
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2017

BikeMate: Bike riding behavior monitoring with smartphones BikeMate: Bike riding behavior monitoring with smartphones

Weixi GU

Zimu ZHOU
Singapore Management University, zimuzhou@smu.edu.sg

Yuxun ZHOU

Han ZOU

Yunxin LIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Digital Communications and Networking Commons, and the OS and Networks Commons

Citation Citation
GU, Weixi; ZHOU, Zimu; ZHOU, Yuxun; ZOU, Han; LIU, Yunxin; SPANOS, Costas J.; and ZHANG, Lin.
BikeMate: Bike riding behavior monitoring with smartphones. (2017). Proceedings of the 14th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services:
MobiQuitous 2017, Melbourne, November 7-10. 313-322.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4737

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4737&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4737&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4737&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Weixi GU, Zimu ZHOU, Yuxun ZHOU, Han ZOU, Yunxin LIU, Costas J. SPANOS, and Lin ZHANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4737

https://ink.library.smu.edu.sg/sis_research/4737

BikeMate: Bike Riding Behavior Monitoring with Smartphones
Weixi Gu

Tsinghua-Berkeley Shenzhen Institute
Tsinghua University

guweixigavin@gmail.com

Zimu Zhou
Computer Engineering and Networks

Laboratory
ETH, Zurich

zzhou@tik.ee.ethz.ch

Yuxun Zhou
Electrical Engineering and Computer

Science
University of California, Berkeley

yxzhou@berkeley.edu

Han Zou
Electrical Engineering and Computer

Science
University of California, Berkeley

hanzou@berkeley.edu

Yunxin Liu
Microsoft Research Asia

yunxin.liu@microsoft.com

Costas J. Spanos
Electrical Engineering and Computer

Science
University of California, Berkeley

spanos@eecs.berkeley.edu

Lin Zhang
Tsinghua-Berkeley Shenzhen Institute

Tsinghua University
linzhang@tsinghua.edu.cn

ABSTRACT
Detecting dangerous riding behaviors is of great importance to
improve bicycling safety. Existing bike safety precautionary mea-
sures rely on dedicated infrastructures that incur high installation
costs. In this work, we propose BikeMate, a ubiquitous bicycling
behavior monitoring system with smartphones. BikeMate invokes
smartphone sensors to infer dangerous riding behaviors includ-
ing lane weaving, standing pedalling and wrong-way riding. For
easy adoption, BikeMate leverages transfer learning to reduce the
overhead of training models for different users, and applies crowd-
sourcing to infer legal riding directions without prior knowledge.
Experiments with 12 participants show that BikeMate achieves an
overall accuracy of 86.8% for lane weaving and standing pedalling
detection, and yields a detection accuracy of 90% for wrong-way
riding using crowdsourced GPS traces.

CCS CONCEPTS
• Human-centered computing→ Smartphones; Personal digital
assistants;

KEYWORDS
Bike; Smartphones; Activity Recognition

ACM Reference format:
Weixi Gu, Zimu Zhou, Yuxun Zhou, Han Zou, Yunxin Liu, Costas J. Spanos,
and Lin Zhang. 2017. BikeMate: Bike Riding Behavior Monitoring with
Smartphones. In Proceedings of 14th EAI International Conference on Mobile

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiQuitous 2017, November 2017, Melbourne, Australia
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5368-7/17/11. . . $15.00
https://doi.org/10.1145/3144457.3144462

and Ubiquitous Systems: Computing, Networking and Services, Melbourne,
Australia, November 2017 (MobiQuitous 2017), 10 pages.
https://doi.org/10.1145/3144457.3144462

1 INTRODUCTION
Due to the environmental and health benefits, bicycles continue to
gain popularity as a sustainable transportation alternative. There is
a rapid growth of bike sharing programs across major cities world-
wide. According to a report by Roland Berger [1], over 1,000 bike
sharing systems are already in operation and the market is expected
to grow by 20% every year by 2020. However, cycling safety can
be easily overlooked by many bicyclists. National Highway Traffic
Safety Association (NHTSA) report that there were 726 killed and
an additional 50,000 injured in the US due to traffic accidents that
involves cyclists in 2014 alone [25]. Dangerous riding behaviors are
one of the main causes of such tragedies. For instance, lane weaving
and standing pedaling sometimes provoke balancing difficulties and
risk falling from the bike. Wrong-way riding i.e., cycling against the
direction of legal traffic, usually causes head-on collision or traffic
congestion. Therefore, it is necessary to detect dangerous cycling
behaviors to alert the bicyclists in time to avoid potential accidents.

Many bike safety systems have been developed to improve the
visibility of bikes [9] or warn rear-approaching vehicles [28] with
extra infrastructures. The high installation cost prevents their large-
scale deployment, especially for bike sharing systems that make
profits. The emergence of smartphones provides a ubiquitous oppor-
tunity to deliver mobile safety services. Pioneer works [4][6][19]
have exploited the built-in sensors in smartphones to monitor driv-
ing and riding behaviors. For instance, Chen et al. [4] develop a
middleware to detect abnormal driving behaviors such as weaving
and fast U-turns. Johnson et al. [19] distinguish normal and aggres-
sive driving behaviors with inertial sensors. Condro et al. [6] detect
high-risk riding maneuvers of motorcyclists using smartphones.
However, those solutions cannot be directly applied in dangerous
bicycle behavior detection due to the difference in riding and driv-
ing behaviors. For example, standing pedalling is unique in cycling,

https://doi.org/10.1145/3144457.3144462
https://doi.org/10.1145/3144457.3144462

MobiQuitous 2017, November 2017, Melbourne, Australia W. Gu et al.

and bicyclists are more likely to ride in the wrong directions than
motorcyclists and drivers.

With the rapid development of sensor technologies embedded in
the smartphones, many researchers utilize it as a sensing platform
to study individual behaviours [16, 31]. In this paper, we take this
intuition and propose BikeMate based on our previous work [14], a
pervasive bicycle riding behavior monitoring system with smart-
phones. It evokes the embedded accelerometer and gyroscope of
smartphones to monitor the motions of bicyclists and employs the
GPS to track their riding directions. BikeMate then detects danger-
ous riding behaviors including lane weaving, standing pedalling
and wrong-way riding. Towards a ubiquitous solution, BikeMate
focuses on addressing the following challenges.

• How to robustly identify the distinctive patterns of danger-
ous bicycling behaviors from noisy inertial measurements?

• How to effectively train dangerous bicycling behavior mod-
els for different users with minimal efforts?

• How to determine the legal riding directions of bike-ways
from GPS trajectories without prior knowledge?

Contributions. BikeMate addresses the above challenges by (i)
extracting effective features from each kind of sensory measure-
ments (Sec. 4.1), (ii) adopting a transfer kernel learning method to
share information among models for different bicyclists (Sec. 4.2),
and (iii) designing a crowdsourcing scheme to learn the legal riding
directions (Sec. 4.3). Evaluations with 12 volunteers over two weeks
show that BikeMate achieves an overall accuracy of 86.8% in riding
behavior detection (lane weaving, standing pedalling and normal
riding) and an accuracy of over 90% in wrong-way riding detection
using crowdsourced GPS traces.

The rest of the paper clarifies each of the above contributions,
beginning with a literature review on related works, followed by
the detailed design, implementation, and evaluation of BikeMate.

