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Abstract—In this work, we propose RAD, a RApid Deployment
localization framework without human sampling. The basic idea
of RAD is to automatically generate a fingerprint database
through space partition, of which each cell is fingerprinted by its
maximum influence APs. Based on this robust location indicator,
fine-grained localization can be achieved by a discretized particle
filter utilizing sensor data fusion. We devise techniques for
CIVD-based field division, graph-based particle filter, EM-based
individual character learning, and build a prototype that runs
on commodity devices. Extensive experiments show that RAD
provides a comparable performance to the state-of-the-art RSS-
based methods while relieving it of prior human participation.

Index Terms—Localization, Field Division, Smart Phone

I. INTRODUCTION

Despite a decade-long endeavor, [2], [10]–[12], indoor lo-
calization services have not yet been widespread so far. A
primary concern lies in the overhead required to construct
a representative fingerprint database. The existing works,
either actively or passively, rely on extensive prior human
participation, which impedes them from rapid deployment in
practice. In this work, we seek the opportunity of generating a
fingerprint database automatically without human participation
while achieving considerable localization accuracy.

The basic principle of automatic fingerprint database con-
struction stems from radio map generation in the communica-
tion communities [6]. Given the location of signal sources, the
map of the building, and environmental parameters (e.g., re-
flection coefficients of furniture), it is possible to approximate
the deterministic and probabilistic radio map automatically
by simulating propagation models [1]. However, it is non-
trivial, if not impossible, to adopt the whole principle to
practical WiFi-based indoor localization. Because it is a luxury
to learn environmental parameters precisely, and WiFi signals
are susceptible to both the permanent environmental settings
(e.g., walls and furniture) and the temporal dynamics (e.g.,
pedestrians and wireless interferences) [11].

To cope with these difficulties, we design and implement
RAD, a RApid Deployment localization framework without
prior human participation. RAD partitions the space into cells
according to AP information, such that the points inside each
cell share the common maximum influence APs (a subset
of all APs) as a robust region fingerprint. To track the user
movement during cell transitions, we generate a graph based
on the space partition and apply a fully discretized particle
filter using sensor data fusion.

Despite the simple idea, three major challenges underpin
the design of RAD. 1) How to effectively partition the space
into cells according to their corresponding maximum influence
APs? Unlike traditional Voronoi Diagram based (e.g., [7], [9]
with O(n) cell size, see Fig. 1a) or Sequence based space
partition mechanisms (e.g., [13] with O(n4) cell size), we
hope the space partition is more suitable for localization and
the data structure makes querying easy. To accomplish this, we

Access Point

(a) Voronoi Diagram

# of Maximum Influence AP: 1 2 3 4 5 6 7

(b) Cluster-Induced Voronoi Dia-
gram with Our Influence Function

Fig. 1. Different Space Partition Mechanism

adopt the latest theoretical achievement called Cluster Induced
Voronoi Diagram (CIVD) [3] together with our carefully
designed influence function (see Fig. 1b). The bounded cell
size O(n logn) and efficient data structure is achieved by
introducing some sort of approximation. 2) A cell is actually
a rough location indicator. If we assume the target is at the
center of the identified cell, it may lead to Status Quo Bias. To
solve this, we discretize the well-known particle filter based on
our CIVD-generated graph and sensor data fusion. 3) Particle
filter is always accompanied by many parameters, some of
which are user-specific (e.g., stride length). While mainstream
solutions try to train a general model based on an empirical
study [8], RAD addresses these by introducing an EM-based
algorithm taking advantage of our graph based framework.

II. BACKGROUND AND RELATED WORK

RSS-based Localization. Due to the ubiquity of wireless
singals, extensive research efforts [2], [12] utilize them for
indoor localization. Different from the mainstream finger-
print based method, some efforts [7], [9], [13] have settled
localization via space partition. Unlike their VD based or
sequence based partition mechanism, we divide the field using
approximate CIVD [3] and our carefully designed influence
function. The function attempts to identify the most influential
APs for a certain location with adaptive cluster size.

