
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2018

Multi-worker-aware task planning in real-time spatial Multi-worker-aware task planning in real-time spatial

crowdsourcing crowdsourcing

Qian TAO

Yuxiang ZENG

Zimu ZHOU
Singapore Management University, zimuzhou@smu.edu.sg

Yongxin TONG

Lei CHEN

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
TAO, Qian; ZENG, Yuxiang; ZHOU, Zimu; TONG, Yongxin; CHEN, Lei; and XU, Ke. Multi-worker-aware task
planning in real-time spatial crowdsourcing. (2018). Proceedings of the 23rd Database Systems for
Advanced Applications, DASFAA 2018, Gold Coast, 2018 May 21-24. 301-317.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4735

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4735&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4735&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Qian TAO, Yuxiang ZENG, Zimu ZHOU, Yongxin TONG, Lei CHEN, and Ke XU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4735

https://ink.library.smu.edu.sg/sis_research/4735

Multi-Worker-Aware Task Planning in
Real-Time Spatial Crowdsourcing

Qian Tao1, Yuxiang Zeng2, Zimu Zhou3, Yongxin Tong1?, Lei Chen2, and Ke Xu1

1 SKLSDE Lab and BDBC, Beihang University, China
1{qiantao,yxtong,kexu}@buaa.edu.cn

2 The Hong Kong University of Science and Technology, Hong Kong SAR, China
2{yzengal,leichen}@cse.ust.hk

3 Laboratory TIK, ETH Zurich, Zurich, Switzerland
3zzhou@tik.ee.ethz.ch

Abstract. Spatial crowdsourcing emerges as a new computing paradigm
with the development of mobile Internet and the ubiquity of mobile de-
vices. The core of many real-world spatial crowdsourcing applications is
to assign suitable tasks to proper workers in real time. Many works only
assign a set of tasks to each worker without making the plan how to per-
form the assigned tasks. Others either make task plans only for a single
worker or are unable to operate in real time. In this paper, we propose a
new problem called the Multi-Worker-Aware Task Planning (MWATP)
problem in the online scenario, in which we not only assign tasks to work-
ers but also make plans for them, such that the total utility (revenue) is
maximized. We prove that the offline version of MWATP problem is NP-
hard, and no online algorithm has a constant competitive ratio on the
MWATP problem. Two heuristic algorithms, called Delay-Planning and
Fast-Planning, are proposed to solve the problem. Extensive experiments
on synthetic and real datasets verify the effectiveness and efficiency of
the two proposed algorithms.

Keywords: Spatial crowdsourcing, Task assignment, Task planning.

1 Introduction

The development of mobile devices has triggered the fast growing of spatial
crowdsourcing. Unlike traditional crowdsourcing where workers perform tasks
via webs [1], workers in spatial crowdsourcing need to physically go to the lo-
cation of a task to perform it [2]. Spatial crowdsourcing extends traditional
crowdsourcing to the physical world and has seen many applications in daily
life [3][4]. For example, Waze4 provides a dynamic traffic navigation by collect-
ing the GPS information; Uber5 offers an efficient real-time taxi-calling service;
Gigwalk6 performs location-based micro tasks via crowds, etc.

? Corresponding author.
4 http://www.waze.com
5 http://www.uber.com
6 http://www.gigwalk.com

Table 1: Release Time, Expiration Time and Utility
Task/Worker t1 w1 t2 t3 w2 t4 t5
Release time 1 1 1.5 2 3 5 5.5

Expiration time 4 6.8 3 5 8.2 6.2 7

Utility (Revenue) 5 � 2 3 � 2 1

Fig. 1: Initial Locations of Workers and Tasks

One of the most important issues in spatial crowdsourcing research is how to
assign tasks to proper workers [5][6][7][8]. Imagine the following scenario. Sup-
pose Alice is off duty at 5:00 p.m. from her office, and she wants to perform some
tasks passingly from Gigwalk on her way home. However, she has to reach home
before 6:00 p.m. to have dinner with her family. Thus Alice wants to receive not
only the guidance of which tasks to perform, but also a plan (order) to perform
them. Every performed task contributes a revenue to the platform. When multi-
ple workers raise such demands in real time, the platform faces a new problem in
spatial crowdsourcing: how to make plans of tasks for multiple workers in online
scenario, such that the total revenue of the platform is maximized?

We further illustrate our motivation using the following example.

