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ABSTRACT
In-air interaction acts as a key enabler for ambient intelligence
and augmented reality. As an increasing popular example, ex-
ergames, and the alike gesture recognition applications, have
attracted extensive research in designing accurate, pervasive
and low-cost user interfaces. Recent advances in wireless sens-
ing show promise for a ubiquitous gesture-based interaction
interface with Wi-Fi. In this work, we extract complete infor-
mation of motion-induced Doppler shifts with only commodity
Wi-Fi. The key insight is to harness antenna diversity to care-
fully eliminate random phase shifts while retaining relevant
Doppler shifts. We further correlate Doppler shifts with mo-
tion directions, and propose a light-weight pipeline to detect,
segment, and recognize motions without training. On this ba-
sis, we present WiDance, a Wi-Fi-based user interface, which
we utilize to design and prototype a contactless dance-pad
exergame. Experimental results in typical indoor environment
demonstrate a superior performance with an accuracy of 92%,
remarkably outperforming prior approaches.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User In-
terfacesInput devices and strategies; C.2.1. Computer-
Communication Networks: Network Architecture and De-
signWireless communication

Author Keywords
Motion Direction Recognition; Wireless Sensing;
Off-the-shelf Wi-Fi; Exergame

INTRODUCTION
Exergames, where players are compelled to get up and ex-
ercise (e.g., dance, kick-boxing, sports moves), bring more
than just fun [8, 15]. Researchers find that exergames can
improve the fitness, health and social involvement of players
[20, 27]. Due to their health benefits, various exergame inter-
faces have been developed in both the industries (e.g. Kinect
Sports and Wii Fit) and academia [7, 24]. Most interfaces for
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Figure 1. Human-computer interaction interface of WiDance

exergames are based on computer vision, dedicated sensors or
sonic technology. Despite their high accuracy in tracking mo-
tions of players, they suffer from limitations such as sensitivity
to lighting condition and line-of-sight condition, requirement
of device attachment and high-cost installation and instrumen-
tation. We argue that a more ubiquitous exergame interface
with fewer environment constraints is essential to fit in the
fragmented free time and space in modern life. For instance, a
white-collar worker may play a 5-min exergame in the office
to refresh. A housekeeper may take a quick workout during
the waiting time when preparing dishes in the kitchen.

The need for a low-cost, non-invasive, and ubiquitous user in-
terface has triggered extensive research on in-air human sens-
ing, especially using the almost-everywhere Wi-Fi infrastruc-
ture [4, 18, 31, 6, 28]. The main idea is to model and extract
motion induced variations on Wi-Fi signals to infer human
activities. In principle, it is possible to obtain all parameters of
incident signals, including amplitudes, phases, frequency shift-
s, and relate these parameters with human actions. Pioneer
works [4, 22, 12] extract accurate signal parameters to derive
motion-induced Doppler shift and time-of-flight, which are
used to estimate the speed and distance of motions. However,
they require specialized hardware because commodity Wi-Fi
devices suffer from random phase shifts caused by lack of
synchronization, limited frequency bandwidth and multipath
effect. Other works [31, 6, 28, 30] apply machine learning
to coarse-grained signal parameters available on commodity
Wi-Fi devices to infer user activities. Yet the training efforts



involved and the less interpretable features extracted make
them unfavorable as a robust and light-weight user gesture
interface.

This paper seeks to advance the state-of-the-art in wireless
interaction interfaces by accurately deriving motion-induced
Doppler shifts using Channel State Information (CSI) available
on unmodified Wi-Fi devices, and further extracting motion
directions for exergame designs. As a proof-of-concept, we
present WiDance, a dance-pad like exergame with commercial
Wi-Fi devices. As shown in Figure 1, it tracks the leg mov-
ing directions of players by monitoring the minute Doppler
shifts in the received CSI of Wi-Fi signals, and recognizes
the estimated directions as the ones shown on a screen. Tech-
nically, WiDance addresses two critical challenges. (1) How
to obtain full information of Doppler shifts from off-the-shelf
imperfect Wi-Fi devices? While some previous works [30]
have extracted Doppler-related features from commodity Wi-
Fi devices, they only extract the absolute values of Doppler
shifts without arithmetic signs, and thus fail to identify the
direction of motions. Instead, WiDance extracts accurate and
comprehensive Doppler shifts with direction information from
CSI by leveraging multiple antennas on commodity Wi-Fi
devices. The key insight is that while antennas at the same
receiver experience different channel distortions due to spatial
diversity, they suffer from the same noise sources. Therefore,
we propose a series of signal processing steps to properly ma-
nipulate signals from multiple antennas, making it possible
to eliminate random noises while retaining Doppler shifts of
interests. (2) How to detect, segment and recognize complex
player actions from Doppler shifts series? To robustly recog-
nize player motions without training, we first verify that single
link is insufficient for tracking player actions, and solve inher-
ent ambiguities with minimum cost by adopting one more link.
An effective light-weight model is proposed to relate Doppler
shifts observed from joint two wireless links with player ac-
tions, and a series of data processing steps are developed to
achieve robust detection, segmentation and finally recognition
of player actions.

We prototype WiDance with commodity Wi-Fi infrastructure
and evaluate its performance in various indoor environments.
Experimental results show that WiDance yields accuracies for
recognizing player actions of 92%. Compared with the state-
of-the-art, the Doppler shifts features obtained by WiDance
can differentiate all eight actions required by dancing games,
while those in existing approaches [30, 6] can only classify
actions into three coarse categories. The motion recognition
accuracy of WiDance is comparable to popular classifiers such
as HMM, even without training. We envision WiDance as a
promising step towards practical wireless human-computer
interaction interface, which underpins new insights for future
wireless sensing applications.

