitioned
into consecutive windows.

Composing phase frame: ShopMiner first splits the
phase trend into multiple phase frames. Each frame contains
m × d pixels. m is the number of tags in the reading zone
and d is the frame length. The pixel value ri,j is the phase
reading of the ith tag (ti) collected within the jth window
(wj). Since each tag will be interrogated multiple times
within one window, their average value is regarded as the
phase measurement of this tag in this window. We vary
parameter settings and set |w| and d to 0.02s and 50, which
empirically balance computational efficiency and detection
granularity.

Foreground detection: After splitting phase trend in-
to frames, ShopMiner analyzes pixel values in each frame
line-by-line. Pixel values that do not fit the background dis-
tribution are considered foreground. Notice that the phase
distribution of each tag shows a distinct Gaussian-like dis-
tribution. Hence, we create m Gaussian models, each corre-
sponding to one tag. ShopMiner then examines each pixel by
comparing its value against the corresponding distribution.
Specifically, given a pixel value ri,j , let Ni(µi, σ

2
i ) be the

Gaussian model of tag i. ShopMiner formulates the follow-
ing hypothesis test with H0 foreground and H1 background:

 H0 : ri,j /∈ (µi ± σi√
ki
· zα/2)

H1 : ri,j ∈ (µi ± σi√
ki
· zα/2)

(1)

where 0 < α < 1, and ki is the sample size. (µi± σi√
ki
·zα/2)

stands for the confidence region with the confidence level
(1− α). For example, H1 under α = 0.05 indicates that the
pixel (i, j) is foreground with 95% probability.
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Figure 5: QQ Plot of sample data versus standard normal
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Figure 6: (a): the sketch of experiment field; (b): pick-up case; (c): turn-over case; (d): the phase trend
before/after de-periodicity;

Detecting popular category: In one frame, if the ma-
jority part of pixels in row i are detected as foreground (i.e.,
>80%), then it is highly possible that all links between tag
ti and reader antennas are blocked by human body. To
this end, ShopMiner formulates the following hypothesis test
with H0 popular category items and H1 unpopular category
items: {

H0 : si ≥ θ
H1 : si < θ

(2)

where si is the number of consecutive frames that the tag ti’s
links are blocked by human body. θ denotes a pre-defined
threshold. The rationale behind this detection scheme is
that since customers naturally stand still for a while in front
of popular items, the LOS links between these tags and an-
tennas will retain blocked for some time. Such a threshold-
based method prunes those tags whose LOS links are un-
intentionally blocked by customers. Since the threshold is
primarily determined by the signal variations incurred by
human blockage of the LOS path, it is mainly affected by the
link distance and is robust to ambient factors e.g. shop sizes,
layouts and reader placements. According to our experi-
ments, within the effective range of RFID readers (around
6m), a fixed threshold yields satisfactory detection perfor-
mance and a pre-trained threshold can scale to other shops
without per-shop calibration.

Model training and updating: To precisely detect the
foreground, it is essential to have an accurate Gaussian mod-
el for each tag. Initially, the parameters of m Gaussian mod-
els are computed when there are few or no customers in the
shop (e.g., before the opening or after the closing). Then
pixel values of the background parts are inserted into the
model and the model parameters get updated. By doing so,
the model parameters are updated continuously, and hence
adapt to the temporal environment dynamics.

ShopMiner is immune to the spatial disorder of items.
This is because each clothing item is associated with a u-
nique RFID tag and ShopMiner can pinpoint which item of
clothing is actually blocked by referring the tag ID.

3.2 Identifying Hot Items
Hot items are those with greater interests to customers.

The traditional way to identify hot items, e.g. the sales his-
tory, only considers the purchased items as hot, and provides
partial information for retailer strategy changing. ShopMin-
er identifies the hot items by exploiting the phase changing
caused by customer behaviors. Specifically, it detects and
counts the following customer actions:

(1): Turn-over action: A customer observes an interested
item by turning it over from the side-view to the front-view.

(2): Pick-up action: A customer takes a close look at an
interested item by picking it up from the clothing rack.

These two actions indicate different levels of human inter-
est on items, and hence should be identified separately. It is
understandable that customers often turn over the attractive
item at first glance, and pick it up for a close browsing when
they show greater interest to this item. Hence in ShopMiner,
we detect and identify these two actions separately.

3.2.1 Exploiting the similarity of pick-up and turn-
over for action detection

We assume that customers will pick up or turn over one
interested item every time. Both the turn-over and the pick-
up actions will alter the item state from stationary to kinetic.
Consequently, the kinetic item will experience fierce phase
changing that naturally separates them apart from other
stationary items. As an illustrative experiment, we place
five items of clothes on a rack and ask one volunteer to
mimic the customer. In the first experiment, the volunteer
is required to pick up item 05, have a close browsing, and
then put it back. In the second experiment, the volunteer
is required to turn over item 05 to see its front-face, hold
it for a while and then loose her grasp. The phase trends
of the five items are shown in Figure 6(b) and Figure 6(c),
respectively.