Automatic Construction of Radio Map. Different from
constructing the fingerprint database in a bottom-up manner
(human site-survey), some pioneers propose automatic con-
struction with a top-down approach [6]. With known signal
source information, detailed building map, and environmental
parameters (e.g., reflection coefficients of furniture), deter-
ministic/probabilistic radio map can be approximated auto-
matically by simulating propagation models [1]. In RAD, we
consider the dominant APs as a robust location identifier
instead of learning the environmental settings precisely, while
compensating the precision loss by utilizing user movement.
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III. FIELD DIVISION VIA APPROXIMATE CIVD

A. Theoretic Basis
Similar to VD, CIVD partitions the space into cells, how-

ever, the points inside each cell share the common maximum
influence subset of all the APs instead of the strongest one
(Fig. 1b). Specifically, let P = {p1, p2, ..., pn} be a set
of n APs in 2D floor plan R

2, C be a subset of P , and
q be an arbitrary query point in R

2. The influence from
C to q is measured by a function F (C, q) of the vectors
from every AP p ∈ C to q. Among all possible subsets
of P , let Cm(P, q) ⊆ P denote the subset which has the
maximum influence Fmax(q), on q, called the maximum
influence APs of q. Typically, the influence function (specified
in next subsection) produces irregular space partition (e.g.,
Fig. 1b) due to the heterogeneity of APs and the irregular AP
deployment itself. Further considering that signal propagation
is susceptible to interference, RAD introduces some level of
approximation defined as:

Definition 1 ((1 − ε)-approximate CIVD). Let R =
{c1, c2, ..., ck} be a field division of the space R

2, and
C = {C1, C2, ..., Ck} be a set (possibly a multiset) of cluster
APs in P . The set of pairs {(c1, C1), (c2, C2), ..., (ck, Ck)} is
a (1− ε)-approximate CIVD w.r.t. the influence function F if
for each ci, F (Ci, q) � (1− ε)Fmax(q) for any q ∈ ci, where
ε > 0 is a small constant. Each ci is an approximate CIVD
cell, and Ci is the approximate maximum influence APs of ci.

B. Influence Function and Desired Properties
Before introducing our influence function and its three

desired properties, we define some notations here in order to
avoid redundancy: q is an arbitrary point in R

2 space, C is any
set (possibly multiset) of APs, F is our influence function:

F (C, q) =

∑
p∈C F (p, q)

|C|(1− ε) + ε
(1)

where F (p, q) is the numeric RSSI received at q from AP
p (measured in mW to ensure that F is positive, could be
LDPL or other signal propagation model [6]), and ε is a (0, 1)
constant indicating the scale we want. The rationale is to
identify the most influential APs without cardinality constraint.

Property 1 (Similarity Invariant). Let φ be a transforma-
tion of scaling, rotation, and translation about q. It uniquely
determined the ratio of F (φ(C), q)/F (C, q).

According to the definition of our influence function, the
Similarity Invariant property holds apparently, which implies
the fact that Cm(P, q) of q remains under any similarity
transform, and is required by the following Locality property.

Definition 2 (ε-perturbation). A one-to-one mapping ψ
from C to ψ(C) in R

2 is called an ε-perturbation w.r.t. q
if ‖p− ψ(p)‖ ≤ ε‖p− q‖ for every AP p ∈ C.

(a) Approximate Decomposition (b) Generated Graph

Fig. 3. Intermediate Product of Space Partition

Definition 3 ((δ,γ )-stable). For any γ ∈ (0, 1), let δ
be a continuous monotone function with δ(γ) < 1 and
limx→0 δ(x) = 0. An influence function F is said to be

(δ,γ )-stable at (C, q) if for any ε-perturbation C
′

of C with

ε ≤ γ < 1, (1−δ(ε))F (C, q) ≤ F (C
′
, q) ≤ (1+δ(ε))F (C, q).

Definition 4 (maximal pair). C, q is a maximal pair of F
if for any subset C

′
of C, F (C

′
, q) ≤ F (C, q).

Property 2 (Locality). Our influence function F is (δ,γ )-
stable at any maximal pair (C, q) for some continuous mono-
tone function δ and a small constant 0 < γ < 1.