In summary, the main contributions are as follows:

• We design a novel algorithm to extract complete information
of motion-induced Doppler shifts (both absolute values and
signs) leveraging antenna diversity on commodity Wi-Fi
devices. As far as we are aware of, it is the first work that
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Figure 2. WiDance logic flow

obtains accurate arithmetic signs of Doppler shifts on Wi-Fi
infrastructure without modification.

• We model the relations between Doppler shifts with motion
directions, and develop a wireless interactive exergame,
i.e., a dance pad with eight types of inputs. It operates via
a light-weight yet effective signal processing pipeline to
detect, segment and recognize player actions from Doppler
shift series without prior training. In addition to interactive
exergames, the core techniques in WiDance are applicable in
various gesture recognition applications, including, but not
limited to, fall detection for the elderly, and gait recognition
for user identification.

• We implement WiDance on commodity Wi-Fi devices and
validate its effectiveness with various indoor settings. Exper-
imental results demonstrate that WiDance achieves recogni-
tion accuracy of 92%. By exploiting complete information
of Doppler shifts for motion recognition, WiDance out-
performs previous feature-based approaches, which fail to
derive the direction of motions.

The rest of the paper is organized as follows. We first pro-
vide the overview of WiDance, followed by the principles of
Doppler shifts extraction and player actions recognition. Then,
performance evaluation and user study of WiDance are pro-
vided. Finally, related works are reviewed and conclusion is
drawn.

WIDANCE OVERVIEW
WiDance is a passively interactive dancing pad-like exergame
using off-the-shelf Wi-Fi devices. Figure 2 shows the logic
process of WiDance. The game starts by selecting a piece of
music. For each note in the music, WiDance rhythmically dis-
plays an arrow of certain direction on the screen. The player
follows visual notes and moves his/her legs along the direction-
s indicated by the notes. WiDance continuously records and
processes CSI for recognizing the player reactions over the
whole gaming period. Each recognized reaction is compared
with the corresponding visual note, and the comparison result
is displayed on the screen and the reaction is scored.

The main technical challenge for WiDance is to promptly
and robustly recognize player reactions from noisy CSI da-
ta. Towards this goal, WiDance leverages the motion-induced
Doppler effect observed in CSI and propose a two-step reac-
tion recognition procedure. As shown in Figure 2, the first
step is to extract Doppler effect from CSI. It recovers a spec-
trogram of Doppler frequency shifts in presence of random
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Figure 3. Modeling Doppler effect in multipath scenarios.

phase offsets, burst noise and interferences using a series of
signal processing techniques including antenna selection, data
sanitization and time-frequency analysis. The second step is
to recognize player reactions from the spectrogram of Doppler
frequency shifts. The challenge for this step is to robustly
recognize each individual player reaction from continuous
Doppler frequency shifts that may consist of multiple reaction-
s. Operations adopted in this step include movement detection,
trace segmentation and motion classification. The output of
this step is reaction series recognized by WiDance.

DOPPLER EFFECT IN WI-FI
WiDance extracts Doppler effect from Wi-Fi signals to rec-
ognize dancing actions of players. This section provides the
technical preliminaries, fundamental model and practical is-
sues of identifying Doppler frequency shifts from noisy Wi-Fi
signals on commercial devices.

Doppler Effect
Doppler shift is the change in the frequency of a wave for
observers. It is caused by change in relative locations of
sources, observers and reflectors. In the context of contactless
sensing, both transmitters (sources) and receivers (observers)
are statically deployed, while target objects (reflectors) move
and alter the wireless transmission. As shown in Figure 3a,
when the target object moves towards the transmitter and the
receiver, the crests and troughs of the reflected signals arrive
at the receiver at a faster rate. Conversely, when an object
moves away from the receiver, the crests and troughs arrive
at a slower rate. In general, for a point object, the Doppler
frequency shift of the signal reflected off the object is:

fD =− 1

λ
d

dt
d(t), (1)

where λ is the wavelength of the signal and d(t) is the length
of the reflected path.

As an illustrative example, we prototype a wireless transceiver
system using two USRPs synchronized by an external clock.
The two USRPs are placed together near the ground, and a
participant strides with his right leg at moderate rate, at the
direction orthogonal to the link, as in Figure 3a. The Doppler
effect caused by striding is obtained by tracking the phase
of the received signal. Figure 3b shows the spectrogram of

Doppler effect of striding. Clearly, positive Doppler shifts
appear as the user strides towards the link, while negative
Doppler shifts appear as the user strides away from the link.
Thus, it is possible to track target motion (both speed and
direction) by exploiting Doppler effect.

Doppler Effect in CSI
In reality, instead of single path as the reflected path in Fig-
ure 3a, there are multiple paths where signal propagates from
the transmitter to the receiver. The phenomenon is known as
multipath. As a result, the response of the wireless channel at
frequency f and time t is the superimposition of responses of
each individual path [21]:

H( f , t) =
K

∑
k=1

αk(t)e− j2π f τk(t), (2)

where K is the total number of multipath, and αk(t) and τk(t)
are the complex attenuation factor and time of flight for the
k-th path, respectively.

