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Abstract—Cross-device interaction is becoming an increasingly
hot topic as we often have multiple devices at our immediate
disposal in this era of mobile computing. Various cross-device
applications such as file sharing, multi-screen display, and cross-
device authentication have been proposed and investigated. How-
ever, one of the most fundamental enablers remains unsolved:
How to achieve ubiquitous multi-device localization? Though pi-
oneer efforts have resorted to gesture-assisted or sensing-assisted
localization, they either require extensive user participation or
impose some strong assumptions on device sensing abilities. This
introduces extra costs and constraints, and thus degrades their
practicality. To overcome these limitations, we propose TUM, an
acoustic-assisted localization scheme Towards Ubiquitous Multi-
device localization. The basic idea of TUM is to utilize the dual-
microphones and speakers to obtain distance cues among devices.
At the same time it resolves the location ambiguity with the help
of MEMS sensors. We devise techniques for distance constraint
extraction, static localization, continuous localization, and multi-
device localization, and build a prototype that runs on commodity
devices. Extensive experiments show that TUM provides a real-
time 3D relative localization service under 10cm mean error for
both static and continuous localization.

I. INTRODUCTION

The popularity of mobile devices has stimulated diverse
cross-device applications, ranging from file sharing [1], multi-
screen display [2], sensemaking [3] to cross-device authenti-
cation [4]. Recently, a framework for co-located multi-device
apps has been proposed [5]. It was reported that various
multi-device applications have been successfully deployed in
practice [6] and that users can effectively manage cross-
device interactions with 5 to 10 devices [3]. However, cross-
device interaction is still in its infancy, and many questions
remain unanswered [7]. In this paper, we focus on one of the
most fundamental problems: How to enable ubiquitous multi-
device localization, which is a prerequisite for various atop
applications [2], [3], [8] (e.g., Figure la).

In the existing literature, many pioneers have been address-
ing multi-device localization and major efforts have been made
in the following two aspects. One aspect is called Localization
with Gesture Assistance, where relative localization is achieved
by utilizing human gestures. For example, pinch gestures
across multiple devices are used in [2], while interactions like
pile, stack, bend, and fan are considered in [9]. The other
aspect is called Extending Device Sensing Spectrum, of which
complex techniques are explored to enable spatial sensing.
These include detecting physical bumping of devices [10],
viewing one device through the viewpoint of another [11],
futuristic sensing of spatial positions [13], and ranging via
acoustic signals with peers [20]. Among them, camera-based
solution is generally believed to be the most promising and
relatively inexpensive solution [3], [7], of which additional
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cameras or markers are deployed to capture device motion.
However, we argue that, the aforementioned works are not
suitable candidates for ubiquitous multi-device localization
due to the following reasons: (1) Require extensive human
participation [2], [9], [20]. (2) Impose some strong assump-
tions on device sensing abilities [10], [11], [13]. (3) Require
additional hardware [3], [7].

The above limitations motivate us to design and implement
TUM, a light-weight and highly accurate acoustic localiza-
tion scheme Towards Ubiquitous Multi-device localization.
Our intuition is that: The majority of recent mobile devices
(including phones, tablets, and laptops) are equipped with
at least two microphones (for noise cancellation) and one
speaker, while some flagship devices are equipped with even
more microphones and speakers for better sound quality
(e.g., Google Nexus 6P phone, Apple iPad Air 2 tablet, and
Microsoft Surface Pro 4 laptop). This provides the feasibility
for relative localization among nearby devices and it is our
vision that TUM runs as a ubiquitous localization module
serving various multi-device applications. There are two major
stages in TUM’s localization scheme, static localization and
continuous localization. During the static localization, TUM
performs a two-way tone exchange protocol, which provides
the hints to multiple pairs of distance constraints between
microphone and speaker. Given the hardware specification
(e.g., the positions of microphones and speakers) and the
current attitudes of smart devices, TUM is likely to identify
their unique relative locations. Then during the continuous
localization, TUM utilizes a particle filter to take both the
motion during tone exchange and the motion intervening
tone exchanges into consideration. This not only provides
robustness to user movement but also removes any potential
ambiguity in static localization.

Despite the simple idea, three major challenges underpin
the design of TUM: 1) How to perform acoustic ranging
among co-located unsynchronized devices. Though traditional
microphone array-based localization systems have been thor-
oughly studied in the literature [14], they usually only sample
the sound fields locally. This is typically done at a relatively
large distance from the sound source(s) [15] and precise time
synchronization is required [16]. In TUM, we adopt a two-way
tone exchange mechanism to obtain multiple pairs of distance
constraints instead of direct ranging. In addition, the tone
recording enables us to get rid of precise time synchronization
by utilizing Time Difference of Arrival(TDoA) in the local
clock. 2) How to deal with mobility tolerance. While most
existing acoustic localization systems are static [14], TUM
can accurately track the relative locations among a group of
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Fig. 1. TUM provides smart devices with the spatial awareness of nearby devices in 3D. (a) TUM enables an application of displaying globe jointly by three
devices. (b) Multi-device localization via acoustic ranging. (c) Illustration for two-way tone exchange mechanism.

devices even if they are continuously moving. The key here
is to analyze the error introduced by motion in/inter our tone
exchanges, and improves the localizability through a particle
filter constrained by distance constraints. 3) How to achieve
scalability? Since people often have multiple devices at their
immediate disposal and group interaction is common, TUM
aims to be scalable with ease. Thanks to our two-way tone
exchange protocol, additional device can be joined with no
extra acoustic transmission and little network overhead.