Example 1. Suppose there are two workers w1 − w2 and five tasks t1 − t5 ap-
pearing on the platform, whose release and expiration times (in minutes) are
shown in Table 1, and the locations are shown in Fig. 1. The “utility” of each
task is also shown in Table 1, representing the revenue contributed to the plat-
form when the task is performed. For ease of presentation, the coordinates in
Fig. 1 have been transformed to the corresponding time. Workers and tasks can
be observed after their release times, and tasks cannot be performed after their
expiration times. At time 1, only the task t1 and the worker w1 are observed.
Along a route 〈(1, 1), (1, 2), (2, 3), (5, 3)〉 (blue arrows in Fig. 1), w1 performs
{t1, t2}, and reaches his/her destination dw1

at time 6.41 (we calculate the time
accurately to 2 decimal places), which is earlier than w1’s expiration time. Since
t5 appears at time 5.5, w1 cannot reach his/her destination dw1

earlier than
time rt5 + dis(lt5 , dw1

) = 7.5 if he/she performs t5. w2 appears at time 3, but no
task can be accomplished by w2 right away. Suppose we let w2 move to location
(4, 2) and stay. At time 5, t4 appears, and it can be accomplished by w2. We
then alter w2’s plan to be “accomplishing t4 and moving to his/her destination”

(gray arrow in Fig. 1). However, at time 5.5, observing that t5 appears and it
can be accomplished by w2 (w2 is at location (4, 2.5) right now), we redirect w2

to perform t5 before he/she moves to his/her final destination. w2 can finally
accomplish t4 and t5. Based on the above plans for w1 and w2, we obtain a total
utility (revenue) of 10, which is the optimal planning in this instance.

Many works model the task assignment problem as an online bipartite graph
matching and only assign a set of tasks to the workers without indicating an
order to perform them [2][9][10]. Some pioneer works have explored task plan-
ning [11][12][13][14][15][16]. However, they either are designed for a single worker
[11][13], or cannot handle the real-time (i.e., online) scenario [12][14][15][16].

In this paper, we propose a new task assignment problem for real-time spatial
crowdsourcing, called the Multi-Worker-Aware Task Planning (MWATP) prob-
lem. We attempt to not only assign a set of tasks to multiple workers, but also
make plans for them, to maximize the total utility (revenue) contributed to the
platform, in the two-sided online scenario (i.e. both workers and tasks appear on
the platform dynamically). In summary, we make the following contributions.

– We formulate the Multi-Worker-Aware Task Planning (MWATP) problem,
which assigns tasks and makes plans for multiple workers in online scenario,
such that the total utility (revenue) is maximized. We prove that the of-
fline MWATP problem is NP-hard, and any online algorithm for the online
MWATP problem has no constant competitive ratio.

– We propose two heuristic algorithms, called Delay-Planning and Fast-Planning
to solve the online MWATP problem.

– We conduct extensive experiments on both synthetic and real datasets. Eval-
uations verify the effectiveness and efficiency of our proposed algorithms.

The rest of the paper is organized as follows. We formally define the MWATP
problem and prove its hardness in Sec. 2. Two heuristic algorithms are proposed
in Sec. 3. We present the experimental evaluations in Sec. 4, review related work
in Sec. 5, and finally conclude this work in Sec. 6.

2 The MWATP Problem

In this section, we first formally define the Multi-Worker-Aware Task Planning
(MWATP) problem, and then prove its hardness.

2.1 Problem Definitions

This subsection presents the formal definition of the Multi-Worker-Aware Task
Planning problem.

Definition 1 (Task). A task t is a tuple 〈lt, rt, et, ut〉, where lt is the location
which requires the worker to reach, rt and et are the release time and expiration
time of task t, and ut is the utility (revenue) contributed to the platform if the
task is accomplished. The task t can be observed only after its release time rt,
and it cannot be performed after its expiration time et. The time interval [rt, et]
is called the valid interval of t.

We assume the release time of a task is always no greater than its expiration
time, i.e., rt ≤ et for ∀t ∈ T , because otherwise the task will never be finished.
We also assume a task can only be performed by one worker. Besides, we use
“utility” to represent the revenue of a task hereafter.

Definition 2 (Worker). A worker w is a tuple w = 〈sw, dw, cw, rw, ew〉, where
w appears at his/her release time rw with the initial location sw, and needs to
reach his/her destination dw before the expiration time ew. We use cw to denote
the current location of w at a certain time T ∗. Specifically, cw equals the initial
location sw when w appears on the platform. A worker can accomplish a task t
if he/she can reach the location of t within the valid interval [rt, et], which will
add a utility value of ut for the platform.