For the k-th path, the time of flight τk(t) is the time for light to
travel at a distance of path length of dk(t), i.e. dk(t) = cτk(t),
where c is the speed of light. Thus, according to Equation 1,
the channel response can be represented by Doppler frequency
shift on each path and further divided into two categories:

H( f , t) = Hs( f )+ ∑
k∈Pd

αk(t)e
j2π

∫ t
−∞ fDk (u)du, (3)

where Hs( f ) is the sum of responses of all static path ( fD = 0),
and Pd is the set of dynamic path ( fD � 0).

Assuming that αk(t) and fDk(t) are nearly constant during
short time interval, Doppler frequency shifts can be obtained
from spectrogram with time-frequency analysis:

H ( f , t)≈ Hs( f )+ ∑
k∈Pd

αk(t)B( fDk(t)), (4)

where B(·) is the window function for cutting out the signal
segment of interest.

CSI is the sampled version of the channel response in Equa-
tion 2 and 3. It is available from upper layers on off-the-shelf
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Figure 4. Extraction of Doppler frequency shifts from CSI of multiple antennas

Wi-Fi Network Interface Cards with only slight driver modifi-
cation [9]. However, lack of synchronization between Wi-Fi
NICs induces unknown phase shifts in raw CSI:

Ĥ( f , t) = H( f , t)e− j2π(Δt f+Δ f t), (5)

where 2π(Δ f t+Δt f ) is phase shift caused by carrier frequency
and timing offset. Therefore, it is infeasible to directly extract
Doppler components from actual CSI measurements.

Prior works [30, 6] eliminates phase noises by calculating
CSI power, i.e. |Ĥ( f , t)|2 = |H( f , t)|2. However, this process
meanwhile eliminates the imagery part of CSI, and thus loses
the information of signs of Doppler shifts. That is, with only
CSI power, we have no idea whether reflectors moves towards
or away from the link. As a result, CSI power can only be used
to recognize what target does (e.g. activity types), but not how
target does (e.g. activity directions), through an upper-layer
learning-based framework.

Doppler Effect by Multiple Antennas
To remove unknown phase shifts while still retain complete
Doppler frequency shifts, WiDance uses multiple antennas
available on Wi-Fi NICs. Since all antennas on the same
NIC experience the same phase shifts, calculating conjugate
multiplication of CSI of one pair of antennas also eliminates
the phase offset. Specifically, denote the CSI of the i-the

antenna as H(i)( f , t), we have the following product:

H(1)( f , t)H(2)( f , t)∗ ≈ H(1)
s ( f )H(2)

s ( f )∗

+ ∑
k∈P(1)

d

α(1)
k (t)H(2)

s ( f )∗e j2π
∫ t
−∞ f (1)Dk

(u)du

+ ∑
k∈P(2)

d

H(1)
s ( f )α(2)

k (t)∗e− j2π
∫ t
−∞ f (2)Dk

(u)du

+ ∑
k∈P(1)

d ,l∈p(2)d

α(1)
k (t)α(2)

l (t)∗e j2π
∫ t
−∞ f (1)Dk

(u)− f (2)Dl
(u)du

.

(6)

As in Figure 3c, by closely placing antennas A1 and A2 of
the receiver (e.g., 2 f ≤ λ ), CSI of two antennas may contain

the same major multipaths (i.e., P(1)
d = P(2)

d ) with different
complex attenuation factors but similar Doppler shifts. Then
the terms in Equation 6 can be divided into three categories:

Static terms. The static term H(1)
s ( f )H(2)

s ( f )∗ are calculated
by multiplication of static responses (e.g., LOS) of two an-
tennas. This term does not contain Doppler shifts and can be
filtered out with a high-pass filter.

Target terms. Target terms are calculated by multiplication of
static responses of one antenna and responses that contain tar-
get Doppler shifts of the other antenna. They contain Doppler
shifts of interest and their arithmetic opposite numbers. A suf-
ficient condition for extracting Doppler shifts instead of their
opposite numbers is that terms containing Doppler shifts have
larger amplitudes. Specifically, for the k-th path, following
condition should be fulfilled:

|H
(1)
s ( f )

α(1)
k (t)

|< |H
(2)
s ( f )

α(2)
k (t)

|. (7)

Although it is unable to separate static and dynamic responses
from CSI and directly verify the condition, there still exist
some clues in CSI, which can guide us to obtain multiplica-
tion results that satisfy the condition. Note that the issues of
antenna selection will be discussed later in this section.

Cross terms. Cross terms are products of dynamic responses
of antennas. They only contain difference of Doppler shifts
and may obfuscate real Doppler shifts. Fortunately, the static
responses indoors are likely to dominate dynamic responses,
due to strong LOS signals or large static reflectors like walls.
As a result, the cross terms are orders weaker than target terms.
Furthermore, in WiDance, only one player moves his legs in
the monitor area at any time. And the difference of Doppler
shifts caused by different body parts are usually small, and can
be filtered out with high-pass filter. Thus, the negative effect
of cross terms can be tolerated.

Extraction of Doppler Effect
To convert noisy CSI to spectrogram of Doppler frequency
shifts, WiDance introduces a series of processing steps.

Antenna Selection. Recall that to correctly extract Doppler
frequency shift, the condition in Equation 7 should be satisfied.
Thus, we should properly select pairs of antennas and assign
the order of antennas in conjugated multiplication. Despite of
the mixture of static and dynamic responses, CSI itself reveals
some clues that help verify the condition.

Observation I: CSI with higher amplitude is likely to possess
larger static responses. This is because the amplitude of
static responses are orders of magnitude larger than that of
dynamic responses, due to existence of strong LOS signals
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and larger static reflectors like walls. Consequently, even if
slightly disturbed by dynamic responses, the averaged CSI can
be used to approximate the static response in Equation 7.