The Locality property shows that a small perturbation of P
does not change much the maximum influence on q. Thus it
suffices to use a perturbation of P to construct an approximate
CIVD. Due to the symmetry our influence function, we can
equivalently perturb all query points (i.e., the entire space R

2),
instead of the AP positions, and still obtain an approximate
CIVD. This implies that we are able to first approximate the
2D space by dividing it into small enough regions, and then
assign each region with a set APs having the (approximate)
maximum influence on it.

Property 3 (Local Domination). There exists a polynomial
bound function P(·) such that for any point q and any subset

P
′ ⊆ P , if there is a point p ∈ P

′
with P(n)‖q − p‖ <

ε · ‖q − p′‖ for all p′ ∈ P \ P ′
for a sufficient small constant

ε > 0, then Fmax(P
′
, q) > (1− ε)Fmax(P, q).

By Property 3, we know that there is a dominating region
of each AP, which prevents RAD from generating regions of
too small sizes during partition. The proofs of the properties
and the following algorithms are detailed in our full version.

C. CIVD-based Field Division
The input of CIVD-based Field Division module is the AP

information and floor plan, and the output is a box-tree and a
generated graph (Fig. 3). It consists three major steps:

1. Approximate Influence Decomposition: Motivated by
the desired properties, RAD partitions the space into two
types of cells. During the partition, a new main data structure
called box-tree and another new auxiliary data structure called
distance-tree are utilized [3]. In a nutshell, the box-tree
construction begins with a big enough bounding box of the AP
set P (e.g., Fig. 3a), then recursively partitions each box into
smaller boxes, and stops the recursion on a box B when either
B is small enough (comparing with its distance to the closest
AP in P , i.e., B is sufficiently far away from P , denoted by
type-2 cell), or B is inside the dominating region of some
cluster AP C ⊆ P (denoted by type-1 cell). Finally, a box
becomes a cell if no further decomposition of it is needed.

2. Maximum Influence AP Assignment: During the parti-
tion, each type-1 cell is associated with a maximum influence
AP. We also design a sorting-pruning strategy for assigning
maximum influence APs for type-2 cells.

3. Cells Reduction and Graph Generation: Though [3]
guarantee that up to O(n log n) cells are generated. The
granularity it partitions the space may still be too fine-grained
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in terms of localization due to the hidden constant in big O.
So we adopt a cell reduction mechanism to merge nearby
cells with the same approximate maximum influence APs, and
generate the final graph (Fig. 3b).

Theorem 1. The CIVD-based Field Division Algorithm pro-
vides a (1-ε)-approximate Cluster-Induced Voronoi Diagram of
the space w.r.t. our influence function F .

Theorem 2. The CIVD-based Field Division Algorithm
yields O(n logn) type-1 and type-2 cells in O(n log n) time.
For each cell, we can assign its approximate maximum influ-
ence APs in O(n log n) time.

IV. CIVD-BASED PARTICLE FILTER

We represent the state xt of a particle at time t by a
triple xt = {et, dt, θt}, where e denotes the current edge
ID on the graph, d indicates the distance of the particle
from the start vertex of the edge e, and θ indicates the
moving orientation w.r.t. magnetic north. On the other hand,
we represent the observation zt from sensors by a triple
zt = {zθ,t, zd,t, zRSS,t}. Where zθ,t is the user’s heading
orientation, zd,t is the distance the particle move since last
sample, zRSS,t is the RSSs returned by phone OS API.

A. Mathematical Derivation and Decomposition
Whenever a new observation is made, the filter samples a

new state xt = {et, dt, θt} from the state transition probability
distribution given the last state xt−1 and the current observa-
tion zt = {zθ,t, zd,t, zRSS,t}.