The key contributions of TUM are summarized as follows.

o We identify the opportunity of leveraging built-in mul-
tiple microphones/speakers in modern smart devices to
enable ubiquitous multi-device localization. We observe
the hardware availability in COTS devices, and the
relative distance constraint pairs provide the potential
for fine-grained relative localization. To the best of our
knowledge, this is the first work that provides ubiquitous
localization service among multi-devices in both static
and continuous mode on commodity smart devices.

e We propose TUM, a light-weight and highly accurate
acoustic localization scheme. It utilizes built-in dual mi-
crophones to perform static localization in a two-way tone
exchange manner while leveraging the inertial sensors
together with a particle filter to implement the continuous
localization. Such a scheme provides TUM with the fol-
lowing desired properties: 1) Instant implementation on
commodity device, TUM can be activated as a background
service on COTS devices without extra hardware; 2)
Mobility tolerant, users can feel free and are not aware of
the existence of TUM; 3) Fast, accurate, and scalable, it
takes the advantage of precise acoustic ranging technique
and streaming algorithms, guided by our two-way tone
exchange protocol, of which devices can be precisely
localized in real-time without quantity constraint.

o We have fully implemented 7UM on Android platform
and conducted extensive experiments in various scenar-
ios. Preliminary result shows that TUM localizes four
devices with less than 10cm mean error for both static
and continuous localization in real-time, with negligible
energy consumption and more than 5m operational range.

The rest of the paper clarifies each of the above contribu-
tions, beginning with related works, followed by the overview,
design, and implementation of TUM. Finally, evaluate the test
field performance and point out potential future work.

II. RELATED WORKS

Acoustic Localization. The ubiquity of built-in micro-
phones on smart devices makes acoustic signals a candidate for
accurate inter-device positioning without extra infrastructure.
BeepBeep [18] achieves highly accurate 1D ranging using
COTS mobile phones without the need for time synchroniza-
tion. In [15], the authors further extended BeepBeep for 3D
space utilizing twin-microphone on smartphones. However, it
is limited to determining the relative positions of two devices
only. It also assumes acoustic signals as plane waves to
function, thus requiring the two devices to locate far from
each other. Tracko [19] proposes ad-hoc mobile 3D tracking
using blue-tooth and inaudible signals. However, it requires
the equipment of stereo speakers, and no ease extension to
multiple devices. Some recent works explored acoustic-based
relative localization among multiple devices [1], [16], [17],
[20], yet under the assumption of static deployment. TUM
advances the state-of-the-art by realizing 3D acoustic-based
relative localization using COTS smart devices, and it supports
continuous tracking among a group of devices in real time.

Multi-Device Localization. Multi-device localization is a
critical primitive for cross-device interaction [2], device-to-
device communication [16] and human-computer interaction
[7]. Various techniques have been explored, including detect-
ing physical bumping of devices [10], gestures across devices
[2], form stacks of devices [9], viewing one device through
the viewpoint of another [11], graphical geometry [12], peer
acoustic ranging [20], and futuristic sensing of spatial positions
[13]. Camera-based solutions are generally believed as the
most promising [3], [7], but still need an extra camera or depth
camera. Conversely, we exploit the built-in dual microphones
and sensors already on smart devices and provide a light-
weight alternative for multi-device localization.

Sensor Fusion for Localization and Tracking. With the
widespread deployment of smart devices, there has been an in-
creasing research interest in inertial based dead-reckoning for
localization and tracking [21]. These built-in inertial sensors
on smart devices also offer an orthogonal dimension for wire-
less localization and tracking [22]. In this work, we propose
another effective fusion of sensors and acoustic signals for
accurate relative localization. TUM is built upon an accurate
device attitude estimation scheme [23] and a probabilistic
sensor fusion framework [24]. However, in TUM, device
mobility is restricted by a set of ranging constraints, of which
a particle filter implementation is proposed correspondingly.
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III. SYSTEM OVERVIEW

As shown in Figure 2, TUM first conducts an Initialization
operation among all participating devices, of which a Loose
Time Synchronization is performed by WiFi round trip time
and exchanging local clocks. After that, TUM elects two
devices with the closest local clocks as Working Devices
and the remaining devices are Monitoring Devices. Different
Designed Signals will be assigned to two working devices.
Then they perform Two-Way Tone Exchange by emitting and
receiving the corresponding sound clips, while monitoring
devices conduct Monitoring Tone Exchange. After Signal
Detection by auto-correlation and cross-correlation, working
devices are able to extract Distance Constraints and finish mu-
tual localization which considers both the Static Localization
and Continuous Localization. Meanwhile, monitoring devices
extract Speaker TDoA Cues from the detected signals, obtain
the Microphone TDoA Cues hinted at by the mutual localized
working devices, and finish the Multi-Device Localization.