Observation II: CSI with higher variance is likely to possess
larger dynamic responses. This is because only dynamic
responses contributes to variation of CSI. As a result, the
standard deviation of CSI can be used to indicate the dynamic
responses in Equation 7.

Figure 4a illustrates the criterion for selection of pair of an-
tennas. The boxes show distributions of CSI of different
antennas and across subcarriers over time. In this example,
the 2nd antenna has the largest variances with relative small
amplitudes, while the 3rd antenna has the largest amplitudes
with relative small variances. By comparing the ratio of ampli-
tudes and standard deviations of CSI, the 3rd and 2nd antennas
are orderly selected.

Data Sanitization. As noted in Equation 6, raw CSI contains
significant static components, low-frequency interferences and
burst noises, which obfuscate Doppler shifts of interest. Thus,
it is natural to remove these signal components with filters.
Specifically, we adopt Butterworth bandpass filter for its flat
amplitude response in the pass band, and apply the filter to the
multiplication series of each CSI subcarrier. The upper and
lower cutoff frequencies of Butterworth filter are set to 40Hz
and 2Hz respectively. The upper cutoff frequency is decided
by the experimental observation that normal human striding
velocities are no more than vm =1m/s. For Wi-Fi devices work-
ing at 5.8GHz, the upper bound of Doppler frequency of PLCR

is f = 2vm
λ ≈ 2×1m/s

0.05m = 40Hz. The lower cutoff frequency is
decided by trade-off between fully eliminating interference
and loss of low-frequency components of Doppler effect. How-
ever, such loss has minor impact on WiDance, since WiDance
can still leverage high-frequency components that are more
stable against burst noises for motion recognition.

Figure 4b and 4c show the amplitude and phase of CSI se-
ries before and after filtering. Clearly, burst noises and low-
frequency interferences are removed. Moreover, the cyclic
phase changes that correspond to the target Doppler shifts at
time 1 and 1.5 second are signified.

Time-frequency analysis. To further denoise and compress
CSI data for time-frequency analysis, we perform Principle

Component Analysis (PCA) on all CSI subcarriers and select
the first principle component that contains major and consisten-
t power variations caused by target motions. Then, short-term
Fourier transform (STFT) is applied to the first principle com-
ponent to obtain the spectrogram of Doppler frequency shifts.
Specifically, a Gaussian window with length shorter than 0.15s
is applied in STFT to meet the assumption of nearly constant
amplitudes and Doppler shifts in Equation 4. A zero padding is
further applied in order to generate finer-grained spectrogram.
Finally, the non-overlapping spectrograms of all CSI segments
are spliced together to generate the whole spectrogram.

Note that there is lower bound on range of actions that can
be detected by WiDance, due to the well-known uncertainty
principle. Specifically, suppose the time length of the data
window of STFT is T , then the frequency resolution of the

spectrum is Δ f =
1
T . To correctly identify the signal of the

frequency shift, the amplitude of the frequency shift must
fall into the non-DC bins, which correspond to a minimum

frequency of 2
T . For a signal segment with constant frequency

shift, the frequency shift should fulfil F = V
λ ≥ 2

T , where V is

the change rate of the reflecting signal path and λ is the wave
length of the signal. Thus the sensitivity of action range R is:

R >
1

2
V T ≥ λ (8)

In reality, the sensitivity of WiDance is worse than the theoreti-
cal bound due to complex stride actions including acceleration
and deceleration and existence of environmental noises.

Figure 4d illustrates the spectrogram of Doppler shifts induced
by striding (first towards and then away from the link), from
noisy CSI provided by commercial Wi-Fi NIC. Though fluc-
tuating, the spectrogram clearly reflects the trend of signed
Doppler effect (first positive and then negative), which we use
to recognize the reaction performed by the player.

MOTION RECOGNITION
This section details the principles and practical issues to rec-
ognize player reactions from spectrogram of Doppler shifts.

Player Reaction in Doppler Effect
We first derive the relation between movements of reflector
(player) and Doppler shifts. As shown in Figure 5a, given
constant length of the reflecting path, the reflector is on an
ellipse with the transceivers as focuses. Based on the impact
on the ellipse, the velocity of the reflector can be divided
into the tangential velocity along the tangent and the radial
velocity along the norm. Specifically, the tangential velocity
guides the target moving along the ellipse while the radial
velocity drives the target moving off the ellipse. Evidently,
the radial velocity is the only cause of change in the length
of the reflected path, and thus the Doppler frequency shift.
That is, if the reflector moves along various directions with the
same speed, the link will experience different changes in the
length of the reflected path, according to the radial velocities
projected on the norm direction. As a result, it is possible to
obtain the moving direction of the reflector with the level of
radial velocity derived from Doppler effect.
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Figure 6. Motion recognition process from Doppler shifts

However, it is insufficient to use one link to estimate the mov-
ing direction for the following two reasons. First, the distri-
bution of radial velocity is symmetric about the norm. So it
is unable to distinguish any two symmetric directions using
Doppler effect of a single link only. Second, recognition using
a single link assumes that the player performs reactions at
constant speed to consistently map the level of radial velocity
to moving direction. However, such assumption will not hold
in practice due to diverse actions performed by players.

To address the above challenges, we propose a recognition
scheme to solve the symmetric ambiguities with minimum
cost by adding one additional link. As shown in Figure 5b,
two links are placed orthogonal with each other. As the player
stands at the intersection of midnormals of the two link, for any
direction where the player reacts, the velocity can be projected
on the 2D V1 −V2 plane, where Vi is the speed of the radial
velocity for the i-th link. Even if the player performs reactions
at various speeds, the moving direction is reserved by radial
velocities of the two orthogonal links, making it possible to
recognize player reactions.