{et, dt, θt} ∼ p (et, dt, θt | et−1, dt−1, θt−1, zθ,t, zd,t,G)
= p (et, dt | et−1, dt−1, θt, zd,t,G) · p (θt | zθ,t)

Here, G is the CIVD-generated graph instead of the map in-
formation M. zRSS,t is mainly used for importance sampling.
This decomposition enables us to sample separately:

θt ∼ p (θt | zθ,t) (2)

The particle motion patterns can be roughly divided into two
cases: move along a single edge and transit from one edge to
another. For motions on one edge, where et = et−1:

p (et, dt | et−1, dt−1, θt, zd,t,G) ={
p (dt − dt−1 | zd,t) Δθt ≤ 90◦
p (dt−1 − dt | zd,t) Δθt > 90◦

where Δθt = |θ(et−1)− θt| is the angular difference between
current orientation θt and the direction in which edge et−1
leaves its start vertex. If transition happens, where et �= et−1:

p (et, dt | et−1, dt−1, θt, zd,t,G) =
p (et | et−1, θt,G) · p(tdt | zd,t)

Here we introduce a random variable tdt to simplify the
representation, it stands for the true distance the particle moves
between two samples. Specifically,

p(tdt | zd,t) =
{
p (dt + |et−1| − dt−1 | zd,t) Δθt ≤ 90◦

p (dt−1 + dt | zd,t) Δθt > 90◦

Obviously, the edge sampling distribution depends on the
current edge et−1 and the particle’s orientation θt, which
we further employ a truncated Gaussian distribution over all
neighboring edges:

p (et | et−1, θt,G) =
{
N (

Δθ,σ 2
e

)
Δθ ≤ 90◦

0 otherwise

where Δθ = |θ(et) − θt| is the angular difference between
current particle orientation θt and the direction of the newly
arrived edge θ(et). Moreover, the standard deviation σe should
also include quantization effects due to our graph structure.

B. WiFi-assist Importance Sampling
In RAD, we propose a WiFi-assist importance sampling

based on our influence function. Given the RSS measurement
zRSS,t, we can obtain the measured maximum influence APs
Cm using Eqn. (1) (sort Cm). Based on the particle location
state et, dt, we can retrieve the estimated approximate max-
imum influence APs Ce using the box-tree Tq . We measure
the similarity between these two sets using a modified Edit
Distance [4]. Specifically, we regard Ce as the target string
and the Cm as the query string. We allow add, delete, and
switch (change the order of two APs) operation when editing
the two strings. Since an AP appears at most once in a string,
we can edit the query string in the order of deletion, switch,
and addition with cost 1, 0.3, and 1 per operation (Fig. 4).
The minimum cost of transforming Cm into Ce is regarded as
their edit distance ED(Cm, Ce). Then,

L(zt | xt,G) ∼ p(zRSS,t | et, dt,G) ∼ 1

1 + ED(Cm, Ce)

V. INDIVIDUAL CHARACTER LEARNING WITH EM

We use Gaussian distribution to model Eqn. (2), i.e.,
p (θt | zθ,t) ∼ N (zθ,t, σ

2
θ), and we use Gaussian distribution

to model each step of an individual, i.e., p(tdt | zd,t) ∼
N (sl,σ 2

sl) · #step (we use sl to denote the estimated step
length of an individual). To learn σθ, sl, and σsl from data,
we need an estimation of the person’s current location and our
EM-based solution are detailed as follows,

Expectation-Step. We update the posterior distribution over
the trajectories of the person and compute the expectation of
the log-likelihood function as follows:

Q(Θ,Θi−1) = E[log p(z1:t, x1:t | Θ) | z1:t,Θi−1]

=

∫
x1:t

log p(z1:t, x1:t | Θ)p(x1:t | z1:t,Θi−1)dx1:t (3)

Here x1:t and z1:t are the sequences of states and observations
respectively. Θ = {σθ, sl, σsl} are the parameters that we
want to learn, while Θi−1 are the estimations for the i− 1th

iteration of our EM algorithm. We apply a sample-based
approximation for p(x1:t | z1:t,Θi−1):

Q(Θ,Θi−1) ≈ 1

m

m∑
j=1

log p(z1:t, x
j
1:t | Θ) (4)

Here m is the number of particles and xj
1:t is the state history

of the jth particle, estimated using previous model.
Maximization-Step. Here we aim to maximize the expec-

tation we compute in Eqn. (4) by updating the parameters Θ.