2 RELATEDWORK
BikeMate is related to the following categories of research.

Bike Safety Infrastructures. In addition to building bike lanes
and enforcing wearing helmets, many infrastructures have been
designed to improve cycling safety. The Cyber-Physical Bicycle
system [28] automatically detects rear-approaching vehicles and
reminds the bicyclist using bike-mounted cameras for real-time
video processing. With large-scale cyclist data collected from road
cameras, Sayed et al. [27] propose an automatic bike safety diagnosis
via traffic conflict analysis. Smart Flashlight [7] installs a projector
and a smartphone on bikes to project maps on the road for nighttime
bike navigation. Krauter et al. [21] propose to enhance the safe
communication among group cyclists using gesture recognition
and LEDs sewed into the shirts of the cyclists.

Our work is complementary to this thread of research in (i)
improving riding safety without extra hardware installed on bikes,
and (ii) detecting dangerous riding behaviors of cyclists.

Smartphone-basedDriving behaviorMonitoring.There has
been growing research in leveraging smartphones for human be-
havior pattern detection [12, 15], especially in the traffic area [13].
Chu et al. [5] utilize inertial sensors in smartphones to recognize
micro-activities to distinguish passengers and drivers. CarSafe [32]
detects lane changes and drowsy drivers based on the photos of

Route
Management

Accel.
Gyro

Data collection layer

Movement
Detection

Data analysis layer

Application layer

Lane Weave
Stand Riding

GPS

Wrong-way
Riding

Cycleway
Matching

Server

Lane weave
Stand riding

New Cycleway
Detection

Mobile End Server End

Figure 1: Architecture of BikeMate. It identifies lane weav-
ing and standing pedalling from phone inertial measure-
ments and detects wrong-way riding from crowdsourced
GPS traces.

both the driver and the environment outside captured by the dual
cameras on smartphones. D3 [4] identifies fine-grained abnormal
driving behaviors including weaving, swerving, side-slipping, fast
U-turn, wide-radius turn and sudden braking with smartphone sen-
sors. V-Sense [3] monitors vehicle steering and differs lane-changes,
turns, and driving on curvy roads using a similar approach. The
most relevant work is [6], where acceleration and GPS traces are
used to detect high-risk motorcycle maneuvers or accidents.

Our work is inspired by these research efforts. However, danger-
ous cycling behavior detection can be more complex than driving
behavior monitoring [6].

3 SYSTEM OVERVIEW
This section presents the overview of our BikeMate design.

3.1 Scope
We focus on three dangerous bike riding behaviors including lane
weaving, standing pedalling and wrong-way riding, which are de-
fined as follows.

• Lane Weaving. Ride alternatively from one side of the bike
lane to the other, i.e., in a S-shape.

• Standing Pedalling. Stand up to pedal, usually to acceler-
ate, but may lose balance.

• Wrong-way Riding. Ride in the opposite direction against
the direction of traffic or the wrong side of the road.

Fig. 7 illustrates the above three dangerous biking riding behaviors.
As a ubiquitous bicycle riding behavior monitoring system, Bike-

Mate needs to meet two requirements.
• Accuracy. As a service to improve safety, highly accurate de-
tection of dangerous riding behaviors is important to avoid
potential accidents and not to distract the attention of bicy-
clists.

• Usability. Since the riding behaviors may differ from person
to person, it is beneficial to reduce the overhead on per-
person training to build riding behavior models for each
individual. BikeMate should also work with minimal prior
knowledge because many maps lack detailed information
for bike lanes.

BikeMate: Bike Riding Behavior Monitoring with Smartphones MobiQuitous 2017, November 2017, Melbourne, Australia

Angular Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

Angular Acceleration Sample

M
ag

n
it

u
d

e
 (

g)
M

ag
n

it
u

d
e

 (
g)

Angular Acceleration Sample

(a)

Angular Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

Angular Acceleration Sample

M
ag

n
it

u
d

e
 (

g)
M

ag
n

it
u

d
e

 (
g)

Angular Acceleration Sample

(b)

Angular Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

Angular Acceleration Sample

M
ag

n
it

u
d

e
 (

g)
M

ag
n

it
u

d
e

 (
g)

Angular Acceleration Sample

(c)

M
ag

n
it

u
d

e
(g

)

Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

Acceleration Sample

Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

(d)

M
ag

n
it

u
d

e
(g

)

Acceleration Sample

M
ag

n
it

u
d

e
 (

g)
Acceleration Sample

Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

(e)

M
ag

n
it

u
d

e
(g

)

Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

Acceleration Sample

Acceleration Sample

M
ag

n
it

u
d

e
 (

g)

(f)

Figure 2: The angular acceleration patterns of (a) lane weaving, (b) standard riding and (c) standing pedalling collected from
a gyroscope and the overall acceleration patterns of (d) lane weaving, (e) standard riding and (f) standing pedalling collected
from an accelerometer.

3.2 Work Flow
Fig. 1 shows the architecture of BikeMate. It consists of a (mobile)
client end and a server end. The client end employs smartphone
sensors to track the movements of cyclists and to record their GPS
information at the data collection layer. These measurements are
then processed by the data analysis layer to detect dangerous
riding behaviors including lane weaving, standing pedalling and
wrong-way riding. The application layer reminds the cyclist via
predefined alarm mechanisms.

3.2.1 Data Collection Layer. We assume a BikeMate user carries
a smartphone while riding a bike. The data collection layer evokes
the built-in accelerometer to record 3-axis acceleration and the
gyroscope to measure angular acceleration data. It also turns on
the phone GPS to track the routes of the user. The collected raw
data are then delivered into the data analysis layer.

3.2.2 Data Analysis Layer. The data analysis layer consists of a
riding movement detection module and a riding route man-
agement module. In the riding movement detection module, Bike-
Mate identifies lane weaving and the standing pedalling from iner-
tial sensors. It also applies transfer learning techniques to reduce
the overhead when training models for different users. The riding
route management module is responsible for detecting wrong-way
riding using crowdsourced GPS traces.

3.2.3 Application Layer. The application layer runs at the back-
end in usual for power saving, and reminds cyclists of their dan-
gerous riding behaviors detected by the data analysis layer. Once
a dangerous riding event is detected, BikeMate delivers vibration
and sound to the user.

4 BIKEMATE DESIGN
This section presents the technical details of BikeMate.

4.1 Detecting Lane Weaving and Standing
Pedalling

BikeMate distinguishes lane weaving, standing pedalling and nor-
mal riding using phone accelerometer and gyroscope.

4.1.1 Observations. Intuitively, lane weaving alternatively in-
creases the forces of the left and the right sides, thus resulting in
large angular acceleration values. For standing riding, the legs of
the rider tend to move in a wider range than for normal riding,
which leads to larger acceleration readings.

Fig. 2 shows the acceleration and the angular acceleration read-
ings collected by a phone accelerometer and a phone gyroscope.
We observe that the magnitude of the angular acceleration for
lane weaving is notably greater than the acceleration in standing
pedalling and normal riding. The fluctuations of the angular acceler-
ation also follow an S-shape. During standing pedalling, the overall
acceleration is consistently larger than that in lane weaving and
normal riding. Here we calculate the overall acceleration because
the accelerometer can be placed in arbitrary locations and its coor-
dinate system may vary. However, the overall acceleration will still
capture the large acceleration induced by the wide legmoving range
during standing pedalling. Normal riding means riding smoothly
with few fluctuations. Hence both the overall acceleration and the
angular acceleration readings are relatively stable over time.