We model the locations on a metric space (M,dis), where M is a set of
locations, and dis is a function, dis : M ×M → R, and assume each worker
can reach his/her destination before his/her expiration time, i.e., ew ≥ rw +
dis(sw, dw) for ∀w ∈ W . For simplicity, each worker is assumed to travel at the
same constant speed. Consequently, a distance can be represented by a time
period, and we will follow this rule whenever there is no ambiguity.

Definition 3 (Guidance). A guidance for a worker w is a tuple g = 〈tg, DIR(l)〉,
which means at time tg, worker w needs to head to the location l from his/her
current location. Note that l can be the same as the worker’s current location.
In this case, we denote DIR(l) as STAY .

Definition 4 (Plan). A plan for a worker w is a vector of guidance pw =
〈g1, g2, ..., g|pw|〉, where tgi < tgi+1

for i = 1, 2, ..., |pw − 1|. A plan is valid if w
can reach his/her destination dw before his/her expiration time ew following the
plan pw. Given a set of tasks T , we further denote AT (T, pw) as the set of tasks
that can be accomplished by w following pw.

Note that the plan pw for a worker w can be updated by the platform when
new tasks appear on the platform. However, the updated plan should always be
valid. With a plan pw, we can generate a route of the worker. Based on this route,
we can check whether a task can be accomplished, i.e. a task t ∈ T belongs to
AT (T, pw), by checking whether w can reach lt within t’s valid interval [rt, et].
Given a set of plans P for multiple workers on a set of tasks T , we define the set
of accomplished tasks AT (T, P) = ∪p∈PAT (T, p).

Definition 5 (Online Multi-Worker-Aware Task Planning Problem).
Given a set of workers W and a set of tasks T , where workers and tasks arrive
one by one according to their release times, the problem is to find a valid plan
set P for W , such that the total utility of accomplished tasks, i.e.,

U(T, P) =
∑

t∈AT (T,P)

ut (1)

is maximized.

In this paper we mainly study the online MWATP problem. If not explicitly
specified, we will use “MWATP” to refer to the online MWATP problem.

Example 2. Assume the same settings as in Example 1. Then the plan for w1 is
pw1

= 〈〈1, DIR((1, 2))〉,〈2, DIR((2, 3))〉,〈3.41, DIR((5, 3))〉〉, which generates a
route 〈(1, 1), (1, 2), (2, 3), (5, 3)〉. Similarly, the plan for w2 is pw2

= 〈〈3, DIR((4, 2))〉,
〈4.41, STAY 〉, 〈5, DIR((4, 4))〉, 〈5.5, DIR((3, 3))〉, 〈6.62, DIR((4, 4))〉〉, which
also generates a route 〈(3, 1), (4, 2), (4, 2.5), (3, 3), (4, 4)〉. The set of tasks ac-
complished from P = {pw1 , pw2} is AT (T, P) = AT (T, pw1) ∪ AT (T, pw2) =
{t1, t2, t4, t5}.

2.2 Hardness of MWATP Problem

In this subsection, we first show that the offline MWATP problem is NP-hard,
and then prove that no algorithm can achieve a constant competitive ratio on
the MWATP problem.

Definition 6 (Offline Multi-Worker-Aware Task Planning Problem).
Given a set of workers W and a set of tasks T , where the release times of
workers and tasks are known a priori, the problem is to decide a valid plan set
P for W , such that the total utility of the accomplished tasks is maximized.

Theorem 1. The offline MWATP problem is NP-hard.

Proof. We prove the NP-hardness of offline MWATP problem by reducing the
orienteering problem [17] to it. The decision version of MWATP problem is to
decide if there is a valid plan set P , such that total utility is no less than U . The
decision version of orienteering problem is defined as follows. Given n nodes,
where one is the start node s1, one is the end node sn, and each of the other
n − 2 nodes is associated with a score, the objective is to find a route of nodes
starting from s1 and ending at sn, such that the total score is no less than S,
with a time constraint TMAX . For an instance I of the orienteering problem,
we map the start node s1 to the worker’s start location, the end node sn to
the worker’s destination, the other n− 2 nodes to n− 2 tasks, and the decision
threshold S to U . Let the release time and expiration time of each task and the
worker be 0 and TMAX , respectively. Now we get an instance I ′ of the offline
MWATP problem. In I ′, a task can be performed at any time, as long as the
worker can reach his/her destination on time. This means that as long as there
is a route for the worker in I ′ achieving utility U , then there must be a route
in the orienteering problem gaining the same scores, and vice versa. Since the
decision version of orienteering problem is NP-complete, the optimization version
of offline MWATP problem is NP-hard. ut

Next we prove that for the MWATP problem, neither deterministic nor ran-
domized online algorithm can yield a constant competitive ratio. Although a
similar claim of a special case of the MWATP problem has been considered in
[13], it neglects the proof on randomized algorithms.