IV. STATIC LOCALIZATION BETWEEN DEVICES

In this section, we derive the basic positioning mechanism
in 3D scenario, assuming that the two smart devices are static.

A. Two-Way Tone Exchange

During the localization, TUM executes a two-way tone
exchange scheme as illustrated in Figure lc. Without loss of
generality, we denote two working devices as Device 1 and
Device 2. They both have two microphones and one speaker,
and are able to communicate through WiFi or another protocol.
Mlustrated in Figure 3, Device 1 possesses microphone A, mi-
crophone B, and speaker M, while Device 2 owns microphone
C, microphone D, and speaker N. Device 1 sends an audio
Tone 1 from its microphone M at a time of its choosing,
tar. Device 1 and Device 2 both record the arrival of Tone 1
at their respective microphones at time ¢ 47, tBar, ton, and
tpa- At some arbitrary point of time, Device 2 emits an
audio Tone 2 from speaker N at time ¢, which is similarly
recorded by both devices at tan,tpn,ton, and tpy. Let dg y
denotes the distance between microphone z and speaker y, and

c represents the speed of sound. Typically, the sound speed can
be formulated in m/s by:

c = 331.3 + 0.606 * temperature (D

Since many devices have been equipped with temperature
sensors, it can be calibrated locally and we assume it is a
constant in the following derivation. As distance is equal to
the speed multiplied by time, according to Figure 1c and 3,

day = C(tAM —tM) dpy = C(tBJVI - tM)
:C(

doy = c(tem —tar) dpm tpnm —tar)
dpn = c(tpy —tN)
dpn = c(tpn — twN) )

However, the local clocks in Device 1 and Device 2 may
be unsynchronized. Therefore we cannot calculate the distance
from one device’s speaker to another device’s microphone
directly [18]. Even a small 10ms time bias may result in
an error of 3.4m. Instead, we jointly consider a pair of mic-
speaker distances d 4y and d¢ps in Figure 3:

dan = c(tan —tn)
don =c(ten — tn)

dy = dan+dcem
= cl(tan —tn) + (toem — )]
cl(tan —tam) + (tcm — ton)] €))

+c[(tam —tam) + (ten — tw)]
= cl(tan —tam)+ (tem —ten)) +dam +deon

Of which dap and don are the distances between micro-
phones and speakers on the same device, which is only
determined by hardware specification and we assume they are
known constants. As for t 4x —tapr and topr —ton, they can
be calculated by Device 1 and Device 2 independently. Since
we only utilize the time differences in the same local clock,
this enables TUM to get rid of precise time synchronization
between devices. Similarly, we are able to obtain the other
three pairs of mic-speaker distance pairs.

dy =dan+dpy,d3s =dpny +don,ds = dpn +dpy (4)
B. 3D Relative Localization

It is well-known that a rigid body in space has six degrees
of freedom, of which three components are translational and
the other three components are rotational (pitch «, yaw 3, and
roll 7). Thanks to the two-way tone exchange, TUM is able to
obtain distance constraints among four mic-speaker distance
pairs (i.e., d; ~ d4). However, we cannot solve the individual
edge length or mic-speaker distance pair directly. Instead, we
reduce three degrees of freedom according to the distance
constraints while handling the other three degrees of freedom
utilizing the newest work in estimating device’s attitude [23].
As illustrated in Figure 4 1 we are able estimate the device’s
attitude based on the MEMS gyroscope and other IMU sensors
commonly equipped on smart devices. It has been reported
that, the 90-percentile error of A% [23] is less than 10°, which
fulfils our need of reducing degrees of freedom in TUM.
Therefore, we assume («, 3,7) are known in the following
derivations. Typically, the vector transformation between two
devices can be formulated by,

—

vy = Ry ' Rot (3)

ncluded with the permission from authors in [23]
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Here Ri/R, is the rotation matrix form of device attitudes
(o, B,7) calculated by A® for Device 1 and 2, which follows
the same definition as Android’s library and maps a vector in
its own coordinates to Earth coordinates. v3 is an arbitrary
vector in Device 2 while v3 is its transformation in the
coordinates of Device 1.