We first look at the pick-up action. As Figure 6(b) shows,
initially the phase trends of these five tags all remain sta-
ble. When the volunteer picks up item 05 at 4th second,
the phase trend of this item jumps abruptly until the vol-
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Figure 7: (a): the original phase trends; (b): after segmentation; (c): after de-periodicity; (d): after normal-
ization;

unteer put it back at the 12th second. Similarly, as shown
in Figure 6(c), when the volunteer turns over the item 05
at the 4th second, the phase trend of this tag changes sig-
nificantly. The phase trend then keeps stable during the
period of [4s, 8s], indicating that it is held steadily by the
volunteer. As the volunteer looses her grasp, the item will
rapidly recover to its original position, leading to a fierce
phase changing. The measurement indicates that it is possi-
ble to detect pick-up and turn-over actions by observing the
phase trend of tags. That is, identifying whether a period
of phase changing occurs.

3.2.2 Exploiting the dissimilarity of pick-up and turn-
over for action identification

In clothing stores, it is common to see that clothes are
hung compactly to each other on the rack, with their side-
views facing to customers (Figure 1). Consequently, when
the customer picks up one item to have a close browsing,
the nearby items will be struck unintentionally, hence expe-
riencing a slight shaking. As a result, the phase trends of
these items will demonstrate a minor yet different variation
tendency to the desired item (like tag 01, 02 ,03 and 04 in
Figure 6(b)). In contrast, when the customer turns over one
item (say item 05) to see its front face, the items around this
item will be forced to turn over as well, hence experiencing a
similar motion trail as item 05. As a result, the phase trends
of these items will show a similar tendency to tag 05 (like
tag 01, 02 ,03 and 04 in Figure 6(c)). Therefore, it is viable
to distinguish turn-over and pick-up actions by jointly con-
sidering the phase trend of nearby tags, i.e., comparing the
similarity of their phase trends.

3.2.3 Identification scheme
Based on above analysis, we first design a segmentation-

based pick-up/turn-over detection scheme. This scheme ex-
ploits the similarity of pick-up and turn-over actions, and
can accurately report the occurrence of these two actions.
Then a peer-assisted identification scheme is put forward to
further distinguish these two actions.

Segmentation-based detection: ShopMiner performs
segmentation on the phase trend to detect whether a pick-
up or turn-over action occurs. Denote the phase trend as
S = (si) ∈ R1×N , where N is the discrete time point. With-
in each window, we categorize phase values into multiple
bins, and get the discrete probability distribution function
(PDF) of phase values within each window. Given two con-
secutive windows wi and wj , let P and Q be their PDFs. We
computes the KL-divergence of these two PDFs as follows:

DKL(P ||Q) =
∑
i

P (i) · lnP (i)

Q(i)
(3)

The KL-divergence describes the similarity of phase trend-
s within two consecutive windows. We denote the period
when there is a pick-up or turn-over action as motion peri-
od. The remaining period is denoted as silent period. Within
the silent period, the phase value will maintain in a relative
stable level. Hence the KL-divergence of two consecutive
windows within the silent period should be small. In con-
trast, if at least one window is within the motion period, the
PDF of these two windows should be significantly differen-
t, which leads to a large KL-divergence value. ShopMiner
checks DKL(P ||Q) to detect whether the current window is
within the silent period. After finding all windows within the
silent interval, we can extract the motion interval according-
ly. Consequently, a tag with a motion interval indicates a
pick-up or turn-over action occurs.

Improving the granularity: the segmentation-based
scheme can successfully detect the pick-up and turn-over
actions due to its sensitivity to phase dynamics. However,
since both the pick-up and turn-over actions will introduce
phase turbulence to nearby items. The phase trend of these
items may vary as well and hence will be detected by the
segmentation-based scheme. To demonstrate this, we invite
one volunteer to perform take-up and turn-over actions on
the clothing rack for 200 times, and we find that the false
alarm rate breaks 40%. To improve the detection granular-
ity, we exploit the statistical feature of the phase trend. It
contains two steps: de-periodicity and variance comparison.

De-periodicity : The phase value reported by the reader
API is a periodic function ranging from 0 to 2π. As a re-
sult, when the phase value decreases to 0, it will jump to
2π, and then decreases as usual (Figure 6(d)). We term
this abrupt phase changing phenomenon as a phase hop. In
ShopMiner, we adopt the method in [16] to handle the phase
hop problem. The general idea is to add or subtract 2π on
the phase value when the phase hop occurs. The phase trend
before/after de-periodicity is shown in Figure 6(d).

Variance comparison: Suppose m tags are detected in the
segmentation step. For each tag i, we denote its phase sam-
ples within the motion period as Si = (sj) ∈ R1×Ni . Ni is
the length of the sample group, and may vary from tag to
tag due to the multi-path self-interference [38] and random
access principle of ALOHA protocol. We thus split each
sample group into N frames. The frame length is set to
0.1s. Since multiple samples may locate within a frame, we
computes their average (denoted as s′j), and use it as the
phase value of this frame. Then we compute the variance of
Si as follows:

V ar(Si) =
1

N

N∑
j=1

(s′j − µ)2 (4)
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Figure 8: (a): the customer moving trail; (b): the phase trends of correlated items; (c): the phase trends of
stationary tags nearby; (d): the phase trends of another group of correlated items;

After computing the variance of each tag, the one with the
highest variance is denoted as the desired tag. The rationale
is as follows: the motion of nearby items is indirectly driven
by the human action. The driven power will be absorbed by
clothes and diminishes rapidly as it prolongs. As a result,
the desired item will experience much higher turbulence than
the undesired ones, and hence show a larger variance.