Lemma 1. No deterministic algorithm for the MWATP problem has a constant
competitive ratio.

Proof. The problem in [13] is a special case of the MWATP problem with a single
worker. Since the problem in [13] does not have a deterministic algorithm with
constant competitive ratio, the MWATP problem does not have a deterministic
algorithm with constant competitive ratio either. ut

Lemma 2. No randomized algorithm for the MWATP problem has a constant
competitive ratio.

Fig. 2: An Instance that Randomized Algorithms Perform Bad

Proof. We prove the lemma by showing that the MWATP problem with exactly
one worker does not have a constant competitive ratio. Consider an instance
shown in Fig. 2. We omit the Y axis since tasks and workers appear on the X
axis. l0 is the origin with coordinate (0, 0). Let m be an arbitrary positive integer
and ε = 1

m . At time 1, with probability 1
m , n tasks appear at location li with

expiration time 1 + ε
2 . All of the tasks have a utility value of 1. This yields a

probability distribution X over the input of the tasks. At time 0, a worker w
appear at l0, with the destination lm = (1, 0) and expiration time 2. No matter
where the n tasks appear, in the optimal solution w can wait at the location until
tasks appear, and then go to the destination before his/her expiration time.
Therefore the optimal result on X is EX [OPT] = n. Now consider a generic
deterministic online algorithm ALG. The worker at most reach one location of
l1, l2, ..., lm before the tasks’ expiration time, no matter where he/she is located
at time 1. This means that the expectation of the utility value under the input
distribution X is at most EX [ALG] ≤ 1

m · n = nε . This yields

EX [ALG]

EX [OPT]
≤ nε

n
= ε (2)

The ratio for any deterministic online algorithm becomes unbounded when ε
is small enough. From Yao’s Principle [18], no randomized algorithm for the
MWATP problem can achieve a constant competitive ratio. ut

Theorem 2. No online algorithm, neither deterministic nor randomized, can
achieve a constant competitive ratio on MWATP problem.

Proof. The theorem is a direct result from Lemma 1 and 2. ut

3 Solutions to MWATP Problem

Although no deterministic or randomized algorithms can achieve a constant
competitive ratio, we propose two efficient heuristic algorithms, Delay-Planning
and Fast-Planning, to solve the MWATP problem.
3.1 The Delay-Planning Algorithm

Main Idea. In the Delay-Planning algorithm, a worker neglects the new tasks
while he/she is executing his/her current plan. Once the current plan is finished,
the worker is assigned a new plan with the delayed (previously neglected) tasks.

Algorithm 1: BenefitGreedy

input : a worker w and a set of tasks T
output: worker w with new plan

1 Sort t in T according to BEN(w, t) in descending order;
2 end loc← cw;
3 end time← the current time;
4 foreach task t ∈ T do
5 if end time + dis(end loc, lt) ≤ et and

end time + dis(end loc, lt) + dis(lt, dw) ≤ ew then
6 Append t to Sw;
7 end time← end time + dis(end loc, lt);
8 end loc← lt;
9 T ← T − t;

10 if no task is assigned to w then
11 Let w move toward to dw;

Algorithm Details. We use a task pool to store the tasks that have not been
assigned to workers. Whenever a new worker arrives or a worker finishes his/her
last plan, the algorithm finds a new plan for the worker from the task pool.

We apply a succinct greedy function to make new plans for a worker by
considering both the utility and the distance from the worker’s current location
to the task. (i) A task with a higher utility is preferred. (ii) A larger distance
between the task and the worker leads to a higher risk of the expiration of the
task. Combining these two considerations, we use the ratio between the utility
and the distance from the worker, denoted by BEN(w, t) = ut

dis(cw,lt)
, to measure

the benefit of a task. The function greedily chooses the next task with the largest
benefit that can be accomplished on time by the worker.

Alg. 1 illustrates the procedure of the greedy function. In line 1, the tasks
in the task pool are sorted according to their benefits from w. In lines 2-3, two
variables end loc and end time are defined to represent the location and time
when the worker finishes his/her current plan. For each task t, we judge if the
worker can accomplish it and reach the destination on time if t is appended to
the tail of Sw in line 5. Note that Sw represents the task sequence of w, as is
shown in Alg. 2. If “yes”, then the algorithm assigns t to w, updates end time
and end loc, and removes t from the set T in lines 6-9.