4.1.2 Feature Extraction and Classification. Based on the above
observations, we adopt five features to capture the distinctive pat-
terns in the overall acceleration and the angular acceleration read-
ings including average magnitude, standard deviation, average ab-
solute difference, binned distribution and period of riding. The
definitions of the five features are listed as follows, where aj is the
rooted square of one sample of the overall acceleration measured
by the phone accelerometer or the angular acceleration measured
by the phone gyroscope.

MobiQuitous 2017, November 2017, Melbourne, Australia W. Gu et al.

• Average Magnitude (AM):

AM =
N∑
j=1

aj (1)

• Standard Deviation (SD):

SD =

√√√√
1
N

N∑
j=1

(aj − µ)2 (2)

• Average Absolute Difference (AAD):

AAD =
1
N

N∑
j=1

��aj − µ
�� (3)

• Binned Distribution (BD):

BD =
K∑
i=1

N∑
j=1

siдn

[
aj − amin +

(i − 1)
K

(amax − amin)

]
[
amin +

i

K
(amax − amin) − aj

]
.

(4)

• Period of Riding (PoR):

PoR = arдmaxτ

∑τ−1
k=1[am+k − µ(m,τ)][am+τ+k − µ(m + τ ,τ)]

τσ (m,τ)σ (m + τ ,τ)
(5)

The parameters µ, amin and amax in Eq.1, 2, 3, and 4 stand for the
average, the minimal and maximal samples of the sliding window
with N samples. K in Eq.4 is a preset range of bins divided by
(amax − amin), which is empirically set as 10. µ(m,τ), σ (m,τ) and
τ in Eq.5 indicate to the mean, standard deviation and the period
of a acceleration sequence starting from m point. BikeMate sets
the sampling rate of the accelerometer and the gyroscope as 100
Hz, and adopts a 15-second sliding window to extract features. The
sampling rate and the window size are suitable to capture the riding
movement based on our experimental results.

For both the overall acceleration and the angular acceleration, we
extract a feature vectorX =< XAM ,XSD ,XAAD ,XBD ,XPoR > and
combine them as the input for riding behavior classification. Then
we adopt a support vector machine (SVM) [29] to identify the riding
behavior Y = {YLW ,YSP ,YNR }, where LW, SP and NR represent
lane weaving, standing pedalling, and normal riding, respectively.
We choose SVM for its simplicity and effectiveness in differentiating
the three riding behaviors.

4.2 Transferring to Different Users
Due to the complexity and diversity riding behaviors, it is necessary
to train a user-specific riding behavior classifier for each BikeMate
user. Fig. 3 illustrates the traces of the overall acceleration of three
different users when they ride bikes normally. We observe that the
acceleration periods of user 3 is much longer than that of user 1
and user 2. This is because user 1 and user 2 ride much faster than
user 3, while user 3 alternatively speeds up and relaxes.

However, it is labour-intensive to build each user-dependent
riding behavior classifier from scratch. Since the differences among
the three riding behaviors are relatively generic, it is possible to
capture these inherent characteristics and share among different
users so as to speed up the training process of user-specific riding

Dangerous event and circumstance Explanation
Rapid riding The velocity of bicyclist’s riding is over a certain threshold, commonly reaching 20km/h or above.
Lane weaving Weaving or swaying crosses the lane frequently when the bicyclist is riding on the cycleway.
Stand riding A condition that the bicyclist standing on the pedal to ride. In such case, the balance of the rider is hard to control and thus

it is easy to cause accidents.
Riding in the wrong side A condition that the bicyclist rides in the direction which is prohibited by law. Under such circumstance, the bicyclist is

easy to crash with other riders who ride in the legal direction.
Traffic transport approaching A situation that refers to some vehicles are coming to the bicyclists. It is likely to cause traffic accident or blocked when

the bicyclist does not pay attention on the transport.

Table 1. The common dangerous events and circumstances happened in the riding process

Riding
direction
detection

Bicyclist
behavior
detection
pipeline

Cycleway
matcher

New cycleway
detection

Cycleway
database

Application layer Server

Microphone

Traffic
circumstance

checking
pipeline

Accel.
Gyro

GPS

GPS
stream

manager

Hardware layer

Approaching
vehicle

 Rapid riding
Lane weaving
Stand riding

Riding on the

wrong side

Middleware layer

Mobile Frontend

Figure 1. System architecture.

database, the ability of server guarantees the requests from
the mobile frontend are not delayed.

Application layer. The application layer is the interface
of BiMonitor to the users. It delivers the alarm based on the
results of riding events checking from the middleware layer.
In detail, there are three modules composed of five kinds of
dangerous event alarm engines, including riding in the wrong
side alarm, approaching vehicle alarm, rapid riding alarm,
lane weaving alarm and stand riding alarm. When these
dangerous events or circumstances detected by the system,
BiMonitor would send vibration and sound to monitor the
users, and thus reduce the occurrence of the accidents.

1.2 Design Target
As a real-time monitoring service and a long-term

running application of smartphones, the design of BiMonitor
should meet the following three targets. 1) Accuracy. Being
a dangerous behavior and circumstance monitoring service,
the high detection accuracy is the key premise of the system
usage. 2) Real-time. The system should be required to detect
and alarm the dangerous behaviors and circumstances within
a predefined duration, as well as for the fine-grained riding
behavior report. 3)Energy efficiency. A reasonable power
management mechanism of BiMonitor should be proposed
to guarantee a long-term operating when riding.

2 System Design
2.1 Riding Behavior Detection

Not standard riding behaviors have gradually being one of
the main factors resulting in traffic accidents []. For example,
it is commonly hard for the bicyclists who are riding fast
to control direction and speed when some unexpected cases
occur []. The frequent lane weaving during the bicyclist’s

5000 5200 5400 5600 5800 6000
-4

-2

0

2

4

5000 5200 5400 5600 5800 6000
-4

-2

0

2

4

5000 5200 5400 5600 5800 6000
-4

-2

0

2

M
a

gn
it

u
d

e
 (

g)

Acceleration Samples

Figure 2. An illustration of acceleration samples of a
series of axle turns

riding might also lead to loss balance []. Such cases are likely
to cause traffic accidents.

In this section, we design a simple yet effective
mechanism to monitor the bicyclist’s daily riding behavior
and alarm three dangerous and common types of actions
listed in Table 1 base on our observation.

We mainly use the accelerameter and the gyro whose
sample rates are set to be 100Hz to record the riding
behavior, and then leverage the high - pass filter to get rid
of the gravity influence [].

2.1.1 Rapid Riding Detection
Intuitively, riding vehicle detection is a simple task by

the assistance of GPS. However, as a long-term running
application, it is hard for a smartphone to bear the energy
consumption of GPS during the whole riding process.
In order to provide a low power consumption operation
condition, we proposed a simple yet effective rapid riding
detection mechanism with the accelerometer, the gyro and
the GPS. The key insight lies in the forward distance of
each bike is almost equal when a driving axle turns a round.
Fig. 2 illustrates the acceleration samples when a bicyclist
is riding. We can see clearly that the trace of Z alias form a
series of repetitive patterns, and each pattern is caused by a
axle turn. Therefore, we could utilize the GPS to calculate
the forward distance of each pattern firstly, and then turn
off the GPS and predict the current speed by the number of
patterns within a certain times.