Peer-assisted Identification: After finding out the de-
sired tag, the next step is to distinguish the customer ac-
tion, i.e., pick-up or turn-over. Recall that the phase trend
of nearby tags would demonstrate a similar variation for
turn-over, yet behave differently for pick-up. Hence we ex-
ploit this dissimilarity for action identification. Specifically,
for each of the m phase trends, we zoom out the local dis-
similarity of phase samples by normalizing this phase trend
(Figure 7(d)). After the normalization, we splice these m
phase trends consequently into a single phase trend, say
S = (sj) ∈ R1×N . Then autocorrelation is performed on
S:

χ(m, τ) =

∑k=τ−1
k=0 [sm+k − µ(m, τ)][sm+k+τ − µ(m+ τ, τ)]

τ · σ(m, τ) · σ(m+ τ, τ)
(5)

where µ(k, τ) and σ(k, τ) are the mean and standard devi-
ation of the phase samples < sk, sk+1, ..., sk+τ−1 >, respec-
tively. In our case, τ equals to the number of data samples
within the motion period, and is known a prior. Generally,
the phase trend S, if connected by k similar phase trends,
should behave like a periodic signal, hence demonstrating
a higher auto-correlation value. Therefore, we can ascer-
tain whether the motion period is caused by turn-over by
checking the autocorrelation coefficient as follows:

• if χ(m, τ) ≥ δ, then action = turn-over ;

• if χ(m, τ) < δ, then action = pick-up;

We test various thresholds over 1,000 experiments in our
shopping-like scenario, and find a unified threshold δ = 0.65
optimal for our case. This threshold is impacted by the
layout of shops as well as link distance, hence should be
calibrated for different shops. Note that reordering the item,
which occurs frequently in retail stores, does not impact the
detection performance, since ShopMiner does not rely on any
sequence or position information of items for pick-up/turn-
over detection.

3.3 Excavating Correlated Items
Our correlation analysis aims to find the items that are

usually tried on together, e.g., dress shirt and tie are usually

customer rack
01
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02 03 04 05 06 07 08 09 10

03 04 06 07 08 10

06 07

04 08 10

08

10

Figure 9: sketch of clustering procedure

tie-in together, while people buying suit pants often consid-
er about the dress shoes. Previous effort [5] proposed an
RSS-based localization technique for correlated item discov-
ery, based on an intuition that correlated items held by the
same person should be in close proximity. However, after
scrutinizing this method in real-world applications, we find
that such a method is error-prone due to the following two
reasons. On the one hand, items around the customer may
also be in close proximity to the items in hand, and hence
will be mistaken as correlated items. On the other hand,
the ambient environment of clothing stores is fast-changing.
Customers block/generate signal propagation paths dynam-
ically, hence dampening the resolution of localization-based
scheme.

3.3.1 Spatial-temporal correlation of signal features
ShopMiner explores the spatial-temporal correlation of

phase trends to discover those correlated items. The ob-
servation is that correlated items, either in hand or in the
shopping bag, follow a similar moving pattern with the cus-
tomer, hence experiencing consistent temporal signal chang-
ing.

As an illustrative measurement, a customer is asked to
carry four pieces of clothes in hand and walks to the fitting
room. The walking trail is shown in Figure 8(a). Figure 8(b)
illustrates the temporal phase trend of these four items. Al-
l these four phase trends demonstrate a similar temporal
pattern. Specifically, when the volunteer rotates from a to
b, because the distance between the tag and antenna first
increases and then decreases, the phase trend thus shows
a symmetric profile. As the customer walks to c, the phase
trend changes repeatedly within [0, 2π) and finally maintains
in a stable value when the customer reaches c and stays for a
while. On the other hand, comparing Figure 8(b) with Fig-
ure 8(c) and Figure 8(d), the tags within different category
have diverse temporal phase profiles, which naturally sepa-
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rate them apart. The measurement validates the feasibility
of using phase trend similarity for correlated item discovery.

3.3.2 Clustering correlated items
Given a set of phase trends (x1, x2, ..., xn), our goal is to

partition the n phase trends into m (m is unknown a prior
and m ≤ n) sets S = {S1, S2, ..., Sm}, such that the within-
cluster sum of squares is minimized:

argmin
S

m∑
k=1

∑
i,j∈Sk

T (xi, xj) (6)

where T (xi, xj) is the distance between xi and xj . To solve
this optimization problem, we design a heuristic algorithm
which iteratively partitions tags into different categories.