The Delay-Planning algorithm is built upon the BenefitGreedy function
(see Alg. 2). In lines 1-2, we initialize a task pool taskPool, and a free worker
set freeWorkerSet. In line 3, each worker w ∈ W is associated with a task
sequence Sw, i.e., a plan. Whenever a task arrives (“true” judgement in line 5),
we first attempt to assign it to the workers in freeWorkerSet in lines 6-8. If
fail, we add the task to taskPool in lines 9-10. When a worker arrives, we assign
tasks and update his/her plan from the task pool taskPool for him/her in line
13. A worker who has just finished his/her current plan is regarded as a new
worker in Delay-Planning (see lines 12-15).

Algorithm 2: Delay-Planning

input : A set of workers W , a set of tasks T
output: Plans for w ∈W

1 taskPool← ∅;
2 freeWorkerSet← ∅;
3 Set Sw an empty task sequence for each w ∈W ;
4 for each new arrival request do
5 if the request is a task t then
6 if there exists a worker w′ ∈ freeWorkerSet can accomplish t with

largest BEN then
7 Append t to Sw′ ;
8 freeWorkerSet← freeWorkerSet− {w′};
9 else

10 taskPool← taskPool ∪ {t};

11 else
12 // Denote the arrival worker by w.
13 BenefitGreedy(w, taskPool);
14 if there is no task appended to Sw then
15 freeWorkerSet← freeWorkerSet ∪ {w};

Example 3. Back to our running example in Example 1. When w1 appears, there
is one task, t1, in the task pool. We then invoke BenefitGreedy(., .) to make a
plan for w1. Since w1 can reach lt1 before et1 , and reach his/her destination on
time, w1’s new plan is to accomplish {t1}. Then t2 and t3 appear at time 1.5 and
2 but there is no worker in freeWorkerSet. So they are added to taskPool. At
time 3, w2 appears. Now taskPool is {t3}, because t2 has expired. However, w2

cannot accomplish t3 before the expiration time of t3. Thus w2 directly moves
to dw2

. At time 3.24, w1 finishes the last task sequence 〈t1〉 and now taskPool =
{t3}. w1 cannot accomplish t3 before the expiration time of w1. Hence w1 directly
moves to dw1

. At time 5, t4 appears. Currently freeWorkerSet = {w1, w2}. The
locations of w1 and w2 are (3.76, 3) and (3.63, 2.90), respectively. t4 is assigned
to w2. We cannot choose w1 because of w1’s expiration time. At time 5.5, t5
appears. Neither w1 nor w2 can accomplish it. Note that at this time, w2 is
still accomplishing his/her current task sequence 〈t4〉. Finally, Sw1

= 〈t1〉 and
Sw2

= 〈t4〉. The total utility is ut1 + ut4 = 7.

Time Complexity. We apply the amortized analysis to analyze the complexity
of Alg. 2. Assume n and m are the number of workers and tasks, respectively.
First, the time complexity for calling Alg. 1 is O(m logm). In Alg. 2, the time
complexity of lines 6-8 is O(n), and they are executed at most m times. The
time complexity of lines 5-10 is O(mn). In lines 11-15, a worker may become a
request more than one time. However, this happens only when he/she appears
for the first time or just accomplishes a plan, which means that lines 11-15 are
executed at most O(m + n) times (n for appearing and m for accomplishing a
plan). The total complexity of lines 11-15 is O((m+n)m logm). Combing these
two parts, the time complexity of Delay-Planning is O((m+ n)m logm).

3.2 The Fast-Planning Algorithm

The Delay-Planning algorithm defers the processing of tasks for a certain time,
which potentially leads to the expiration of some tasks. Thus we further propose
the Fast-Planning algorithm to fasten the process of making new plans, and
therefore, potentially increase the total utility.

Main Idea. Whenever a task appears, the Fast-Planning algorithm immediately
assigns the task to a worker and makes a new plan for the worker. To make the
new plan efficiently, the algorithm only attempts to combine the new task with
the current plan, rather than going through all possible permutations.