However, there are two major challenges of this schema.
The first one is that the acceleration patterns of each
axis depended on the placement of smartphones, not all

user1

user2

user3

Figure 3: The overall acceleration traces of three different
users during normal riding.

behavior models. For instance, comparing the acceleration traces
of user 1 and user 2 from Fig. 3, the general trends resemble each
other even though there are still individual differences.

To reduce the overhead to train classifiers for each individual,
we adopt a transfer kernel learning (TKL) method [23]. It uncovers
the latent features that are invariant among different users, and
transfers the similarities between the trained users and the test
users to compensate for the disparities among individuals.

The transfer kernel learningmethod applied in BikeMate is based
on the framework of the Maximum Mean Discrepancy (MMD),
which compares data distributions based on the distance between
the means of samples from the two domains in the Reproducing
Kernel Hilbert Space (RKHS). In BikeMate, we adopt a more flexible
approximation criterion to better match the source domain and the
target domain. Specifically, it formalizes the distribution discrep-
ancy between the extrapolated source kernel and the target source
kernel by the Nyström approximation error [22]. A family of spec-
tral kernels is designed by extrapolating the target eigensystem
on source data using the Mercer’s theorem [24]. Then the spec-
tral kernel that minimizes the approximation error to the ground
truth source kernel and that has the most similar feature-space
distribution is selected as the input data for the training procedure.
Therefore, the learned domain-invariant kernel can respect both
the target eigensystem and source approximation quality [23].

In general, given the labeled features XL and the unlabeled fea-
turesXU , the first step of TKL is to figure out the shared similarities
between the two feature domains via Nyström approximation un-
der the MMD framework. The output of the first step is a new
domain-invariant kernel, which is used as the input of SVM. Fi-
nally, we combine the trained model and the transitional kernel
to build an adaptive and transferable riding behavior model for a
new BikeMate user even if his/her measurement data distribution
differs from those used in the training phase. We elaborate on the
details of the TKL method for our riding behavior classification as
follows.

BikeMate: Bike Riding Behavior Monitoring with Smartphones MobiQuitous 2017, November 2017, Melbourne, Australia

(1) TKL computes the labelled acceleration kernel KL and the
unlabelled acceleration kernel KU using a preset input kernel func-
tion k , e.g., RBF kernel k(XL ,XU) = e−γ ∥XL−XU ∥2 . Meanwhile, it
calculates the cross-domain kernel matrix KLU of the labelled XL
and unlabelled XU acceleration features.

(2) TKL evaluates the differences of distribution between the
labelled features and the unlabelled features in the kernel Hilbert
space. As such, TKL first builds an extrapolated source kernel KL ∈

RlL×lL by the eignesystem {ΦU ,ΛU } of the target kernelKU based
on Nyström approximation.

(3) The target eigenvector matrix ΦU and target eigenvalue
matrix ΛU can be easily obtained through solving the standard
eigenvalue problem by Eq. 6.

KU ΦU = ΦU ΛU (6)

With the calculated eignesystem of KU and the cross-domain
kernel matrix KLU , the eigenvector matrix of the extrapolated
source kernel KU is derived using the Mercer theorem in Eq. 7

ΦL ≃ KLU ΦU Λ−1
U . (7)

(4) According to the Nyström approximation error, a modified
labelled kernel KL can be built by minimizing the distribution di-
vergence, i.e., the approximation error, which is computed as Eq. 8:

min
Λ

∥KL − KL ∥
2 = ∥ΦLΛΦ

⊤

L − KL ∥
2,

λi ≥ ζ λi+1, i = 1, . . . , lU − 1,
λi ≥ 0, i = 1, . . . , lU ,

(8)

where Λ = diaд{λ1, . . . , λlU } are the lU non-negative eigenspec-
trum parameters and ζ is the eigenspectrum damping factor. The
eigenspectrum parameters Λ can be estimated by translating the
optimization problem (8) into a convex quadratic programming
(QP) [26] with linear constraints. Eq. 8 can be reformulated as

min
λ

λ⊤Qλ − 2r⊤λ

Cλ ≥ 0
λ ≥ 0

(9)

where the parameters λ = (λ1, . . . , λlU), Q = (Φ
⊤

L ΦL)⊙(Φ
⊤

L ΦL) and
r = diag(Φ

⊤

L KLΦL) are the QP coefficient matrices, and C = I − ζ I
is the constraint matrix. We solve the QP problem using the interior-
point algorithm.

(5) After estimating the optimal eigenspectrum parameters Λ,
TKL builds up the domain-invariant kernel KA on both the source
and target data A = L ∪U. KA is constructed from the domain-
invariant eigensystem {Λ,ΦA } according to the spectral kernel
design as

KA = ΦAΛΦ
−1
A , (10)

where ΦA � [ΦL ;ΦU].
(6) The estimated domain-invariant kernel KA can be adopted

as the input of an SVM to construct the adaptive localization model
via the LIBSVM package. The output of the model are the predicted
riding movements of the new cyclist without labels ℓu .

Algorithm 1 illustrates the process of the transfer kernel learning.

Algorithm 1: Transfer Kernel Learning of Riding behaviors

Input: XL = {XLi }
N
i=1: labeled features collected from the

calibrated riders with N instance;
XU = {(XU i }

M
i=1: unlabeled features collected from the

uncalibrated riders withM instance;
YL = {YLi }

N
i=1: labeled events collected from the calibrated

riders with N instance;
k : kernel type; ζ : eigenspectrum damping factor
1) Compute matrices KL , KU and KLU using kernel function k
2) Eigendecompose KU to obtain the unlabelled eigenvector
matrix ΦU and unlabelled eigenvalue matrix ΛU using Eq. (6)
3) Compute the eigenvector matrix of the extrapolated labelled
kernel KL by Eq.(7)
4) Minimize the distribution divergence between the
extrapolates labelled kernel KL and the unlabelled kernel KU
and solve the QP problem for eigenspectrum
Λ = diaд{λ1, . . . , λlU }

5) Compute the domain-invariant kernel matrix KA using
Eq.(10)
6) Inferring the riding movement YU using SVM with the
domain-invariant kernel matrix KA via LIBSVM package.
Output ℓU : inferred riding movements

4.3 Detecting Wrong-way Riding
BikeMate detects wrong-way riding from crowdsourced GPS traces.
Although many commercial map databases store large amounts of
GPS trajectories, the legal directions of two-side bike lanes are often
missing. Therefore in BikeMate, we propose to construct a bike-way
route database and label the legal riding direction of each bike-way
via crowdsourcing. Fig. 4 details the work flow of the wrong-way
riding detection. The raw GPS trace is first pre-processed and then
matched with the trajectories and compare with the legal direction
stored in the GPS trajectory database at the server end. If the GPS
trace cannot be matched, it will be stored as candidates to generate
new bike lanes. As next, we present the details of each step.

4.3.1 Pre-processing. The pre-processing of the raw GPS traces
consists of two steps.

Noise Elimination. The GPS signals are easily interrupted by
the surroundings (e.g., buildings), and thus the GPS samples are
usually noisy. Apart from the latitude and the longitude, a standard
GPS sample also contains an error radius, which measures the
realm of the bicyclist’s true position. A large error radius indicates
low confidence of the geographic position reported by the GPS.
Accordingly, BikeMate regards the GPS samples whose error radius
is larger than 20m as noise.