If the attitude and hardware specification of a device is
known, then its position/orientation in 3D space is fixed if the
arbitrary point’s location is known, that is, the remaining three
degrees of freedom are restricted by a known point location.
Therefore, we transform the 3D relative localization into the
problem of solving the position of speaker (the point we
target). Without loss of generality, we analyze from the view
point of Device 1 (i.e, AABM is fixed in its own coordinate
system. Figure 3). Then we denote the position of speaker N
as a tuple (N, N,, N.), and the position of microphone C
and D in Device 1’s coordinate system can be determined by
their corresponding attitudes and hardware specifications. In
other words, (C;,Cy,C)/(Dy, Dy, D) can be represented
by a function where the variables are (N, N,,N.) and
(R1, R3) (denoted by f. and fy). Afterwards, we take the
coordinates of speaker N, microphone C, and microphone
D (all represented by N, Ny, and N;) into the above four
pairs of distance constraints (actually it is three independent
constraints). Finally, the 3D relative localization is transformed
into a problem of solving a system of three-variate quadratic
equations as follows,

Solve Ny, Ny, N,
Subject to
(Cy,Cy,C2) = fe(Nzy Ny, N.,Ri, Ry)
(DvayaDZ) = fd(Nx,Nysz,Rl,Rz)
di = dany+dcoum
d2 = dan+dpum
d3 = dpnN+dcom
dy = dpny+dpm (6)

Since we do have two devices positioned in the space, the
system of three-variate quadratic equations are always solv-
able. However, the system may have multiple solutions, such
as AC*D*N* in Figure 3 also satisfy the attitude and distance
constraints. To handle it, TUM utilizes mobility information
and extends into continuous localization.

V. CONTINUOUS LOCALIZATION BETWEEN DEVICES

In fact, users are very likely to move or change gesture
during the static localization. In this section, we discuss two

Fig. 4. Illustration of Device Attitude
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additional challenges needing to be tackled to cope with
continuous localization.

A. Motion during Tone Exchange

Without loss of generality, we analyze the motion during
one way tone exchange (i.e., assume the other device is fixed).
Since 3D movements can be decomposed into translational and
rotational movements, we deal with them separately.

1) Translation Error: As shown in Figure 6, a tone is
emitted from speaker N at time ¢ and reaches microphone B
at time ¢ . At the same time, microphone A is at the position
A in the figure. However, due to the translational motion, the
tone reaches microphone A at the position A* at time ¢4« .
According to TUM’s static localization mechanism, an error
A =da+Nn — dap is induced by the translation.

During the time [tpy, t o~ v], the sound transmits a distance
of da«n — dpy while device translates a distance of dga-«.
Here we assume that the sound speed c is much larger than
the translational movement speed v, that is, ¢ > v. Thus,
da<n —dpn > daa+ and =~ 0.

AZdA*N—dAN%dAA*-COSQ* (7)
of which the two elements can be calculated by,
v
daa- = E(dA*N —dpnN) (®)
d>. daa- +dap)? — d?
C()Sf9* — A*N + ( AA + 1413) BN (9)

2da«n - (daa- +daB)

2) Rotation Error: In Figure 7, similar to the above analy-
sis, a tone is emitted from speaker N at time ¢, and reaches
microphone B at time ¢ . Due to the rotational motion, the
tone reaches microphone A at the position A* at time ¢« .
Thus an error A = dan — d - is induced by the rotation.

During the time [tgn,ta+n], the sound travels a distance
of da«ny —dpn = c(ta~n —tpn). Suppose the device rotates
at an angular speed w. Thus ¢ = w(ta«ny — tpn). Here we
assume that the speed of microphone A is much slower than
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sound. Therefore dqa- ~ w‘“%(tA*N —tpN) = gbdATB. In
summary the rotation induced error can be calculated by,

—¢

A =dga- -cos(7T -0) (10)

B. Motion intervening Tone Exchanges

In TUM, we adopt a particle filter due to two reasons, one
is that multiple solutions may satisfy the constraints during
localization (review Figure 3); the other one is that TUM
may suffer from measurement errors and noise in practice
(which is common for COTS devices [23]). Therefore we use
a partial filter to account for such uncertainty, and remove the
ambiguity utilizing device motions. In other words, motion
tracking not only smooths the device localization, but also
increases its localizability.

1) Particle Filter Basis: Particle filters provide a sample-
based implementation of general Bayes filters [25]. Its key
idea is to represent posteriors over the state x; by set S; on
n weighted particles:

(1)

Here i is a sample of state at time ¢, and w! is its importance
weight. Particle filters apply the recursive Bayes filter update
to estimate posteriors over the state space, where the following
three steps are performed in each iteration:

1.Sampling: Predict particles’ new states by the state tran-
sition probability distribution given by the current state.

Sy ={<xl,wi>li=1,..,n}

Ty~ p(ﬂﬁt | CUtfl,Zt) (12)

Here, z; is the observation we obtain from sensors at time ¢.