Algorithm Details. Alg. 3 illustrates the procedure of the Fast-Planning algo-
rithm. In line 1, we initialize two sets, aWorkerSet and freeTaskSet, represent-
ing the available worker set and the unassigned task set, respectively. Whenever
a worker w arrives (“true” judgement in line 3), we make a new plan for w from
the freeTaskSet, as shown in lines 4-5. Otherwise if a task t appears, we try to
combine t with the task sequence (plan) of a worker in aWorkerSet, with mini-
mized increased travel distance (lines 8-15). If such combination does not exist,
t is added to freeTaskSet and waits to be assigned to prospective workers, as
shown in lines 16-17.
Example 4. We use the settings in Example 1 to run the Fast-Planning algo-
rithm. At time 1, w1 arrives and moves to t1, which is the same as in the
Delay-Planning algorithm. At time 1.5, t2 appears and we try to combine it
with w1’s task sequence Sw1

. At this time, w1 is at (1.22, 1.45). With simple cal-
culation, it results in a smaller increased travel distance by performing t2 first
than performing t1 first. Therefore Sw1 = 〈t2, t1〉. At time 3, w2 arrives. Now
freeTaskSet = {t3}, but w2 cannot accomplish t3 on time. Hence w2 directly
moves to his/her destination dw2

. t4 and t5 appear at time 5 and 5.5, respec-
tively, and only t4 can be accomplished by w2. This process is similar to that in
the example of the Delay-Planning algorithm and we omit the details. Finally,
t1, t2 and t4 are accomplished, and we obtain a utility value of 9.

Time Complexity. We still use n and m to denote the number of workers and
tasks, respectively. Lines 3-5 are executed at most O(n) times, and the time
complexity per execution is O(m logm). Thus the total time complexity of lines
3-5 is O(mn logm). When the request is a task, lines 11-13 are executed O(nm2)
times (O(n) for line 9, and O(m) for line 6 and line 10). Line 8 and lines 14-17
can be executed in O(1) time, and they are iterated at most O(m) times. The
total time complexity of lines 6-17 is O(nm2). Combing these two parts, the time
complexity of the Fast-Planning algorithm is O(nm2).

4 Experimental Study

4.1 Experimental Setup

Datasets. We evaluate the performance of the proposed algorithms on both
synthetic and real datasets. Table 2 shows the settings of the synthetic dataset,
where the default settings are marked in bold. Tasks and workers are randomly

Algorithm 3: Fast-Planning

input : A set of workers W , a set of tasks T
output: Plans for w ∈W

1 aWorkerSet← ∅, freeTaskSet← ∅;
2 for each new arrival request do
3 if the request is a worker w then
4 BenefitGreedy(w, freeTaskSet);
5 aWorkerSet← aWorkerSet ∪ {w};
6 else
7 // Denote the arrival task by t.
8 wbest ← None, bestComPos← −1,minCost←∞;
9 foreach wa ∈ aWorkerSet do

10 foreach combination position ComPos in Swa do
11 tmpCost←extra distance if combine t to ComPos;
12 if tmpCost < minCost then
13 minCost← tmpCost, bestComPos← ComPos,wbest ← wa;

14 if minCost <∞ then
15 Combine t with Swbest according to bestComPos.

16 else
17 freeTaskSet← freeTaskSet ∪ {t};

Table 2: Experiments Settings
|T | 100, 200,300, 400, 500
|W | 1000, 2000,3000, 4000, 5000
tst σ = 10, µ = 30, 60,90, 120, 150
tsw σ = 10, µ = 60, 120,180, 240, 300
Umax 2, 4,6, 8, 10

Scalability(|T | × |W |)

10k × 1k,20k × 2k,30k × 3k,40k × 4k,
50k × 5k,60k × 6k,70k × 7k,80k × 8k,

90k × 9k,100k × 10k,200k × 20k,300k × 30k,
400k × 40k,500k × 50k

sampled on a 600 × 600 metric space, with different values of |T | and |W |.
We also change the extra expiration time span of tasks and workers (tst and
tsw). Motivated by [19], the waiting time of a task (worker) follows a Gaussian
distribution with the settings as in Table 2. The utilities of tasks are randomly
sampled between [1, Umax]. Similarly to [20], we generate the release time of
tasks and workers by the Poisson distribution, with a parameter λ = 2/min for
workers, and λ = 20/min for tasks. We also generate datasets with large scales
to test the scalability of the algorithms. For real data, we use the taxi order
data, collected from a real taxi-calling service platform, to generate the locations
of workers and tasks. Specifically, the location of a task is generated from an
order’s starting location. The initial location and the destination of a worker are

generated from an order’s starting location and destination, respectively. Other
settings are the same as in the synthetic dataset.