Motion Recognition Workflow
Figure 6 shows an illustrative process of motion recognition in
WiDance. In this example, a player stands at the intersection
of midnormals of the two link, facing towards the transmitter.
The player first halts for 1s, then moves the leg in left-rear
direction within 2s, and halts again for another 2s. Next, the
player moves forward, continuously followed by two left-front
movements, which takes 6s in total. Finally, the player halts
for 1s. The corresponding spectrogram is shown in Figure 6a.

Movement Detection. During the game, the player may oc-
casionally halt, due to e.g. long waiting intervals between
successive visual action notes (arrow) or tiredness. Periods
during which the player halts do not contain valid actions,
and should be skipped for efficiency. Thus, it is necessary to
perform movement detection before motion recognition.

WiDance conducts movement detection based on the follow-
ing intuition. When a player is static, no Doppler effect will
be observed and the spectrogram contains only noises. As
a result, the power of spectrogram spreads out across the w-
hole frequency band. In contrast, when a player moves, the
spectrogram is dominated by Doppler effect, and the pow-
er of spectrogram concentrates on the frequency of interest.
Therefore, WiDance calculates and smooths variances of pow-
er distribution in frequency domain for movement detection.
Note that only the filter of CSI sanitization affects the variance,

as the filter decides to which extent the out-of-band compo-
nents are filtered out. Therefore, regarding a fixed filter, it is
feasible to use a predefined threshold. Player movement is
detected when the variance falls below the threshold, as shown
in Figure 6b.

Trace Segmentation. During an exergame, a player may
frequently perform continuous actions, as in Figure 6. Thus,
it is necessary for WiDance to correctly segment them into
individual ones for recognition.

WiDance leverages the characteristics of action patterns per-
formed by players. Specifically, for each action, the player
first stretches one of his/her legs in some direction, and then
retracts the leg back to stand. As a result, the player action
causes a pair of peaks or valleys in Doppler frequency shifts
with significantly different amplitudes, depending on the play-
er’s moving direction, as illustrated in Figure 6c. For each
action, by orthogonally placing two links, at least one link
experiences large fluctuations no matter at which direction the
player moves. Thus, WiDance computes the average sum of
absolute values of Doppler frequency shifts of the two links,
and detects the prominent peaks. Then two adjacent peak-
s are grouped as the spectrum of one complete action. An
illustrative segmentation result is shown in Figure 6c.

Motion Classification. Finally, WiDance applies the recog-
nition model in Figure 5b to Doppler frequency segments to
identify the corresponding actions. As Doppler frequency
shifts vary even within one segment, due to acceleration and
deceleration of human motions, simply estimating moving
direction corresponding to each time sample may suffer from
significant noises. Hence we propose a two-level rule-based
classification scheme, which comprehensively takes advantage
of all data available within the Doppler frequency segments.

In the first step, WiDance classifies movement directions based
on the ratio of accumulative absolute values of Doppler fre-
quency shifts of two links, as shown in Figure 6d. For clarity,
we represent the ratio with its arctangent value, which range
in [0,90°]. Clearly, the movement directions can be classi-
fied into three coarse categories: LR/RF, front/right/rear/left,
LF/RR. The theoretical ratios of three categories are 0°, 45°
and 90°, respectively. However, due to noises and variations
of player positions, non-zero Doppler frequency shifts can still
be observed even if the player moves in parallel with the link,
which leads to practical ratios slightly larger than 0° for LR/RF
category, and smaller than 90° for LF/RR category. Thus, we
slightly adjust the thresholds to 30° and 60°, respectively.
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In the second step, WiDance further differentiates movement
directions in each coarse categories, based on the order of
appearances of the positive and negative Doppler frequency
shifts in the segment. Specifically, for any link, if the positive
Doppler shift firstly appears, the player stretches his leg to-
wards the link. In contrast, if the negative Doppler shift firstly
appears, the player stretches his leg away from the link. Thus,
the directions in each coarse directions can be further classi-
fied with the knowledge of whether the player stretches his leg
towards or away from the two links. With the two-step scheme
above, the movement directions of actions can be identified.

EVALUATION
This section presents the experimental settings and the detailed
performance of WiDance.

Experiment Methodology
Evaluation Setup. WiDance consists of one transmitter
and two receivers equipped with wireless cards. As shown
in Figure 7a, three ThinkPad T-series laptops equipped with
Intel 5300 wireless NICs are used to establish orthogonal links.
For easier deployment, we connect the devices with external
antennas. Specifically, the transmitter has one antenna, and
each receiver has three antennas. The links are set up to work
on Channel 165 at 5.825GHz. CSI are collected with modified
network driver [9], and then passed to processing computer
via TCP/IP protocol. The processing computer uses a Intel i7-
5600U 2.6GHz CPU, and processes CSI data using MATLAB.
The antennas of each receiver are placed loosely in a line, with
a spacing distance of about one wavelength (5.2cm). And
the packet transmission rate is set to 1024Hz, which is later
decimated for study of the impact of sampling rates. The
transmission power are set to 15dBm by default.

All experiments are conducted in rooms in academic buildings,
where experimental areas are surrounded with desks, chairs
and other equipments. Players are asked to stand at the in-
tersection of midnormals of the two links, facing towards the
transmitter. To interact with players, we write a program that
randomly displays visual notes on the screen, guiding players
to perform dancing actions. An action of rear stride is illustrat-
ed in Figure 7b. To make sure that players concentrate on the
experiment, no music is incorporated in the current version.