2.Importance Sampling: For each particle, update its
importance weight according to the measurement likelihood
function given the new state:

wy =we—1 - L(2¢ | z4) (13)

3.Re-sampling: Draw with replacement for resampling the
population of particles according to their importance weight
distribution. In TUM, we keep the particle number a constant.

In TUM, we represent the state x; of a particle at time ¢
by a six-tuple z; = {p;, 0}, where p; = (as, b, ¢t) represents
the 3D coordinates of the device’s speaker and 6; = («a, 83, 7)
depicts the pitching, yawing, and rolling of the device. On
the other hand, we describe the observation z; from sensors
by a triple z; = {zit,297t7ZTUM7t}. Where 274 depicts the
distance vector the particle moved since the last sample, zg ;
depicts the device’s attitude estimation from MEMS measure-
ments [23], zpya,: is the information acquired by TUM'’s
localization module (In fact, it is a set of distance constraints
as introduced in static localization).

2) Particle Propagation: Whenever a new observation is
made, the filter samples a new state x; from the state transition
probability distribution given the last state ;1 and the current
observation z;. We rewrite the Equation 12 in our case as:

{ptvet} ~ P pt79t |pt7179t713'zq 729,t
d,t

= ppe | pe—1,27,) - P(0s | 20.4) (14)

The above derivation enables us to sample the particle dis-
placement and attitude from its measurement at separate steps.
More specifically, we adopt the solution of [24] to estimate

displacement change and the technique in [23] to infer the
device attitude. More specifically, all particles update their
states according to:

ar = at,1+|zczt+5zg’t\-dw’t
by = bt—1+|zd”,t+5zdft"dy,t
c = ct,1+|zczt+6zd~)t\-dz7t
0r = 2o+ 0204 = (0, BesVe) (15)

Where dg ¢+, dy+, and d, ; are projections of the unit distance
vector on three axes. 0z 7, and 0zp,+ are zero-mean Gaussian
noises on displacement and attitude estimation respectively.
We refer interested readers to [24] and [23] for more details.

3) Farticle Weight Adjustment: We further adjust the parti-
cle weights according to our tone exchange based localization.
To review TUM'’s localization scheme, we obtain four pairs of
distance sums for working devices (denoted by d; ~ d4) while
acquiring four pairs of distance differences for monitoring
devices (denoted by ds ~ dg). However, the current state of
a particle may not satisfy the distance constraints. Thus we
adjust their weights as follows,

L(z | x¢) ~ p(zrune | pe, 0r)

Working Device
Monitoring Device

(16)

1
~ { Adq +Ad2TAd3 +Ady
Ads+Adg+Ad7r+Adg

Where Ad; is the difference in length between the current
state and the expected constraints.

VI. MULTI-DEVICE LOCALIZATION

The most straightforward extension from two devices to
multiple devices is to perform our static localization scheme
between any pair of devices. However, the overall cost is in
polynomial growth with the number of devices. Differently,
here we argue that, the working process for multiple devices
can be the same as localization between two devices (Figure
2). That is, we elect two working devices to perform mutual
localization introduced in the previous section and the other
devices (monitoring devices) monitor the two-way tone ex-
change. After mutual localization between the two working de-
vices and broadcast their coordinates, monitoring devices can
localize itself by deriving the speaker and microphone TDoA
cues. Finally, monitoring devices broadcast their coordinates
(w.r.t. working devices) and finish multi-device localization.

A. Speaker TDoA Cues

Without loss of generality, we illustrate with Figure 5, of
which a monitoring device has microphones P and (), while
M and N are two working devices’ speakers. From the mon-
itoring device’s perspective, it will receive two tones as well
during the two-way tone exchange from two working devices.
Thus for microphone P and (), they will both physically
receive Tone 1 from speaker M at time tpps and tgas, and
Tone 2 from speaker N at time tpy and tgy. The TDoA
from the same speaker implies the distance differences from
the speaker to two microphones, as illustrated in Figure 5:

ds =
ds =

a7
(18)

dom —dpm = c(tom — tpm)
dgn —dpn = c(ton —tpN)
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Here we refer ds and dg as speaker TDoA cues. It should be
noted that, the distance between speaker M and NN is known
according to the static localization between working devices.

B. Microphone TDoA Cues

Similar to the previous analysis for a rigid body, the
monitoring device has six degrees of freedom as well and three
degrees can be reduced by the attitude estimation. However,
given the speaker TDoA cues and the distance between two
speakers, we have not yet been able to uniquely identify the
location of two speakers. In the above analysis, we utilize the
TDoAs from the same speaker to two different microphones.
Then we think reversely by considering the TDoAs from two
different speakers to the same microphone as follows,

d7 = dpm —dpy =c(tpy —tu) — c(tpy — tw)
= C(tpM—tpN)—C(tM—tN) (19)

More specifically, the time difference of tpy — tpas can be
obtained by the local clock of monitoring device while the
emission time difference ¢y — ¢), between two tones can be
calculated once the mutual localization between two working
devices have finished. Without loss of generality, we illustrate
with the local clock in Device 1 (Equation 2 and Figure 1c).