Baselines. In addition to the two proposed algorithms, we also evaluate the
performance of two baseline algorithms. The first is the NNH algorithm in [9],
and the second is the GMCS algorithm in [13]. Both of them solve the single-
worker task planning problem, and perform best in [9] and [13] respectively.
To extend them to the MWATP problem, whenever a task appears, we find a
candidate worker set (satisfying the expiration constraint) and randomly assign
the task to a worker in the set. Each worker runs the corresponding single-worker
algorithm to accomplish the tasks. The two baselines are denoted by Baseline-
NNH and Baseline-GMCS, respectively.

Implementation. All the algorithms are implemented in C++, and the ex-
periments were performed on a machine with 40 Intel(R) Xeon(R) E5 2.30GHz
CPUs and 512GB memory.

|T|

10
00

20
00

30
00

40
00

50
00

U
til

ity

0

2000

4000

6000

8000

10000

12000

14000
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(a) Utility of Varying |T |

|T|

10
00

20
00

30
00

40
00

50
00

T
im

e(
S

ec
s)

0

0.1

0.2

0.3

0.4
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(b) Time of Varying |T |

|T|

10
00

20
00

30
00

40
00

50
00

M
em

or
y(

K
B

)

×104

1.69

1.7

1.71

1.72

1.73

1.74
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(c) Memory of Varying |T |

|W|

10
0

20
0

30
0

40
0

50
0

U
til

ity

0

2000

4000

6000

8000

10000

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(d) Utility of Varying |W |

|W|

10
0

20
0

30
0

40
0

50
0

T
im

e(
S

ec
s)

0

0.05

0.1

0.15

0.2

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(e) Time of Varying |W |

|W|

10
0

20
0

30
0

40
0

50
0

M
em

or
y(

K
B

)

×104

1.7

1.705

1.71

1.715

1.72

1.725

1.73

1.735
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(f) Memory of Varying |W |

Fig. 3: Results on Varying |T | and |W |

4.2 Experiment Results

Effect of |T |. Fig. 3a-Fig. 3c show the results of varying |T |. Delay-Planning
and Fast-Planning outperform the two baselines in terms of the total utility value
while Fast-Planning performs the best. The utility obtained by Delay-Planning is
stable, while that of the other three increases with |T |. This might be because in
each batch of Delay-Planning, tasks have been overflowed, and more tasks do not
increase the utility. All the algorithms consume more time when |T | increases,
because more tasks lead to a larger searching space. Delay-Planning is the most

µ of ts
t

60

12
0

18
0

24
0

30
0

U
til

ity

2000

4000

6000

8000

10000

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(a) Utility of Varying tst

µ of ts
t

60

12
0

18
0

24
0

30
0

T
im

e(
S

ec
s)

0

0.05

0.1

0.15

0.2

0.25
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(b) Time of Varying tst

µ of ts
t

60

12
0

18
0

24
0

30
0

M
em

or
y(

K
B

)

×104

1.7

1.705

1.71

1.715

1.72

1.725

1.73

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(c) Memory of Varying tst

µ of ts
w

30

60

90

12
0

15
0

U
til

ity

2000

4000

6000

8000

10000

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(d) Utility of Varying tsw

µ of ts
w

30

60

90

12
0

15
0

T
im

e(
S

ec
s)

0

0.05

0.1

0.15

0.2

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(e) Time of Varying tsw

µ of ts
w

30

60

90

12
0

15
0

M
em

or
y(

K
B

)

×104

1.7

1.705

1.71

1.715

1.72

1.725

1.73

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(f) Memory of Varying tsw

U
max

2 4 6 8 10

U
til

ity

0

2000

4000

6000

8000

10000

12000

14000
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(g) Utility of Varying Umax

U
max

2 4 6 8 10

T
im

e(
S

ec
s)

0

0.05

0.1

0.15

0.2

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(h) Time of Varying Umax

U
max

2 4 6 8 10

M
em

or
y(

K
B

)

×104

1.7

1.705

1.71

1.715

1.72

1.725

1.73

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(i) Memory of Varying Umax

Fig. 4: Results on Varying tst, tsw and Umax

|T|×|W|(×106)

10

40

90

16
0

25

0

36
0

49

0

64
0

81

0

10
00

40
00

90
00

16

00
0

25
00

0

U
til

ity

104

105

106

107

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(a) Utility of Varying |T ||W |

|T|×|W|(×106)

10

40

90

16
0

25

0

36
0

49

0

64
0

81

0

10
00

40
00

90
00

16

00
0

25
00

0

T
im

e(
S

ec
s)