Smoothing. In the second step, BikeMate leverages theWeighted
Moving Average (WMA) [18] to smooth the GPS trace as follows.

WMAM =

∑n
k=1(kPM−n+k)∑n

k=1 k
(11)

In BikeMate, we empirically select a five-point WMA to smooth
the GPS trace. Fig. 5 shows the GPS traces before and after pre-
processing. We observe that the GPS traces naturally cluster into
two groups, indicating two bike-ways.

MobiQuitous 2017, November 2017, Melbourne, Australia W. Gu et al.

GPS Data
Processing

Cycle
way
Matchi
ng

Direction
Judgement

Match

Candidates
Cluster

UnMatch

Wrong-way
riding detection

GPS data
processing

Cycle way
matching

GPS data
processing

Direction
judgement

Candidates
cluster

Wrong-way
riding

Cycle way
generation

Cycle way
database

Figure 4:Workflowof thewrong-way riding detection. Bike-
Mate first constructs a bike-way (cycle-way) database that
automatically labels the legal riding directions and then
identifieswrong-way riding based on the crowdsourced data-
base.

4.3.2 GPS Trace Matching. After pre-processing, BikeMate tries
to match the GPS traces with the GPS trajectories stored in the
server via Dynamic Time Warping (DTW) [2]. DTW is a dynamic
programming based similarity measure for sequences which may
vary in time or speed. In DTW, the two sequences are first re-
constructed by non-linear “warping” in the time domain to com-
pare their similarity independent of non-linear temporal variations.
Therefore, DTW based trace matching can be well applied in the
GPS trace matching.

Given two GPS traces A and B with lengths of M and N samples,
DTW first constructs a distance matrix d[M × N] as Eq. 12

d(i, j) = (ai − bj)
2 (12)

where ai andbj are the ith and jth elements in A and B, respectively.
Taking d[M × N] as input, DTW returns a warping path P =

{p1,p2,p3, . . . ,pk }, where pi = (x ,y) ∈ [1 : M] × [1 : N] for
i ∈ [1 : k].

Fig. 6 illustrates the matching process. To generate the warping
path, DTW constructs a cost matrixC[M ×N], which stands for the
minimum cost to reach any point (i, j) in the matrix from (1, 1) in a
dynamic programming fashion. For instance, (i, j) can be reached
from (i − 1, j − 1), (i, j − 1) and (i − 1, j). The algorithm picks the
one with minimum cost as follows.

C(i, j) = d(i, j) +min(C(i − 1, j − 1),C(i, j − 1),C(i − 1, j)) (13)

If the smallest cost between the GPS trace and those in the database
is smaller than a threshold, we regard it as a match. The preset
threshold is empirically set as 15 based on our experiments.

If matched, BikeMate determines the rider’s current position
and then compares his/her riding direction with the legal direction
of the bike-way. BikeMate computes a rider’s riding direction by
partitioning his/her GPS trace into disjointed grids (5m × 5m). As-
suming a GPS segment with a start coordinate (X1, Y1) and an end

coordinate (X2, Y2), the riding direction τ ∈ [−90, 90] is:

τ = arctan(
Y2 − Y1
X2 − X1

) (14)

The two red arrows in Fig. 5 show the legal directions of bike lanes
calculated by the method above.

If unmatched, BikeMate regards this GPS trace as a new bike
lane candidate, and generates a new bike lane by crowdsourcing.

4.3.3 New Route Generation. For the GPS traces that cannot
be matched with those stored in the database, BikeMate tries to
generate a new route. The process consists of two main steps.

Trace Clustering. BikeMate adopts the single linkage clus-
tering algorithm [11] to cluster the smoothed GPS traces using
the Hausdorff distance [8]. Hausdorff distance only considers the
longest distance between two bike-ways to mitigate the impact of
the noise within a distance threshold. Based on our observation,
we set the distance threshold as 10m.

Centerline Fitting. Given a cluster, if the number of trajecto-
ries in one cluster excesses λ, BikeMate regards it as a bike lane, and
then extracts its centerline. λ is set as 3 based on the experimental
results. The polygonal principal curve algorithm [20] is applied to
localize the centerline. This algorithm generates the centerline by
minimizing its mean square error of the GPS samples of the GPS tra-
jectories within the same cluster. Compared with other algorithms,
the polygonal principal curve algorithm is able to generate the
centerline with onle a few GPS samples and has few requirements
on their distribution. Afterwards, BikeMate sets the legal riding
direction of the bike-way by averaging the directions of bike-way
candidates by Eq. 14.

5 EVALUATION
This section presents the evaluation methodologies and detailed
performance of BikeMate.

5.1 Evaluation Setup
BikeMate is implemented as a daemon process that runs as a back-
end service on Android smartphones. Each volunteer is dispatched
a smartphone installed with BikeMate and a battery recording
logger [30]. Each participant puts the smartphone in his/her trouser
pocket during bike riding. BikeMate is launched at the beginning of
the riding trip, and it invokes the corresponding sensors to collect
measurements. The volunteers are required to perform the different
riding behaviors (i.e., lane weaving, standing pedalling, wrong-way
riding and normal riding) during each trip and manually label
the ground-truth as well as the location information (i.e., the true
GPS and the legal riding directions of bike-ways). Each riding trip
lasts around 50 minutes. In total 12 volunteers participate in the
experiments and 54 bike-ways are covered. We divide the traces
into 2640 segments. 80% segments are used for training and the
remaining 20% for testing. Fig. 7 illustrates the experiment scenarios
of a volunteer. We mainly evaluate BikeMate in terms of accuracy
and system overhead.

5.2 Accuracy
Highly accurate detection of dangerous riding behaviors is impor-
tant to ensure safety and avoid potential accidents. We first evaluate

BikeMate: Bike Riding Behavior Monitoring with Smartphones MobiQuitous 2017, November 2017, Melbourne, Australia

39.9976
116.323 116.324 116.325 116.326

longitude

39.9978

39.998

39.9982

39.9984

39.9986

la
ti
tu

d
e

39.9976
116.323 116.324 116.325 116.326

longitude

39.9978

39.998

39.9982

39.9984

39.9986
la

ti
tu

d
e

Before Noise Elimination After Noise Elimination

Figure 5: GPS traces of two-side bike lanes before and after pre-processing. There are two notable clusters after pre-processing.
The red arrows indicate the inferred directions of two-side bike lanes from GPS sequences sampled by crowdsourcing.

acceleration patterns, indicating viability to take the acceler-
ation traces as fingerprints for different phone placements.
However, it remains unsettled whether the patterns of the
same phone placement stay similar when taking device and
user diversity into consideration.

Fig. 7 plots the acceleration traces sampled from three
types of phones (Samsung Galaxy S2 I9100, Samsung
Nexus3 I9250, Motorola MT788), which are put in differ-
ent users’ pants. The three traces roughly share common
variation trends, indicating stable patterns across users,
whereas certain lags are also notable. The second peak in
trace A, for example, appears at the 15th sample while it
occurs at the 13th sample in trace B, i.e., 2-unit lags after
trace A. These lags are due to different walking speed. In
general, given a fixed sampling rate, a rush stride tends to
shrink the trace pattern, while a stroll at leisure stretches
the pattern and induces random deformation as well.
Therefore, a robust and speed-independent similarity
metric is needed to compare and classify the measured
acceleration traces.