We give a toy example to explain this algorithm. Figure 9
shows a running case where ten tags need to be classified.
In the first iteration, the algorithm randomly picks one tag
as the pivot (e.g., tag 01 in the example), and computes
the distance between its profile with the remaining. Tags
that are with sufficiently close proximity with the pivot are
clustered together. The algorithm then randomly chooses
another pivot and repeats this process on the unclassified
tags until the within-cluster sum of squares is minimized.
Once the algorithm terminates, we achieve the correspond-
ing tag set.

Distance metric T (xi, xj): in designing the distance
metric, we are facing two crucial issues: the first is the
phase trend inconsistency, which means that phase trends
are with different length due to the fragile backscatter links
and multi-path effect. The second issue is the interroga-
tion time inconsistency, which indicates the phase values
are sampled in different time slots due to the random access
character of ALOHA protocol. To address these issues, we
use the Dynamic Time Warping (DTW) metric [33] to mea-
sure the distance of phase trends. This metric allows two
time series that are similar but locally out of phase to align
in a non-linear manner, hence naturally addressing both the
phase profile inconsistency and interrogation time inconsis-
tency.

Addressing phase scaling challenge: a practical chal-
lenge arises when we try to directly apply DTW to compare
phase trends: phase scaling due to the different position of
tags. The phase value is proportional to the tag-to-antenna
distance, which may vary a little bit from tag to tag within
the same category. As we can see from Figure 8(b), V-
shapes within these four tags are the scaled version to each
other. This scaling problem could degrade the performance
of DTW. To address this challenge, we employ a variant of
the DTW algorithm called Derivative Dynamic Time Warp-
ing (DDTW) [9], which exploits the same principle of DTW
yet uses the derivative of phase values as the input data. D-
DTW can overcome the phase value difference in the Y-axis
by working with the derivatives of phases where only the
slope of phase matters and not the absolute values.

4. IMPLEMENTATION
In this section, we present the details of system implemen-

tation, and address several deployment issues.

4.1 Methodology
Hardware: we build a prototype using COTS UHF R-

FID devices. Each item of clothes is attached with an Alien
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Figure 10: Workflow of ShopMiner

passive RFID tag model AZ-9634. An ImpinJ reader R420
and several Yeon antennas model YAP-100CP work as the
receiver to energize these passive tags and collect readings.
The reader is connected to a local server via an Ethernet
cable. To minimize the influence of network latency, we
time-stamp each tag reading by the reader’s local clock.

Software: we implement the software component of our
system in Java. Figure 10 shows the workflow of our Shop-
Miner system. At the lowest level is the data collection
module, which is integrated with the Octane SDK and con-
tinuously interrogates the nearby tags to capture the phase
readings, at a rate about 340 readings per second. The tag
readings are grouped according to the tag ID (96bit or 128bit
identifier) and stored in the local database. Initially, the
data processing module fetches out the phase reading, and
feeds them into the popular category discovery module. Af-
ter discovering the popular items, ShopMiner collects their
tag IDs and performs pick-up/turn-over detection on these
tags. ShopMiner finally clusters these hot items to excavate
the correlated items. The software runs on a Lenovo PC
with an Intel Core i7-4600U 2.10GHz CPU and 8GB RAM.

4.2 Deployment issues
One deployment issue is to minimize the population of

items for correlation analysis. In a large garment store, ev-
eryday hundreds of items would be picked up or turned over
frequently. While the majority part of these items will be
placed back directly without any trying on [32]. Essential-
ly, these items do not belong to any category of correlated
items, and hence could be filtered out a prior. In ShopMin-
er, only the tags satisfying the following two conditions will
be considered as candidates for correlation analysis: 1): this
item has been picked up or turned over; 2): this item is
sequentially identified by different RFID readers (indicating
the item is in motion). Such heuristic prunes a large portion
of uncorrelated items and boosts the efficiency of correlation
analysis.

Another deployment issue is to minimize data storage. In
our system, the RFID reader periodically interrogates tags.
Hence the acquired data accumulates gradually. Figure 11
shows a snapshot of the data volume augmentation when
the RFID reader monitors 5 items in front. The data vol-
ume increases linearly with the time and rapidly accumu-
lates to over 10Mb at the end of the 30th second. Suppose
the system monitors 100 items in a small clothing stores.
Then each hour it will generate at least 24G volume of da-
ta, which is intolerable for practical deployment. To reduce
the data storage overhead, ShopMiner runs the popular cat-
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Figure 12: Deployment of the prototype in the of-
fice/home environment

egory discovery module and hot item identification module
in a real-time manner. Only those hot items will be taken
into account and their data will be stored in the database
for offline correlation analysis. We call this process as early
data pruning. As Figure 11 shows, after the early pruning,
ShopMiner introduces significantly lower storage overhead,
which accumulates to 0.2Mb at the end of the 30th second.
From a long-term view, the data volume would accumulate
to about 480Mb of a one-hour monitoring duration for 100
tags, which is negligible compared to one-hour raw data vol-
ume. We admit that for large-scale shops, tag populations
would be high and hence the data volume would accumu-
late rapidly. For this case, we recommend to perform off-
line correlation analysis each hour and discard accumulated
data after each round of data analysis.