To fully understand the variations in user diversity, we recruit
30 participants and ask them to play dancing games with WiD-
ance. For preparation, we demonstrate the usage of WiDance.
Then, participants are asked to individually practice dancing.
During experiment, each participant is asked to play 2-minute
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dancing game for 4 times. Games are played in turns to ensure
that participants get enough rest before each game. All partici-
pants are rewarded after the experiment. The total experiment
lasts totally for 2 days and 8 hours each day, and over 10,000
actions are recorded during the experiment.

Baselines. To fairly demonstrate the performance of WiDance,
we implement WiDance and two learning-based schemes,
HMM-WiDance and CARM [30], for comparison. On one
hand, HMM-WiDance uses Doppler frequency shifts as WiD-
ance does, yet trains HMM for all eight actions. We compare
WiDance with HMM-WiDance to evaluate the non-learning
recognition scheme. On the other hand, CARM uses only ab-
solute values of Doppler frequency shifts that is obtained from
CSI power, and trains HMMs using this truncated features.
We compare WiDance with CARM to evaluate the extraction
of Doppler frequency shifts. The HMMs implemented in both
schemes are similar to those in [30].

Performance
Overall performance. Taking all parameters into consider-
ation, WiDance yields an overall accuracy of 92%. As the
confusion matrix in Figure 8a shows, WiDance achieves con-
sistently high recognition accuracy for all actions.

Yet, there still exist errors for some directions. Based on the
root causes, we divide errors into two categories: errors be-
tween adjacent directions and errors between non-adjacent
errors. Recall that WiDance recognizes actions with two cri-
terions: the amplitude ratio of Doppler shifts and the appear-
ance order of positive and negative Doppler shifts. As shown
in Figure 10a, errors in Doppler ratios make WiDance confuse
actions with adjacent directions, while in Figure 10b, errors in
moving directions make WiDance confuse actions with non-
adjacent directions. Most errors come from misclassification
between actions with adjacent directions. For example, about
10.6%, 10.2% and 8.7% actions with right-front, right-rear
and left directions are misclassified to their adjacent direction-
s: right, rear and left-rear, respectively. In contrast, errors
in moving directions only cause negligible errors, which is
about only 0.52% for actions with left direction and 0.14%
for actions with front and right direction. The result demon-
strates that the condition in Equation 7 can be almost always
fulfilled to correctly recognize the true Doppler shifts. Also,
it means that compared with signs of Doppler shifts, ampli-
tudes of Doppler shifts is more difficult to estimate, due to
environmental noises.
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Figure 8. Confusion matrices of various methods.
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Further, the confusion matrix reveals that WiDance statistical-
ly outperforms in straight directions (front, right, rear, left)
than in oblique directions (right-front, right-rear, left-rear, left
front). Note that the oblique directions are parallel with one
of two links. For simplicity of modelling, WiDance assumes
that movement in parallel with the link causes zero Doppler
shifts to signals of that link. However, such assumption holds
only when the player moves strictly at the intersection of mid-
normals of two links. In reality, as the player strides within a
small range, the link may experience significant Doppler shifts
even if the player moves in parallel with the link, which may
lead to errors in Doppler amplitude ratios and thus incorrect
recognition outputs. Such issues can be solved by further mod-
elling positions of legs, in addition to movement directions in
current model, which we leave for future work.

Performance of recognition scheme. To evaluate the perfor-
mance of non-learning recognition scheme implemented in
WiDance, we compare WiDance with HMM-WiDance, which
applies Doppler shifts feature to HMM for modelling of eight
actions. By carefully tuning the HMM parameters, HMM-
WiDance merely achieves an accuracy of 95%, which is s-
lightly higher than that of WiDance. Thus, we claim that the
non-learning recognition scheme can achieve high accuracy
comparable with the complex learning method.

Different from WiDance which exhibits slightly different per-
formance for different directions, HMM-WiDance achieve
mild accuracy for all directions. The accuracies of oblique
directions and straight directions achieved by HMM-WiDance
are comparable. As trained with real samples, HMM-WiDance
is able to differentiate directions at global scale, while mod-
eling small deviations at local scale. Specifically, the fluctua-
tions of Doppler shifts when the player moves in parallel with
the link are successfully modelled by HMM. However, HMM-
WiDance suffers from the common over-fitting problem. For
example, the accuracy of actions with rear direction decreases
when applying HMM-WiDance instead of WiDance.

Performance of extraction scheme. To demonstrate the
uniqueness and evaluate the performance of extraction of
Doppler frequency shifts in WiDance, we compare WiDance
with CARM. Note that we can omit the impact of difference
of recognition methods used by WiDance and CARM, as these
methods have comparable performance, as indicated by the
comparison between WiDance and HMM-WiDance above.

Figure 8c shows the confusion matrix for CARM. CARM
fails to recognize actions in several directions, and achieves

only 60% accuracy even after carefully tuning the HMM pa-
rameters. This is because CARM is based on CSI power and
only obtains the absolute values of Doppler shifts, due to loss
of imagery part of the signal. Theoretically, if we just use
absolute values of Doppler shifts in the non-learning recogni-
tion scheme, then only Doppler ratio can be calculated. As a
result, only the first step in non-learning recognition scheme
can be carried out, and actions can be classified into three
coarse categories: LR/RF, front/right/rear/left, LF/RR. How-
ever, there is no more clue to differentiate actions in each
category. Clearly, some directions are more confused with di-
rections in the same category, besides the large adjacent errors.
For example, the right direction is statistically more confused
with the front, rear and left direction, and the left-front direc-
tion is more confused with the right-rear direction. However,
in practice, directions in the same coarse categories are not
totally confused by CARM. For all directions, most actions
can be correctly classified by CARM. It is because the actions
involve movements of whole body rather than only feet and
legs, which can be incomprehensively captured by learning
method used in CARM to correctly recognize the majority
of actions. However, even with these features cannot CARM
fully outline the moving directions of actions, which leads to
low recognition accuracy.