DTW-based trace matching (DTM). Dynamic time warping
[15] is a dynamic programming based similarity measure
for sequences which may vary in time or speed. In DTW,
the two sequences are first reconstructed by non-linear
”warping” in the time domain to compare their similarity
independent of non-linear temporal variations. Therefore,
DTW based trace matching is able to eliminate the effect of
different walking speed.

Given two acceleration profiles A and B with lengths of
M and N samples, DTW first constructs a distance matrix
d[M�N], where

dði; jÞ ¼ ðai � bjÞ2 (1)

and ai and bj are the ith and jth elements in A and B,
respectively. Taking d[M�N] as input, DTW returns a
warping path P ¼ fp1; p2; p3; . . . ; pkg, where pi ¼ ðx; yÞ 2
½1 : M� � ½1 : N � for i 2 ½1 : k�.

Fig. 8 illustrates the matching process. To generate the
warping path, DTW constructs a cost matrix C[M�N]
which stands for the minimum cost to reach any point (i, j)
in the matrix from (1, 1) in a dynamic programming fashion.
For instance, (i, j) can be reached from (i� 1, j� 1), (i, j� 1)
and (i� 1, j). The algorithm picks the one with minimum
cost. Formally

Cði; jÞ ¼ dði; jÞ þminðCði� 1; j� 1Þ; Cði; j� 1Þ; Cði� 1; jÞÞ:
(2)

A measured acceleration trace is compared with all
pre-stored traces collected with different phone place-
ments based on DTW and output the corresponding mini-
mum costs. The phone placement w.r.t. the smallest cost
is then identified as the phone placement for the mea-
sured acceleration trace. For example, if C(M,N) ¼ 25 for
pants, C(M,N) ¼ 36 for chest pocket and C(M, N) ¼ 19 for
bag. Then our scheme classifies this acceleration trace
into the category of in-bag.

The on-body phone placement recognition scheme does
not rely on the closed environment, and thus is orthogonal to
the ‘in-hand’ detection in Section 3.1.1. Therefore the on-
body placement detection scheme also serves as a double
verification to improve the robustness of the in-hand detec-
tion scheme. This is useful when the IPDS suffers from low
global contrast background like white walls all around or
gloomy lighting conditions.

3.2 Phone Interaction Detection

Phone interaction detection identifies whether the user is
using the phone, e.g., browsing, texting, playing games, etc.
Although such interaction often occurs when the phone is
‘in-hand’, which can be identified as in Section 3.1.1, the
phone interaction detection scheme in this section empha-
sises more on the semantic perspective.

An intuitive indicator for interaction detection is the
screen-lock on touch screen smartphones. The touch screen
is typically unlocked on an ‘interaction active’ phone. Nev-
ertheless, the opposite is not always true. According to a
questionnaire we conducted on 500 students in Tsinghua
University, around 420 lock their phones in ‘non-interactive’
states, while the other 80, for ease of operation, would like
to keep their phones unlocked all the time. Therefore, with
the screen-lock alone, we would result in high false-positive
for interaction detection.

To obtain amore accurate usage detection scheme, we uti-
lize the phone’s process queue. The on-executing process, in
general, is on top of the process queue. Therefore, if the
phone is running an application, thus ‘interaction active’, a
corresponding process ought to be running and take up the
1th position of process queue. This leads us to identify the
‘interaction active’ state by checking the current on-execut-
ing process. Fig. 9 lists the process queues of four specific
application scenarios: non-interactive, browsing Weibo,2

Fig. 7. Stability of acceleration trace over time.

Fig. 8. DTW based matching.

2. Weibo is a Chinese microblogging website. Akin to a hybrid of
Twitter and Facebook.

YANG ET AL.: SHERLOCK: MICRO-ENVIRONMENT SENSING FOR SMARTPHONES 3299

Figure 6: An illustration of DTW based matching.

Normal riding Stand pedalling

Lane weaving Wrong-way riding

Figure 7: The experimental scenario, where a volunteer per-
forms different riding behaviors.

the accuracy to detect lane weaving and standing pedalling from
inertial measurements, and then evaluate the accuracy to detect
wrong-way riding from crowdsourced GPS traces.

5.2.1 Performance of Detecting Lane Weaving and Standing Ped-
alling. Table 1 shows the confusion matrix of identifying normal
riding, standing pedalling and lane weaving. Each column repre-
sents the instances in an inferred class, while each row represents
the instances in an actual class. The results are obtained by training
and testing for each participant and average across the 12 users.
As shown, the classification accuracy of all the three riding behav-
iors is higher than 80%. Specifically, the accuracy peaks 88.4% for
lane weaving, which is slightly higher than in standing pedalling
(87.8%) and normal riding (84.1%). The overall accuracy is 86.8%,
demonstrating the remarkable performance of BikeMate on lane
weaving and standing pedalling detection.

Table 1: Confusion matrix for lane weaving, standing ped-
alling and normal riding detection.

Ground
Truth

Inference
Normal Stand Lane Weaving

Normal 84.1% 7.9% 6.9%
Stand 5.6% 87.8% 4.7%

Lane Weaving 10.3% 4.3% 88.4%

5.2.2 Performance of Transfer Kernel Learning. In this experi-
ment, we evaluate the effectiveness of the transfer kernel learning.
We first train a riding behavior classifier using measurements from
the participants in the training set, and then evaluate its perfor-
mance using measurements from the rest of the participants in the
testing set. Then we apply the transfer kernel learning method on
the classifier and test its performance again on the measurements
from the rest of the participants. The results are averaged across
the 12 participants.

Fig. 8 shows the classification accuracy before and after trans-
fer kernel learning. We observe at least 17% gain in classification
accuracy with transfer learning when testing on measurements of
new users. The most notable gain is seen for lane weaving (25.6%).
This may be because lane weaving has the most distinctive patterns
among the three riding behaviors. Therefore the transfer kernel
learning scheme can capture such inherent patterns easily and share
them among measurements from different users.

MobiQuitous 2017, November 2017, Melbourne, Australia W. Gu et al.

Table 2: The configurations of experimental smartphones

Brand CPU RAM ROM Battery Capacity Operation System
HUAWEI 4C 8-cores 1.2 GHZ 2 GB 8 GB 3100m Ah Android 4.4
Galaxy S6 8-cores 2.1 GHZ 3 GB 32 GB 2550m Ah Android 5.0

HTC Desire A6 8-cores 1.7 GHZ 2 GB 16 GB 2600m Ah Android 5.0

Table 3: Time Cost of Module and System Delay

Experimental
Phones

Feature Extraction Transfer Kernel
Learning (TKL)

Support Vector
Machine (SVM)

Total Time
CostAcceleration Angular Acceleration

HUAWEI 4C 0.11s 0.12s 0.21s 0.17s 0.5s
Galaxy S6 0.08s 0.10s 0.18s 0.13s 0.41s

HTC Desire A6 0.15s 0.13s 0.24s 0.20s 0.59s

Normal Riding Standing Pedalling Lane Weaving
0

20

40

60

80

100

P
e
rc

e
n

ta
g

e
(%

)

Before TKL

After TKL

Figure 8: Effectiveness of transfer kernel learning.