5. EVALUATION
In this section, we introduce the experiment scenario and

detail the system performance. We keep two places of dec-
imal of the experimental result throughout the evaluation
part.

5.1 Scenario
We evaluate the performance of ShopMiner in two typical

indoor environments: (a) an office room of 26×14m2 and (b)
a twin-bedroom apartment of 13×9 m2. The layouts of these
two rooms are shown in Figure 12. The office environment
mimics the large-scale shopping square (e.g., H&M, Zara,
Abercrombie & Fitch, etc.). We recruit 10+ volunteers to
mimic customers that browse commodities here. The apart-
ment environment mimics little clothing stores (e.g., private

(a) d = 20cm (b): d = 35cm (c): d = 60cm

(d): one customer case (e): two customer case (f): three customer case

d d d

Figure 13: Illustration of testing scenarios: includ-
ing three item-to-customer distance settings ((a),
(b), (c)) and three different number of customer set-
tings ((d), (e), (f))

clothing stores), where less than 5 customers are asked to
hang out there. In each testing environment, we hang 20
pieces of clothes on a clothing rack. The clothing rack is
with 2 meters long and 1.4 meters high. The space of ad-
jacent clothes is about 5cm. It should be noticed that the
shopping behaviors studied in this work are general motions
that the customer will perform in all kinds of retail stores,
hence our scheme could adapt to other types of display con-
figurations such as supermarket, stationary store etc.. The
location of the clothing rack is denoted as the dashed squires
in Figure 12. To evaluate the robustness of ShopMiner, we
also test its performance with different item-to-customer dis-
tance and different number of nearby customers (shown in
Figure 13).

5.2 Popular category discovery
We first examine the impact of different parameter set-

tings on the performance of popular category discovery. Then
we test the system performance with a focus on its detec-
tion granularity and robustness. Granularity represents the
minimum number of items that ShopMiner can detect when
the customer stand still in front of an interested item. Ro-
bustness reflects the ability to resist outer changes without
a significant decline in granularity.

5.2.1 Parameter configuration
Impact of confidence level (1-α): The confidence level

(Equation 1) plays a key role in popular category discovery,
and cannot be configured arbitrarily. To explore a proper
confidence level, we vary α from 0.01 to 0.2, and calculate
the true positive rates (TPR) and true negative rates (T-
NR) of ShopMiner. TPR represents the fraction of cases
where ShopMiner correctly identifies body shadowing events
among all body shadowing events. TNR represents the frac-
tion of cases where ShopMiner correctly identifies non-body
shadowing events among all non-body shadowing events. We
plot the TPR and TNR under various confidence level set-
tings in Figure 14. ShopMiner achieves balanced TPR and
TNR over 91% using a confidence level of 0.86. We thus use
this threshold in the following experiments.

Impact of threshold θ: We further investigate the influ-
ence of threshold θ (Equation 2) on the system performance.
In practice, if θ is too large, then ShopMiner will mistaken
the browsing event as non-browsing case. For example, one
customer stands still for a short time to browse the inter-
ested item, and then leaves away. On the contrary, if θ is
too small, then ShopMiner will mistaken a large portion of
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Figure 19: ROC curve

non-browsing events as browsing event. e.g., customer walks
slowly around the cloth rack and unintentionally blocks the
LOS path between clothes and the antenna. We define the
TPR as the fraction of cases where ShopMiner correctly i-
dentifies browsing event among all body browsing events;
and TNR is the fraction of cases where ShopMiner cor-
rectly identifies non-browsing event among all non-browsing
events. Figure 15 plots the TPR and TNR under a range
of threshold settings. ShopMiner achieves a balanced TPR
and TNR of over 92% using a threshold of 12s. We will use
this threshold in the subsequent evaluations.

5.2.2 Overall Performance
Granularity: We vary the number of reader antennas

and observe the granularity changing. In this experiment, a
customer browses clothes and stands still in front of the in-
terested ones (i.e., popular category). The distance between
the customer moving trail and the clothing rack is 0.3m. We
repeat the experiment 50 times under each antenna setting.
Figure 16 depicts the relationship between the number of
antennas and the detection granularity. The detection gran-
ularity is about 6 pieces of clothes on average with only one
reader antenna. With more antennas, the detection granu-
larity improves significantly and finally achieves 3.2 pieces
of clothing on average when the reader antenna added to
4. Although such granularity fails to precisely reveal the
specific item that the customer is browsing, it can remark-
ably narrow down the scope of candidates. Furthermore, as
items with the same style are often hung closely together,
hence such granularity can guarantee that ShopMiner iden-
tifies those clustered popular category of clothes. Based on
the experiment result, we use four antennas in the following
experiments.

Robustness: We first vary the distance between the cloth-
ing item and the customer (termed as item-to-customer dis-
tance) d from 0.2m to 0.6m, and examine how this distance

affect the detection granularity. The antenna is put 2 meter-
s away from the clothing rack. Figure 17 shows the result.
As this figure indicates, the detection granularity decreases
moderately as we expand the distance between the item and
the customer. Specifically, when the customer is with close
proximity to clothing items, e.g., d = 0.2m or 0.3m, the de-
tection granularity maintains in a similar and fine-grained
level, with the granularity of 2.5 and 2.9 pieces of clothes on
average. As we increase d to 0.6m, the detection granulari-
ty drops to about 5 pieces of clothes on average. This may
be because the customer blocks more LOS paths between
the undesired items and the antenna, hence leading to much
coarser detection granularity.