Performance of compound gestures. Currently, we choose
9 motion directions as the gesture set to fit the dance game.
A natural way to scale the gesture set to enable more HCI
applications is to construct compound gestures from the 9
motion directions as primitives, e.g. double-left, front-right.
Figure 9 shows the performance of WiDance in recognizing
compound gestures that composes two primitive actions. WiD-
ance achieves an overall accuracy of 85%, which is slightly
lower than that of recognizing primitive actions. And the ac-
curacy of recognizing compound gestures ranges from 71.4%
to 100%. Such diversity in accuracy shows the bias of gesture
recognition of WiDance. As a result, it is better for real users
to conduct pre-training operations to select gestures with high
recognition accuracy for practical use. For example, as shown
in Figure 9, 33 out of 64 gestures have recognition accura-
cy higher than 85%, which can be selected to form a larger
gesture set than that of 9 primitive actions.

Parameter Study
Impact of user diversity. To evaluate the robustness of WiD-
ance for various users, we recruit 30 participants (17 males,
13 females) to test WiDance. Figure 12 shows the statistics
of participants. The participants have various heights, weight-
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s and somatotype, as indicated by Body Mass Index (BMI).
Note that the participants also have different levels of body
coordination and familiarity with dancing games. Figure 12
shows the performance of WiDance with different participants.
WiDance recognizes actions of all participants with accuracy
higher than 85%, without any beforehand per-person learning.
However, the result shows no clear correlation between user
types and performance of WiDance, the further study of which
is leaved as future work.

Impact of action range. We evaluate the sensitivity of WiD-
ance by asking participants to perform actions with various
ranges from 0.3m to 0.9m. Note that a range of 0.3m is com-
parable to the working range of dancing mats, and a range of
0.9m is almost the extreme range that participants can achieve
with the limit of both leg length and note interval length. As
shown in Figure 13, WiDance maintains consistent high accu-
racy of 92% when the action range is larger than 0.6m, and
slightly degrades to 86% when the range decreases to 0.5m.
However, with further decreasing of action range, the accuracy
dramatically decreases. It is consistent with the analysis that
smaller action ranges leads to shorter actions time and smaller
action speed, making it harder to extract Doppler frequency
shifts from spectrogram.

Impact of note interval. In real dancing exergames, visual
notes appear with various intervals. To evaluate the perfor-
mance of WiDance with different note intervals, we conduct
experiments with intervals from 1s to 3s. Note that most
novices need repetitive practices to catch up with notes with
interval less than 2s. For notes with about 1s interval, users
have to perform actions promptly in natural amplitudes with-
out stop to catch up with the notes. As shown in Figure 14,
WiDance achieves the highest accuracy of 97% with an inter-
val of 1.5s. When the note interval is set to 1s, the accuracy
sharply decreases to 84%. The reason is that the interval is too
short for players to complete each individual action. Instead,
they struggle to catch up with the fast visual notes, and stride
with their bodies in an uncontrolled way, which interferes the
Doppler frequency shifts of interest. Conversely, when the

time interval is longer than 1.5s, the accuracy slightly decreas-
es to about 92%. It is because with a larger interval, players
are able to slowly stride during the interval, causing a smaller
Doppler frequency shifts that may be interfered with noises.

Impact of area size. We evaluate WiDance in monitoring
areas with sizes of 2m×2m, 3m×3m, 4m×4m. Figure 15
plots the performance of WiDance. As shown, even with an
area of as large as 16m2, WiDance still achieves an accuracy
of 90%. While the size of existing dancing pads is only about
1m×1m, WiDance enables a large exercising area for players.
Players can perform macro actions in the area, which is more
helpful for their fitness and health.

Impact of transmission rates. As WiDance requires packets
transmission for sensing actions, which may occupy channels
and interfere normal communication links, we evaluate the
performance of WiDance with different transmission rates. Ini-
tially, we set the transmission rate to 1024Hz and decimate
the CSI series to 512, 256, 128Hz. As shown in Figure 16,
with decreasing of transmission rate, the performance of WiD-
ance slightly degrades, as the high-frequency noises aliases
with Doppler frequency of interest. However, WiDance still
achieves acceptable performance at the transmission rate of
256Hz. Since only the CSIs of packets are used, WiDance can
transmit even short packets (e.g. RTS/CTS) to further reduce
the impact on the normal communication channel.

A side effect of using lower transmission rate is reduction of
processing time cost. Figure 17 plots the per-second computa-
tion cost of each step in WiDance. As shown, the major time
cost comes from generating spectrogram in the step of time-
frequency analysis. By reducing the transmission rate by half,
the data amount and thus the processing time reduce by half.
With a practical transmission rate of 256Hz, the processing
time for a single action is only 25ms, thus enabling real-time
processing and reaction of WiDance.