d d
tv—ta = GBN_‘éﬁ)_@AM_‘%%)
dpn — dam

(teny —tam) — (20)

Again we only utilize the time difference in the same local
clock and known distances, so the precise time synchronization
is unnecessary. Similarly, we are able to obtain another pair
of distance difference QM — QN,

dg = dQM — dQN = C(tQM — tM) — C(tQN — tN)
= cltom —ton) —cltm —tn) 1)

Here we refer d; and dg as microphone TDoA cues. Similar
to the analysis in static localization, we cannot solve the
individual distance directly. However, with the help of speaker
and microphone TDoA cues, we are now able to restrict the
remaining three degrees of freedom by a system of three-
variate quadratic equations (the same form as Equation 6), as
well as the extension to Multi-device continuous localization.

VII. IMPLEMENTATION

A. Loose Time Synchronization

The reasons for loose time synchronization are two-folds:
Feasibility, according to TUM’s tone exchange (Figure 1c)
and 3D localization scheme, we have no constraints on the

Fig. 10. 2D Elliptical Track

Fig. 11. 3D Circular Track

emission time of tones (i.e., t3; and t5). A loose time syn-
chronization allows sound signals to be overlapping and thus
reduce the latency. Essentiality, though we have handled errors
introduced by motion in/inter tone exchanges, an underlying
assumption is that the positions of devices do not overly
change. Therefore, TUM relies on loose time synchronization
to reduce the duration of tone exchange.

TUM follows the loose time synchronization scheme pro-
posed in [15]. Firstly, devices ping each other with the CSMA
back-off disabled to determine stack traversal plus WiFi round
trip time. Secondly, the device with the lowest id broadcasts
its local clock value to the other devices. Thirdly, devices
with higher id adjust their local clocks by the appropriate
offset minus estimated WiFi round trip time. It suffices to
synchronize clocks within 10 milliseconds [15].

B. Signal Design

To enable our two-way tone exchange simultaneously and
determine the TDoA information, we require a sound mod-
ulation that provides precise timing resolution, is robust to
multi-path fading, and is distinguishable from noise and other
signals. We choose tones modulated by Pulse Compression
following the techniques in [26]. A linear frequency modula-
tion is described by the following equation:

s(t) = sin(2m(f. + gt)t)
Here 0 < ¢ < 7 and 7 is the pulse duration, k is the rate
of frequency change, f. is the starting frequency and ¢ is the
time. During the experiments, we realized that speakers and
microphones on COTS devices are not ideal devices, as audio
signals are often distorted when sent and received (we argue
that inaudible signals are not yet practical [19]). Therefore,
we carefully design the signal base on the devices’ frequency
response, where the frequency spectrum is 2kHz ~ 8kHz,
and 7 = 40ms. We also add fade-in and fade-out components
to reduce audible artifacts, Figure 8 gives an illustration of the
designed tone signal. It should be noted that, different signals
can be modulated by adjusting Ratel and Rate2.

(22)

C. Signal Detection

Typically, a strict generalized cross-correlation algorithm
is required during signal detection, which is both a time
and energy consuming operation [16]. Besides that, not only
computation, but also communication may incur a significant
delay. To reduce the signal detection latency and energy
consumption, we adopt the solution proposed in [8], of
which a more sophisticated and multi-stage signal detection
algorithm is proposed. More specifically, it employs auto-
correlation to fundamentally reduce computational complexity
while preserving accuracy by targeting cross-correlation to a
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very narrow search window. Furthermore, a pipeline streaming
execution strategy is proposed, which enables computation and
communication to overlap. Differently in TUM, we take the
earliest peak instead of the highest peak to deal with multipath
effects. In our experimental implementation, TUM achieves a
sound ranging frequency of 3Hz on COTS devices, which
suffices in the need for real-time multi-device localization.

VIII. EXPERIMENTS
A. Experimental Setup

We prototyped TUM on four COTS devices, including
two Google Nexus 5 phones, one HTC M9 phone and one
Samsung Note 10.1 tablet. Each has at least two microphones,
one speaker, the required sensors (gyroscope, accelerator, and
magnetometer) and supports WiFi communication. Note that
although Android provides APIs to record stereo sound and
specify recording microphones, the functionalities may be
restricted by manufacturers. Therefore we root the unsupported
devices and modify the corresponding drivers (e.g., Google
Nexus 5). All devices sample the acoustic signal at a frequency
of 44.1kH z (supported by most COTS devices).

Without loss of generality, we define the localization error
as the averaged distance estimation bias of all pairs of devices,
Zm,nGDevices |dman - m,n|
12

Err(t) = (23)
where a?/m,n is the distance estimation between device m and
device n by TUM in device m’s local coordinates (More
specifically, we use the distance between speakers, that is, we
regard the speaker instead of the device as a mass point). The
ground truth distance between device m and n is dy, , and
we have 12 pairs of distance for four devices.