We also test the granularity of ShopMiner in multiple cus-
tomer cases. In this trail of experiments, we arrange different
number of customers to browse clothes simultaneously. The
distance between the clothing rack and the customer is set to
0.3m. Figure 18 shows the detection granularity changing
when different number of customers browse clothes simul-
taneously. As expected, when there is only one customer,
ShopMiner achieves a relative good result, with a detection
granularity of 3.2 pieces of clothes on average. As more cus-
tomers get enrolled, e.g., n = 3, the detection granularity
drops slightly to 5.3 pieces of clothes on average. This may
be because more people will naturally block more LOS paths
and introduce much complex multi-path reflections.

Summary: from the experiment result we can see that
ShopMiner can detect the popular item with a TPR of 92%.
The detection granularity degrades slightly with the varia-
tion of tag-to-antenna distance and number of customers.
Besides, the result also indicates that the granularity can be
improved by deploying more reader antennas.

5.3 Hot item identification
We test the accuracy and robustness of the hot item iden-

tification scheme based on the following metric: TPR and
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Table 1: Confusion matrix of action identification

Ground-truth
Predicted

Turn over Pick up
Turn over 187 13
Pick up 9 191
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Figure 20: Impact of multiple customers

FPR. TPR is defined as the proportion of cases where Shop-
Miner successfully detects the pick-up and turn-over actions
among all pick-up and turn-over actions performed by the
customer. FPR is defined as the proportion of cases where
ShopMiner mistakes other actions as pick-up or turn-over
actions over all non-pick-up and non-turn-over actions.

Accuracy: In this trail of experiments, we ask a volunteer
to randomly pick up or turn over different clothing items 20
times. Other customers hang out around the clothing rack to
generate multi-path propagation interferences. The experi-
ment is conducted 20 times in total in two testing scenarios
by 10 different customers. The ground-truth is captured by
a video camera. We summarize the detection result by plot-
ting the Receiver Operating Characteristic (ROC) curves in
Figure 19. As the result indicates, ShopMiner achieves a
better detection accuracy in pick-up case than that in turn-
over case. Specifically, we can see that ShopMiner acquires
a balanced detection accuracy of 94% with a FPR of 13% for
the pick-up case, and that of 87% with a FPR of 16% for the
turn-over case. The primary reason of this performance gap
may be because the phase turbulence of the desired item
is much more significant than that of nearby items (unin-
tentionally stricken by the desired item) in pick-up case,
whereas the phase turbulence of the desired one is relatively
similar to other nearby items in turn-over case.

We further investigate the identification accuracy of Shop-
Miner. The confusion matrix is shown in Table 1. Each row
here denotes the actual activity performed by the volunteer
and each column represents the activity recognized by Shop-
Miner. Each element in the matrix corresponds to the frac-
tion of actions in the row that were regarded as the activity
in the column. As the result shows, ShopMiner achieves a
true positive rate of 94% and 96% for turn-over and pick-up
action, respectively. The turn-over action is misclassified as
pick-up action with 7% probability, while the pick-up action
is often misclassified as turn-over action with 5% probabili-
ty. The result clearly demonstrates that the auto-correlation
based detection scheme can successfully distinguish pick-up
and turn-over actions with high accuracy.

Robustness: To quantify the robustness of the detection
scheme, we test its performance in multi-person cases and

Table 2: Confusion matrix of action identification

Ground-truth
Predicted

Turn over Pick up
1 2 3 1 2 3

Turn over 187 184 178 13 16 22
Pick up 9 10 13 191 190 187

plot the ROC curves in Figure 20. As the result indicates,
with one customer, ShopMiner achieves a balanced detection
accuracy of 92% with a FPR of 13%. The detection accuracy
decreases slightly with more customers, yet ShopMiner still
achieves an accuracy of 85% with a FPR of 22% with three
customers. This is expected since multiple customers will
introduce complex signal propagation environment, which
further introduces phase disturbance to each item.

We further investigate the multi-person impact on the i-
dentification accuracy. Table 2 shows the identification re-
sult. As the confusion matrix indicates, the misclassification
rate rises moderately with the increase of customer popula-
tion. Specifically, when there are two customers performing
pick-up or turn-over actions in front of the same clothing
rack, ShopMiner achieves preeminent performance, with an
average misclassification rate of 8% and 5% for turn-over
and pick-up, respectively. This index increases slightly for
the three customer case, and finally peaks 11% and 7% for
the four customer case. This may be because when multiple
customers turn over clothes on the same clothing rack, the
clothes nearby the desired ones will be pushed by multiple
customers. As a result, their phase trends will change irreg-
ularly in some cases, hence degrading the identification per-
formance. Nevertheless, ShopMiner still achieves 89% and
94% TPR, demonstrating its potential for real deployment.