LIMITATIONS AND DISCUSSION
Multiple moving objects. Targeting single-player dancing,
WiDance is unfortunately vulnerable to movements nearby,



since reflections from both dancer and intruder are superim-
posed at receiver. WiTrack [2] enables multiple human track-
ing by successive silhouette cancellation using FMCW signals.
However, it relies on separation of distance and azimuth of
multiple objects, which is not feasible for WiDance, in that the
Doppler shift of the dancer is obfuscated by the similar shift
of the intruder. Enabling recognition of multiple objects still
remains an open and challenging problem in future.

Dependency on particular hardware cards. CSI is formu-
lated in 802.11 standards for OFDM and MIMO operations.
However, accessing CSI is limited to certain NICs with modi-
fied drivers (e.g. Intel 5300). An alternative to reduce specific
devices is to configure a Wi-Fi device with Intel 5300 NIC as a
hotspot and send ICMP packets to collect CSIs from multiple
other normal Wi-Fi clients [16]. In this way, only one device
with specific NIC is needed. Moreover, as CSI-based Wi-Fi
sensing applications continue to explode and mature, we envi-
sion future NIC manufacturers will expose CSI to upper layers
on most NICs in 3-5 years.

Detection range. While WiDance supports up to 4m×4m in-
teraction range, achieving whole-home coverage is not an easy
task. As the operation distance increases, (1) The reflected
power attenuates exponentially while the interference from
static signals and noises remains unchanged; (2) The field of
directions with Doppler shifts over the sensitivity continuously
narrows. Given the lowest SINR and sensitivity of an NIC,
these two factors determines the maximum coverage of the
system. Nevertheless, whole-home can still be achieved by
deploying more systems in the area of interest, or by sensing
actions with larger Doppler frequency shifts (e.g. walking).

Potential applications. The core technology of WiDance is
to derive motion directions in a device-free manner, which
can be applied to various scenarios. In addition to games,
it facilitates smart home applications such as remote device
selection and control. For example, a user can select a lamp
by moving his/her arm towards it, and he/she can control
the volume of a speaker by pushing towards or polling away
from it. It also benefits localization to eliminate ambiguity
in walking directions [17], which enables a range of location-
based services such as emergency evacuation, virtual reality
and activity tracking. We leave the study on these applications
for future work.

RELATED WORK
Wireless Sensing Systems. As an alternative of computer vi-
sion in NLOS or dark environments, contactless sensing using
wireless signals has attracted extensive interests in recognizing
location [4, 3, 2, 25], body activities [22, 32, 12], and vital
signs [5, 19, 29, 33]. These systems mainly adopt a radar
principle by associating motions with physical measurements
such as time-of-flight and Doppler effects, and enable fine-
grained and interpretable motion tracking using specialized
hardware. For instance, mTrack [32] accurately locates and
tracks finger movement using customized millimeter signals.
WiSee [22] is the closest to our work, which extracts Doppler
shifts in wide-band OFDM signals using USRPs. WiDance al-
so recognizes motion directions by modeling and interpreting
motion-induced Doppler effects. However, WiDance advances

the state-of-the-art by extracting Doppler shifts on commercial
multi-antenna Wi-Fi devices without any modification.

Wi-Fi-based Gesture Sensing Systems. To bring gesture
recognition to commodity Wi-Fi devices, both modeling [1,
30] and pattern matching based principles [31, 28] have been
adopted. E-eyes [31] exploits subcarriers of CSI to recog-
nize household activities such as washing dishes and taking
a shower. WiGest [1] maps changes in Wi-Fi RSSI into mo-
tion primitives, upon which a family of gestures are defined
and accurately recognized for device interaction. WiDir [34]
proposes to recognize human motion direction by calculat-
ing phase differences between CSI subcarriers. In contrast,
WiDance directly extract Doppler frequency shift with multi-
ple antennas available on commercial Wi-Fi devices, which
may serves a wide range of sensing applications than human
motion direction. CARM [30] extracts speed-related features
from CSI and proposes an effective machine learning frame-
work for CSI-based activity recognition. WiDance is built
upon this trend of research, and makes one step further by
modeling motion directions and extracting the corresoponding
Doppler features from noisy CSI, enabling contactless dancing
exergame without the need of prior machine learning.

Interfaces for Exergames. Exergame enables physical inter-
action with users for exercise benefits [26, 10]. Mainstream
exergame interfaces are based on either computer vision [24,
11] or controller embedded with sensors [14, 7]. Kinect Sports
and Wii Fit are the leading gaming consoles for indoor ex-
ergames. ACW [13] combines computer vision and interactive
projected graphics for motivating and instructing indoor wall
climbing. RetroFab [23] leverages 3D printing technique to
agilely adapt physical controllers to arbitrary use. In contrast,
wireless sensing with off-the-shelf devices complements short-
ages of vision-based and sensor-based sensing. We develop a
new wireless based exergame interface that tracks body move-
ments and reactions through Doppler effect, and validate the
efficiency of the interface by prototyping a dancing game on it.
While preliminary, we believe that WiDance opens up a new
direction for design and development of exergame interfaces.

CONCLUSION
In this paper, we propose WiDance, a Wi-Fi-based user in-
terface for contactless dance-pad exergame. First, we design
a novel algorithm to extract motion-induced Doppler shift-
s leveraging antenna diversity on commodity Wi-Fi devices.
Then, we model the relation between Doppler shifts and mo-
tion directions, and propose a light-weight yet effective signal
processing pipeline to translate the model into the interactive
dancing exergame. Extensive experimental results show that
WiDance achieves an overall recognition accuracy of 92% in
various indoor environments. Requiring no hardware modifi-
cations, WiDance is envisioned as a promising step towards
practical wireless human-computer interface, which underpins
new insights for future wireless sensing applications.
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