5.2.3 Performance of Bike-way Database Construction. An accu-
rate bike-way database constructed from unlabelled GPS traces is
an essential prerequisite for wrong-way riding detection. To assess
the performance of the bike-way database construction, we com-
pare the GPS traces of bike lanes generated by BikeMate with those
manually collected by the participants using the Hausdorff distance.
We also compare the riding directions calculated by BikeMate with
the true legal riding directions.

91%

7%2%

98%

2%

≤ 3 m ≤ 5 m ≤ 7 m [-30, +30] [-45, +45]

Figure 9: Performance of bike-way database construction:
Hausdorff distance between the crowdsourced GPS traces
and the true GPS trajectories (left) and the errors of the in-
ferred riding direction compared with the true legal riding
directions (right).

The left of Fig. 9 illustrates the Hausdorff distance between the
labelled GPS traces and the crowdsourced GPS ones. As shown,
more than 91% pairwise distances are within 3m, around 7% dis-
tances are less 5m, and only 2% distances are 7m. The right of Fig. 9
shows the divergence of the legal riding direction and the inferred
riding direction. As shown, around 98% divergence of directions

are within [−30◦,+30◦], and the other 2% are in [−45◦,+45◦]. Since
the wrong-way riding direction can bear a divergence range of
[−90◦,+90◦], the inferred directions generated by BikeMate suffice
to assist in wrong-way riding detection.

5.2.4 Performance ofWrong-way Riding Detection. Table 4 shows
the accuracy of wrong-way riding detection. We compare the riding
direction inferred by BikeMate with the legal cycling direction of
the trajectories stored in the database. As shown, the true positive
rate is higher than 90%, indicating that BikeMate can detect most
wrong-way riding instances. The 13.3% false positive rate shows
that normal riding is rarely mistaken as wrong-way riding.

Table 4: The performance of wrong-way riding detection.

Condition Test
Positive Negative

True 93.2% 6.8%
False 13.3% 86.7%

5.3 System Overhead
As a smartphone-based application, BikeMate needs to incur mod-
erate overhead to the power and computation constrained smart-
phones. We evaluate the system overhead of BikeMate in terms of
delay, CPU utilization and power consumption. To account for the
device diversity, we evaluate BikeMate on three different smart-
phones. Table 2 summarizes the configurations of the smartphones
used for system overhead evaluation.

5.3.1 Delay. Since the inference of wrong-way riding is per-
formed at the server end, the main delay of BikeMate comes from
the inference for lane weaving, standing pedalling and normal
riding. That is, the time spent for feature extraction from inertial
sensors, the transfer kernel learning and the SVM classification. We
launch a time logger to record the duration of each step.

Table 3 shows the average delays. The time cost of feature ex-
traction fluctuates around 0.1s, and the inference delays of transfer
kernel learning (TKL) and Support Vector Machine (SVM) vary
around 0.2s and 0.17s, respectively. As BikeMate invokes multi-
threads to process sensory data in parallel, the total time is the sum

BikeMate: Bike Riding Behavior Monitoring with Smartphones MobiQuitous 2017, November 2017, Melbourne, Australia

of the maximum processing time among the sensors for feature
extraction, the time cost of transfer kernel learning model and the
SVM inference. Therefore, the total system delay adds up to around
0.5s, which means BikeMate is able to detect the dangerous riding
behaviors within 1s.

5.3.2 CPU Utilization. To measure the CPU usage of BikeMate,
we install an application [10] on each smartphone to monitor the
CPU occupation while BikeMate is running. We compare the CPU
utilization of BikeMate with that of a phone call.

Fig. 10 illustrates the results. The CPU utilization of all the three
phones tested are kept relatively in a low and stable level, which
are similar to that of a typical phone call. Although BikeMate in-
vokes three kinds of smartphone sensors, the accelerometer and
the gyroscope are light-weight, and the GPS runs as a back end
service, which will not occupy the CPU. The simplicity of the SVM
also ensures low computation overhead.

HUAWEI 4C Galaxy S6 HTC Desire A6 Phone Call
15

20

25

30

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Figure 10: Performance of CPU utilization.

5.3.3 Energy Consumption. As BikeMate is expected to operate
continuously during bike riding, it is important that it does not
drain the phone battery before the end of the bike trip. We use
a battery logger [30] to record the remaining battery level when
running BikeMate continuously on the phone.

Fig. 11 shows the results. BikeMate consumes around 3% energy
per 10 minutes. Even though BikeMate invokes GPS to track the
riding trajectories of users, it only runs at the back end and does
not conduct navigation, which can reduce the power consumption.

0 10 20 30 40 50 60
75

80

85

90

95

100

Time(min)

B
a

tt
e

ry
 L

e
v
e

l
(%

)

HUAWEI 4C

Galaxy S6

HTC Desire A6

Figure 11: Performance of power consumption.

6 CONCLUSIONS
Preventive bicyclist protection is crucial to promote sustainable
transportation such as bicycles. In this paper, we propose BikeMate,
a smartphone based dangerous riding behavior monitoring system.
It utilizes the embedded inertial sensors and the GPS of smartphones
to identify three high-risk behaviors including lane weaving, stand-
ing pedalling and wrong-way riding. To improve the usability of the
system, BikeMate applies a transfer learning method to enforcing
feature sharing to improve the accuracy despite of user-specific
differences. BikeMate also leverages crowdsourcing to derive the
legal riding directions without prior knowledge. Evaluations with
12 participants validate the effectiveness of BikeMate.

In the future, we plan to include more riding behaviors and
optimize the energy consumption of BikeMate. In addition, we
consider to extend the capability of commodity WIFI device to
tracking the user’s riding behavior [33] and even group behiviors
[17] of riders. Finally, we will investigate to utilize BikeMate on
more types of bike-ways such as one-way bike-ways and single-lane
bike-ways.

REFERENCES
[1] Roland Berger. 2016. Bike Sharing 4.0. (June 2016). Retrieved June 19, 2017 from

https://goo.gl/EMBDZt.
[2] Donald J Berndt and James Clifford. 1994. Using dynamic time warping to find

patterns in time series. In Proc. KDD. AAAI Press, Palo Alto, CA, USA, 359–370.
[3] Dongyao Chen, Kyong-Tak Cho, Sihui Han, Zhizhuo Jin, and Kang G Shin. 2015.

Invisible sensing of vehicle steering with smartphones. In Proc. MobiSys. ACM,
New York, NY, USA, 1–13.

[4] Zhongyang Chen, Jiadi Yu, Yanmin Zhu, Yingying Chen, and Minglu Li. 2015. D
3: Abnormal driving behaviors detection and identification using smartphone
sensors. In Proc. SECON. IEEE, Piscataway, NJ, USA, 524–532.

[5] Hon Chu, Vijay Raman, Jeffrey Shen, Aman Kansal, Victor Bahl, and Romit Roy
Choudhury. 2014. I am a smartphone and I know my user is driving. In Proc.
COMSNETS. IEEE, Piscataway, NJ, USA, 1–8.

[6] Nowy Condro, Meng-Han Li, and Ray-I Chang. 2012. MotoSafe: Active Safe
System for Digital Forensics ofMotorcycle Rider with Android. International
Journal of Information and Electronics Engineering 2, 4 (2012), 612.