Summary: the result shows that ShopMiner achieves an
overall detection accuracy of 94% and 87% for pick-up and
turn-over cases, respectively. The TPR of action identifica-
tion is 96% and 94% for pick-up and turn-over actions, re-
spectively. Besides, the result also indicates that ShopMiner
is insensitive to the variation of customer populations.

5.4 Correlated item excavation
We evaluate the performance of our iterative correlation

detection scheme using the metric Detection accuracy. The
detection accuracy is defined as the proportion of cases where
ShopMiner correctly identifies correlated items over all cor-
related items.

Accuracy: We examine the detection accuracy under d-
ifferent number of correlated items. In this trail of experi-
ments, we arrange one customer to bring different number of
correlated items and hang out around the reader’s reading
zone. The experiment is conducted 200 times by 10 different
customers. We then use different distance metric (DTW and
DDTW) for correlated item detection. Figure 21 shows the
detection accuracies. As is shown, the detection accuracies
using different distance metrics both decrease slightly with
the increase of the number of correlated items. Specifically,
when there are few customers (e.g., 1 or 2), the detection
accuracy of ShopMiner retains around 91% and 83% for the
DDTW and DTW distance metrics, respectively. With more
customers, the performance gap of ShopMiner under differ-
ent distance metrics becomes more significant, and finally
peaks at 10%. It manifests that DDTW metric significantly
improves the detection accuracy.
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Figure 21: # of items vs. detection
accuracy
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Figure 22: Impact of customer-to-
antenna distance
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Figure 23: Impact of customer
populations

Robustness: We investigate the impact of the customer-
to-antenna distance on the detection accuracy. As shown in
Figure 22, the distance between the customer and the anten-
na has little impact on the detection accuracy. Specifically,
when the customer stands close to the antenna, e.g., 0.5m
or 1m away, the detection accuracy retains above 90%. The
detection performance then degrades slightly to over 88%
when the customer is 2m away from the antenna. Hence
with the increase of the distance between the customer and
the antenna, there is no significant performance degradation.
This result shows that our correlation detection scheme is
insensitive to the customer-to-antenna distance.

We further examine the impact of customer population
on the detection accuracy. In this trail of experiment, we
arrange different number of customers to walk around, with
each customer bringing different number of clothes. As shown
in Figure 23, ShopMiner achieves an overall accuracy of
92% when there are three customers. The detection accu-
racy then decreases slightly with more customers. Howev-
er, ShopMiner still achieves an detection accuracy over 85%
with 11 volunteers. This result shows that ShopMiner is
robust to customer population changes.

Summary: Experimental result shows that ShopMiner
achieves an overall detection accuracy of over 93% with one
customer, and that of over 85% with six customers. The
result also indicates that ShopMiner is insensitive to the
number of customers and the antenna-to-customer distance.

6. RELATED WORKS
Offline shopping behavior mining: Despite the aca-

demic and commercial success in online shopping data ac-
quisition, relative few efforts have been paid on the offline
shopping data acquisition. You et al. [37] discussed the us-
age of mobile phones to monitor shopping time at physical
stores. Hagan et al. [20] proposed a solution on offline cus-
tomer behavior collection by mounting the data collection
device in the shopping cart. Kanda et al. [7] designed a
sensor network based shopping behavior analysis system in
retail stores, with the goal of tracking and clustering con-
sumer locations, and further inferring the hot items. These
solutions fail to provide high-fidelity information on offline
shopping behaviors, such as how customers browse stores,
and what items they show interest.

Wearable sensor based activity recognition: It is
natural to use wearable sensors for human activity recog-
nition. JigSaw [19] continuously monitored and classified
user activities and infers context like walking, cycling and
running. Swimmaster [1] provided a fine-grained assessmen-

t of swimming by extracting swimming parameters such as
velocity, arm strokes, body balance, and body rotation. Re-
searchers also employed wearable sensors for other kinds of
human activity detection, such as smoking [21] and sleep-
ing [4, 6].

Some research also explored detecting offline shopping be-
haviors with smart devices. Lee et al. [12] presented a smart-
phone based customer shopping behavior modeling frame-
work, which aims to examine the impact of six kind of human
activities on customer behaviors. Rallapalli et al. [26] pro-
posed a solution on tracking physical browsing by customer-
s in retail stores using the inertial sensors on smart glass-
es. Sen et al. [27] explored the possibility of using smart-
phone sensing data to detect pre-defined shopping activi-
ties in physical retail stores. These works can provide cer-
tain customer activity recognition services. However, these
schemes require each user to wear a special hardware, which
is burdensome and may degrade the shopping experience.

WiFi-based posture recognition: Researchers also ex-
ploit WiFi signal changes for device-free human activity
sensing. WiSee [25] leveraged wireless signals to enable hu-
man gesture recognitions. AllSee [8] provided a gesture-
recognition scheme that can operate on battery-free wire-
less devices. WiHear [34] designed a novel signal processing
technique to detect human speaking from WiFi signals. E-
eyes [35] extracted the CSI information from 802.11 symbols
for in-home human activity sensing, like washing, watching,
brushing teeth. While these techniques relieve users from
wearable sensors, they suffer from environment dynamics,
and hence cannot be deployed in physical stores for cus-
tomer behavior monitoring.