B. Micro Benchmarks

1) Static Localization Accuracy: Throughout the experi-
ments, we control the experimental variants by fixing the
locations and attitudes of three devices while manipulating a
moving device. Specifically, in static localization, we manipu-
late the device by a standard tripod as shown in Figure 9, and
the fixed devices’ locations and test locations can be checked
in Figure 12. We have 25 test locations in total, and conduct
10 trials in each of the test location. Specifically, we keep
the attitudes of three fixed devices Ni, Na, N3 by (—1,1,0),
(1,1,0), (1,—1,0), while maintaining the attitude of moving
device by (—1,—1,0). To precisely control the ground truth
attitude, we implemented an assist GUI on the devices that
displays the angular orientations of devices in real-time (Figure
9). We conducted two experiments with the above settings in
both indoor and outdoor scenarios. The indoor environment
consists of a 5.3m x 6m * 3.5m lab office, which is furnished

Outlier Number (of 10)

Indoor =2
Outdoor &

Localization Error (m)

120345678 9101112131415 1718192021 222324 25
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Test Locations

Fig. 14. Outlier Numbers Fig. 15. The Impact of Attitude

with desks, chairs, and bookshelves, and therefore is subject to
echo and multi-path effects. The outdoor scenario is an open
playground with common plastic cement floor.

The static localization results are shown in Figure 13. The
50-percentile errors for indoor and outdoor scenarios are 9cm
and 7cm, while the 90-percentile errors for both scenarios are
17c¢m and 15cm, respectively. We observe that TUM performs
better outdoors than indoors. It is because TUM suffers from
echo and multipath effects indoors, which is verified by the
following outlier detection.

2) Outlier Detection: In the static experiment above, we
observe some unacceptable large errors. The large errors are
mainly induced by three factors: 1) Low signal-to-noise ratio
(SNR). Both the designed signals and ambient sounds will be
recorded by the microphone. High noise level makes it difficult
to detect the arrival of the designed sound signals. 2) Multipath
effects. The direct path may be too severely attenuated to be
detected, leading to false detection of the arrival time of the
direct path. 3) Equation solving. Though the system of three-
variate quadratic equations are always solvable in theory, they
suffer from measurement error as well.

However, outliers can be easily identified by comparing the
device’s displacement change and position estimation update.
For example, we detect the device moves a distance of 10cm
since the last sample, while localization module reports a
position estimation that is 1.5m away from last estimation. It
is very likely that an outlier occurs in this case. Therefore, we
adopt a threshold-based outlier detection mechanism and ex-
clude them from the localization estimation. Figure 14 shows
the outliers of static localization in both indoor and outdoor
environments. As we can see, there are very few outliers in
most experiments. Specifically, 6.4% in indoor scenario and
3.2% in outdoor environment, which also suggests that TUM
performs better outdoors than indoors.

3) Impact of Device Attitude: In this experiment, we fixed
the position of the working device at test location 13 and the
other devices remain the same settings (Figure 12). We then
manipulate the working device at various azimuth (horizon-
tally) and elevation (vertically) angles by the tripod (Figure
9), where zero-value azimuth and elevation angles are defined
on the original attitude (—1, —1,0). We collected 10 trials at
each 15 degrees and summary the impact of device attitude
by their mean localization errors in Figure 15.

The results suggest three conclusions. 1) The attitude of
device does affect the localization result, because it may result
in different transmission link. 2) The impact of attitude is not
symmetrical. We assume it contributes to the unsymmetrical
design of device and the unsymmetrical indoor environment.
3) The impact of device attitude is trivial, since the maximum
mean localization error is still less than 15cm.
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TABLE I
OVERALL LATENCY DECOMPOSITION

Name Time Cost

Tone Exchange Round Trip 68ms

Signal Detection 228ms

TDoA and Distance Calculation < 1lms
Coordinates Exchange 4ms

Coordinates Transformation < lms

Outlier Detection < lms
Particle Filter Update 25ms

4) Continuous Localization Performance: During contin-
uous localization experiments, we fixed the positions and
attitudes of three devices similar to static localization (Figure
9), while manipulating the moving device by a battery-driven
toy train. Specifically, we run the continuous localization on
a 2D elliptical track (Figure 10, of size 31cm * 58cm, train
runs 5.9s/round) and a 3D Circular Track (Figure 11, of size
57cm * T7cm = Tem, train runs 10.8s/round). We acquire
the ground truth locations with the help of OpenCV. We
deployed two fixed cameras and the algorithm tracked the
black crossing on the device’s screen. We collected all sensory
data (e.g., sound clips, gyroscope, accelerator, magnetometer)
and surveillance videos produced during the localization for
ten rounds. Then we ran TUM with/without our particle filter,
and with different particle numbers.