[7] Alexandru Dancu, Zlatko Franjcic, and Morten Fjeld. 2014. Smart Flashlight: Map
Navigation Using a Bike-mounted Projector. In Proc. CHI. ACM, New York, NY,
USA, 3627–3630.

[8] M-P Dubuisson and Anil K Jain. 1994. A modified Hausdorff distance for object
matching. In Proc. ICPR. IEEE, Piscataway, NJ, USA, 566–568.

[9] Evan Gant and Alex Tee. 2010. Light Lane Bicycle. (2010).
[10] GLGJing. 2017. CPU Monitor. (March 2017). Weblink: https://play.google.com/

store/apps/details?id=com.glgjing.stark.
[11] John C Gower and GJS Ross. 1969. Minimum spanning trees and single linkage

cluster analysis. Applied Statistics 18, 1 (1969), 54–64.
[12] Weixi Gu. 2017. Non-intrusive blood glucose monitor by multi-task deep learning:

PhD forum abstract. In Proceedings of the 16th ACM/IEEE International Conference
on Information Processing in Sensor Networks. ACM, 249–250.

[13] Weixi Gu, Ming Jin, Zimu Zhou, Costas J Spanos, and Lin Zhang. 2016. MetroEye:
Smart Tracking Your Metro Trips Underground.. In MobiQuitous. 84–93.

[14] Weixi Gu, Yunxin Liu, Yuxun Zhou, Zimu Zhou, Costas J Spanos, and Lin Zhang.
2017. BikeSafe: bicycle behavior monitoring via smartphones. In Proceedings of the
2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2017 ACM International Symposium on Wearable Computers.
ACM, 45–48.

[15] Weixi Gu, Longfei Shangguan, Zheng Yang, and Yunhao Liu. 2016. Sleep hunter:
Towards fine grained sleep stage tracking with smartphones. IEEE Transactions
on Mobile Computing 15, 6 (2016), 1514–1527.

[16] Weixi Gu, Kai Zhang, Zimu Zhou, Ming Jin, Yuxun Zhou, Xi Liu, Costas J Spanos,
Zuo-Jun Max Shen, Wei-Hua Lin, and Lin Zhang. 2017. Measuring fine-grained
metro interchange time via smartphones. Transportation Research Part C: Emerg-
ing Technologies 81 (2017), 153–171.

[17] Miao He, Weixi Gu, and Ying Kong. 2017. Group recommendation: by mining
users’ check-in behaviors. In Proceedings of the 2017 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017
ACM International Symposium on Wearable Computers. ACM, 65–68.

https://goo.gl/EMBDZt
https://play.google.com/store/apps/details?id=com.glgjing.stark
https://play.google.com/store/apps/details?id=com.glgjing.stark

MobiQuitous 2017, November 2017, Melbourne, Australia W. Gu et al.

[18] J Stuart Hunter. 1986. The exponentially weighted moving average. Journal of
Quality Technology 18, 4 (1986), 203–210.

[19] Derick A Johnson and Mohan M Trivedi. 2011. Driving style recognition using
a smartphone as a sensor platform. In Proc. ITSC. IEEE, Piscataway, NJ, USA,
1609–1615.

[20] Balázs Kégl, Adam Krzyzak, Tamás Linder, and Kenneth Zeger. 1999. A polyg-
onal line algorithm for constructing principal curves. In Proc. NIPS. MIT Press,
Cambridge, MA, USA, 501–507.

[21] Nils Kräuter, Stefan Lösing, Gernot Bauer, Lisa Schwering, and Matthias Seuter.
2016. Supporting safety in cycling groups using LED-augmented gestures. In
Proc. UbiComp Adjunct. ACM, New York, NY, USA, 889–892.

[22] Mu Li, James Tin-Yau Kwok, and Baoliang Lü. 2010. Making large-scale Nyström
approximation possible. In Proc. ICML. ACM, New York, NY, USA, 631.

[23] Mingsheng Long, Jianmin Wang, Jiaguang Sun, and S Yu Philip. 2015. Domain
invariant transfer kernel learning. IEEE Transactions on Knowledge and Data
Engineering 27, 6 (2015), 1519–1532.

[24] Ha Quang Minh, Partha Niyogi, and Yuan Yao. 2006. MercerâĂŹs theorem,
feature maps, and smoothing. In Proc. International Conference on Computational
Learning Theory. Springer, Berlin, Germany, 154–168.

[25] U.S. Dept. of Transportation National Highway Traffic Safety Associa-
tion (NHTSA). 2014. Bicyclists and Other Cyclists. (2014). retrieved June
20, 2017 from https://goo.gl/Zp9wj7.

[26] John C Platt et al. 1999. Using analytic QP and sparseness to speed training
of support vector machines. In Proc. NIPS. MIT Press, Cambridge, MA, USA,
557–563.

[27] Tarek Sayed, Mohamed H Zaki, and Jarvis Autey. 2013. Automated safety diagno-
sis of vehicle–bicycle interactions using computer vision analysis. Safety science
59 (2013), 163–172.

[28] Stephen Smaldone, Chetan Tonde, Vancheswaran K Ananthanarayanan, Ahmed
Elgammal, and Liviu Iftode. 2010. Improving Bicycle Safety through Automated
Real-Time Vehicle Detection. Technical Report DCS-TR-665. Department of Com-
puter Science, Rutgers University, 110 Frelinghuysen Rd, Piscataway, NJ 08854.

[29] Johan AK Suykens and Joos Vandewalle. 1999. Least squares support vector
machine classifiers. Neural Processing Letters 9, 3 (1999), 293–300.

[30] Hwang Ti. 2013. Battery Log. (December 2013). WeblinkïĳŽ https://play.google.
com/store/apps/details?id=kr.hwangti.batterylog&hl=en.

[31] Zheng Yang, Longfei Shangguan, Weixi Gu, Zimu Zhou, Chenshu Wu, and
Yunhao Liu. 2014. Sherlock: Micro-environment sensing for smartphones. IEEE
Transactions on Parallel and Distributed Systems 25, 12 (2014), 3295–3305.

[32] Chuang-Wen You, Nicholas D Lane, Fanglin Chen, Rui Wang, Zhenyu Chen,
Thomas J Bao, Martha Montes-de Oca, Yuting Cheng, Mu Lin, Lorenzo Torresani,
et al. 2013. Carsafe app: Alerting drowsy and distracted drivers using dual
cameras on smartphones. In Proc. SenSys. ACM, New York, NY, USA, 13–26.

[33] Han Zou, Yuxun Zhou, Jianfei Yang,Weixi Gu, Lihua Xie, and Costas Spanos. 2017.
FreeDetector: Device-Free Occupancy Detection with Commodity WiFi. In Sens-
ing, Communication and Networking (SECON Workshops), 2017 IEEE International
Conference on. IEEE, 1–5.

https://goo.gl/Zp9wj7
https://play.google.com/store/apps/details?id=kr.hwangti.batterylog&hl=en
https://play.google.com/store/apps/details?id=kr.hwangti.batterylog&hl=en

	BikeMate: Bike riding behavior monitoring with smartphones
	Citation
	Author

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Scope
	3.2 Work Flow

	4 BikeMate Design
	4.1 Detecting Lane Weaving and Standing Pedalling
	4.2 Transferring to Different Users
	4.3 Detecting Wrong-way Riding

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Accuracy
	5.3 System Overhead

	6 Conclusions
	References