RFID-based human/object sensing: Previous research
also explored the signal changes of RFID tags for human or
object sensing. OTrack [28] exploited the spatial-temporal
correlation of RSS signals to track the tag order in baggage
sorting system. STPP [29] designed a phase profiling tech-
nique for the relative localization of rfid tags in 2D space.
Togoram [36] tracked mobile RFID tags within centimeter
level accuracy by using the SAR and hologram technique.
Our work is inspired by the above works in phase based
tag motion detection. However, our focus is on leveraging
the phase pattern to infer customer behaviors, rather than
capturing the tag’s position. CBID [5] and Tagbooth [16]
are the most related works to ours. CBID [5] exploited the
Doppler effect on human actions to detect customer behav-
ior in shopping malls. Tagbooth [16] used the RSSI patterns
to detect and identify the pick-up motions in physical retail
stores. Our work differs from these two works in two aspects.
On the one hand, our system incorporates three key factors
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that are essential to retailers, i.e., what items the customers
browse, which items they show interest in, and which item-
s they match with. In contrast, CBID and Tagbooth could
only observe and detect pick-up motions and infer those cor-
related items. On the other hand, our system solely adopts
the phase patterns to mining the customer shopping behav-
ior, whereas CBID and Tagbooth mainly rely on RSSI and
doppler shift for customer behavior identification.

7. DISCUSSION
This section talks about the practical deployment issues.
Distinguishing employee/customer: the current Shop-

Miner prototype mostly aims at clothing stores in a self-
service/supermarket mode, where few employees are expect-
ed to continuously put products back in shelves and where
customers are free to pick up and try on the items as wished.
For retail stores with employees guiding customers or fre-
quently putting products back in place, ShopMiner may ex-
perience severe interference since ShopMiner is unable to
distinguish employees and customers via RF signals. A par-
tial solution is to ask each employee to attach an RFID tag
with special ID so that ShopMiner can simply discard the
phase readings if the special ID is detected.

Deployment Cost for Full Coverage: mainstream
commercial RFID readers can now support 4 antennas with
each antenna effectively covering an area of 4m x 4m square.
Hence the retailer can monitor nearly an area of nearly 602

with one reader, which costs less than 1000 USD. In addi-
tion, retailers are more interested in the shopping behaviors
of some items (e.g. new products) than others (e.g. items
on sale). Therefore, full radio coverage might be necessary
only for certain important regions in the stores. According
to our survey on a local clothing stores in Xi’an, another
practical deployment concern comes from the placement of
the readers, whether the four-antenna readers of relatively
large size can be fixed on walls or ceilings without violating
the decoration styles of the stores.

Impact of Crowded Stores: in our clothing store like
evaluation, ShopMiner retains satisfactory performance (de-
tection granularity of 5.3 pieces of items, hot item identifi-
cation accuracy of 85%, and correlated item identification
accuracy of 92%) when monitoring 3 customers browsing 1
rack simultaneously using 1 reader. According to our sur-
vey on two local clothing stores in Xi’an, it is sufficient to
support 3-5 customers per rack most of the time, especially
for those expecting pleasant user experience. In our cloth-
ing store like evaluation, ShopMiner retains satisfactory per-
formance when monitoring 3 customers browsing one rack
simultaneously. As customers standing still or walking in
the shops close to the rack can partially alter the multipath
propagations of the target customer, the phase profiles will
experience slight fluctuations. Consequently, ShopMiner on-
ly mis-detects a customer when other customers occasional-
ly block the LOS path of the target customer. However,
since close presence of many customers can severely affect
the RF signals and create complex multipath propagation
environments of the targeted customer, the performance of
ShopMiner can degrade dramatically in crowded stores, e.g.
when it is Christmas sale.

Extending Beyond Clothing Stores: on one hand,
the current ShopMiner prototype can be extended to some
types of retail stores e.g. bookstores, where the items are
of similar material, and are relatively tidily placed. On the

other hand, RFID tags attached on metal products can ex-
perience severe radio interference, which can lead to failure
of ShopMiner. It is also difficult to even attach an RFID tag
on certain products, e.g. fruits. Hence the current version
of ShopMiner may be inapplicable in computer stores and
part of the grocery stores.

8. CONCLUSION
In this paper, we present the design, implementation and

evaluation of ShopMiner, a RFID-based customer shopping
behavior mining system works in physical clothing stores.
By attaching each clothing item with a RFID tag, ShopMin-
er could “see” and detect how customers browse the stores,
which category of items they show interest, and which items
they match with. Such comprehensive shopping behavior
data could benefit retailers in capturing customers’ flavors,
testing new arrivals, and further optimizing their commer-
cial strategies. We examine the accuracy and robustness
of ShopMiner in various testing scenarios. The preliminary
result shows that ShopMiner could achieve high accuracy
and efficiency in customer shopping behavior identification,
hence hold potential for practical deployment.
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