Figure 16a and Figure 17a plot the estimated positions
with/without our particle filter in one round. As illustrated
in Figure 16b and Figure 17b, particle filter not only produces
smoother position estimation, but also significantly reduces
localization errors. Overall, TUM’s 50-percentile errors are
under 10cm on both 2D and 3D track, while the 90-percentile
errors are under 20cm on 2D track and 30cm on 3D track.
Thus TUM retains high accuracy even when devices are
in motion. We observe that the localization accuracy does
not improve much when the particle numbers are over 50.
Throughout the other evaluations, we set TUM’s particle
number to 200. We also observe that the sharp turns on 3D
tracks are the major factor for the performance difference
between two tracks.

C. System Overhead and Robustness

1) Overall Latency and Decomposition: We evaluate the
overall latency by simulating consecutive multi-device local-
izations. We record the elapsed time for each operation using
Android API, and average the time delays for 1000 such
procedures. The time cost statistics are summarized in Table
I. Two working devices exchange the tone signals, of which
signals may be overlapped, so it costs 68ms < 2 x 40ms.
The signal detection takes the majority of time cost (228ms),
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because it involves time-consuming cross-correlation algo-
rithm. The elapsed time for other calculations is trivial, e.g.,
TDoA and Distance Calculation, Coordinates Transformation,
Outlier Detection. And TUM spends a short amount of time
for Coordinates Exchange between devices (4ms) and Particle
Filter Update (25ms). Here we have to point out that the
above operations may not be conducted in pipeline, e.g., Signal
Detection is executed during Tone Exchange. In summary,
TUM achieves 3H z relative localization among four devices.

2) Energy Overhead: We evaluate the energy overhead of
TUM using the tools and methodology in [27]. We conduct the
experiments using the Samsung Note 10.1 tablet, and compare
the energy consumption in three scenarios: running nothing,
Static Localization, and Continuous Localization using TUM.
TUM conducts multi-device localization at 3Hz, and the
screen is active during the experiment to prevent entering the
hibernating mode. The power consumption for the first mode
is 560mW. Then we consecutively use TUM for 500 static
localization queries and 500 continuous localization queries,
which consumes 126 Joules and 130 Joules respectively, or
at the power of 755.8mW and 779.8mW. Therefore TUM
consumes about 195.8mW and 219.8mW additional power
in static mode and continuous mode, which is considerable
less than the average power when the screen is on (560mWW).
Furthermore, users only activate TUM when in need, we
believe it has little impact on a mobile device’s battery life.

3) Impact of Operational Range: Since sound attenuates
rapidly when transmitting in the air, our method is distance-
restricted. In order to evaluate the impact of operational range,
we test the position error as a function of distance between
two devices. As illustrated in Figure 18, we fix the location of
one device while manipulating the location and attitude of the
other device (face towards the fixed device), with both devices
emit tones at 50% of their largest volume. As we can see,
TUM performs well when the relative distance is small (e.g.,
negligible error when distance < 2m), while the increased
sensitivity when distance > 3.5m. Besides that, we observe
that TUM performs better when two devices are facing each
other, say, the error of x-axis is less than the error of y-axis.
We believe that 4 ~ 5m suffices the range of normal human
social interaction.

4) Impact of Blocks: Since TUM achieves multi-device
localization with the help of sound ranging, it may suffers from
blocks impeding sound transmission. We tested two different
types of blocking: One is a plank of size 2m * 0.03m * 1.5m,
which was deployed in the middle of three fixed devices
(Figure 12). The other is moving humans, we invited two
volunteers to wander around the lab during the experiments, so
the line-of-sight may be occasionally blocked. We conducted
the two experiments with the same setting as Static Localiza-
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tion, and the results for different test locations are shown in
Figure 19. As we can see, wide and solid blocks like plank
will significantly reduce TUM’s localization accuracy, since
the line-of-sight assumption is invalid. However, the precision
loss is acceptable when there are moving humans.

5) Impact of Background Noise: To evaluate the impact of
background noise, we test TUM under another two types of
sound. One is that we play music in the list of “Hot 100~
from billboard, which is denoted by Music in Figure 20. The
other is a sound recording from a construction site (denoted by
Noise), we play the record during the experiment. Both sounds
were played by a laptop, and the other experimental settings
were the same to Static Localization (Figure 12).As illustrated
in Figure 20, neither music nor construction noise degrades
much localization accuracy.Therefore TUM can distinguish the
designed signal from background noise.

IX. CONCLUSION

With the trend moving towards equipment of multi devices
in daily life, installation of multi-device applications, and
adoption of enhanced hardware in commodity devices, we
envision a widespread multi-device localization service. We
developed TUM, an acoustic-assist relative localization scheme
utilizing dual microphones and the built-in MEMS sensors on
COTS devices. The experiments using real data have shown
that TUM is able to relatively localize multiple devices in real-
time with less than 10cm mean localization error.
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