Θi = argmax
Θ

Q(Θ,Θi−1) = argmax
Θ

m∑
j=1

log p(z1:t, x
j
1:t | Θ)

= argmax
Θ

m∑
j=1

log p(xj
1:t | Θ) (5)

To maximize the Gaussian parameters in Θ, we set the sl and
σsl the mean and variance of each particle’s value, while σθ
is estimated by differential evolution.
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VI. PERFORMANCE EVALUATION

A. Experimental Setup
We test RAD on three types of Android devices (Google

Nexus 5 phone, Huawei Honor 2 phone, and Samsung Note
10.1 tablet) in a conference room (Fig. 5a) and a food plaza
(Fig. 5b). We ask users to walk in the predefined routes
(red routes in Fig. 5), of which several checkpoints scatter
along. We manually record the time when users pass the
checkpoint and assume a constant walking speed between two
checkpoints. We invite 6 and 2 users for conference room and
food plaza experiments respectively, in a total of 40 and 15
traces are collected in two scenarios. Besides that, we construct
the WiFi fingerprint databases for evaluation by on-site survey.
In both places, 10 WiFi fingerprints are collected at each
of the training points (blue dots in Fig. 5), and consecutive
training points have a distance of 1.8m. A more controllable
experiment is conducted in the conference room, of which 7
APs are configured manually (TP-LINK WR847N). While 24
AP information in food plaza is post-estimated by fingerprint
database using the methods proposed in [7]. We compare RAD
with the following localization schemes: a fingerprint-based
localization Horus [12], a Sequence-based solution EFD [13],
and a Particle-Filter-based scheme Zee [10].

B. Overall Localization Accuracy
We summarize the performance of different localization

algorithms in Fig. 6 (500 particles, 10 rounds). As illustrated
in Fig. 6, even without site survey, RAD provides comparable
performance with Horus and Zee in both two scenarios, while
halves the localization error of EFD. In addition, benefits
from its graph nature, RAD has the smallest localization
variance among all localization algorithms. In the following,
we conduct a trace-driven comparison between RAD and other
solutions, of which is clearer to show their pros and cons.

RAD v.s. Horus. Let us dive into the details of two traces.
According to the curves and the summary of Fig. 6, RAD
is comparable with Horus in terms of localization accuracy.
More specifically, we find RAD has the larger real time error
at first a few steps, it’s because RAD does not know the user’s
initial location, so it scatters the particles onto the graph.
After that, the fluctuation of the real time error of RAD is
basically smaller than that of Horus, because the particles
quickly converge by walking several steps after initialization.

RAD v.s. EFD. As illustrated in Fig. 8 and Fig. 6, RAD
basically halves the localization error of EFD. We give the
credits to our influence function, which identifies the truly
influential APs instead of the whole sequence. And our graph-
based particle filter solves the Status Quo Bias in a more
natural way. Meanwhile, we believe EFD is more applicable

in Wireless Sensor Network where anchors are sparse and
localization precision is less required.

RAD v.s. Zee. We compare RAD with Zee using a Cumula-
tive Distribution Function of localization error. As illustrated
in Fig. 6 and Fig. 9, RAD’s performance is most similar to Zee,
since both utilize particle filter and inertial sensors. Zee shows
its advantages in small localization error portion (e.g., Fig.
9b) and large localization error portion (e.g., Fig. 9a), while
RAD outperforms Zee in median localization error portion.
We believe it is because Zee is equipped with the fingerprint
database so it is able to converge more quickly and avoid large
localization error. On the other hand, RAD benefits from its
graph structure, of which particles are more trackable.

VII. CONCLUSION

In this work, we present RAD, a rapid deployment indoor
localization framework. RAD identifies the opportunity of fine-
grained indoor localization through an automatically generated
fingerprint database and a discretized particle filter utilizing
sensor data fusion. Field experiments have shown that RAD
localizes users with comparable performance with classic
RSS-based methodologies without prior human participation.
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