10-2

10-1

100

101

102

103

104

105

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(b) Time of Varying |T ||W |

|T|×|W|(×106)

10

40

90

16
0

25

0

36
0

49

0

64
0

81

0

10
00

40
00

90
00

16

00
0

25
00

0

M
em

or
y(

K
B

)

×104

2

2.5

3

3.5

4

4.5

5

5.5

6
6.5

7
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(c) Memory of Varying |T ||W |

Fig. 5: Results on Scalability

time-efficient, while Fast-Planning consumes more time, because a combination
inspection for all workers is called whenever a task appears. For memory, Delay-
Planning and Fast-Planning consume more space when |T | increases, but are
still more efficient than baselines.

|T|

10
00

20
00

30
00

40
00

50
00

U
til

ity

×104

0

0.5

1

1.5

2
Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(a) Varying |T |

|W|

10
0

20
0

30
0

40
0

50
0

U
til

ity

0

2000

4000

6000

8000

10000

12000

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(b) Varying |W |

µ of ts
t

60

12
0

18
0

24
0

30
0

U
til

ity

2000

4000

6000

8000

10000

12000

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(c) Varying tst

µ of ts
w

30

60

90

12
0

15
0

U
til

ity

2000

4000

6000

8000

10000

12000

Fast-Planning
Delay-Planning
Baseline-NNH
Baseline-GMCS

(d) Varying tsw

Fig. 6: Utility Results on Real Datasets

Effect of |W |. Fig. 3d-Fig. 3f show the results of varying |W |. For the total
utility value, Delay-Planning and Fast-Planning perform better than the base-
lines. The total utility of Delay-Planning and Fast-Planning increases with |W |,
yet that of the baselines remain almost constant. The running time of all the
algorithms are stable as the increase of |W |. This might be because the tasks are
overflowed, and more tasks do not lead to more efficient plans. Delay-Planning
is still the most time-efficient. For memory, Delay-Planning and Fast-Planning
consume stable space as |W | increases, which is better than the baselines.

Effect of tst. Fig. 4a-Fig. 4c show the results of varying tst. The total util-
ity of Delay-Planning and Fast-Planning increases as tst increases, but that of
the baselines decrease as tst increases. This is probably because when µ of tst
increases, a worker can be assigned to a task far away from him/her, which
wastes too much time in one task, which leads to a decrease in the total utility.
Delay-Planning and Fast-Planning still get larger total utility than the baselines
(except for Delay-Planning when µ = 60), and Fast-Planning performs the best.
As µ of tst increases, the running time of Delay-Planning and Fast-Planning
increases, but that of the baselines tends to be stable. This is because the size
of the candidate task set for a worker is restricted by the spare time of work-
ers, even though tasks have more waiting time. All the four algorithms consume
stable memory, but the two proposed algorithms require less memory.

Effect of tsw. Fig. 4d-Fig. 4f show the results of varying tsw. As µ of tsw
increases, the total utility values of our algorithms increase, because workers
have more spare time to accomplish tasks. Delay-Planning and Fast-Planning
perform better than the baselines. As µ of tsw increases, the running time of
Delay-Planning and Fast-Planning increases, while that of the baselines tend
to be stable. The reason is similar as when varying tst. Delay-Planning is still
the most time-efficient. The memory of the four algorithms are similar as when
varying tst.

Effect of Umax. Fig. 4g-Fig. 4i show the results of varying Umax. The total
utility value of all the algorithms increases linearly as Umax increases. The run-
ning time of all the algorithms remains stable, indicating the utility of tasks has
no impact on the running time. The trend of the memory consumption is similar
as when tst varies.

Scalability. The scalable results are shown in Fig. 5. The utility and the run-
ning time of the four algorithms increase linearly as |T | ∗ |W | increases, and

our algorithms perform better than baselines. Our algorithms also consume less
memory than the baselines.

Performance on Real Datasets. Fig. 6 shows the results of the total utility
value on real datasets. The results are similar to those on the synthetic datasets.
The results for the running time and memory are also similar to those on the
synthetic datasets. Thus we omit the figures of memory and time due to the
limited space.

Summary of Results. The Delay-Planning algorithm, though performs worse
than the Fast-Planning algorithm in terms of the total utility value, has the
most efficient running time. The Fast-Planning algorithm obtains the largest
total utility at the cost of a slightly longer running time than the Delay-Planning
algorithm. Both the two proposed algorithms can fit the scalable environment
in terms of total utility and running time. The results are also similar on the
real-world datasets.

5 Related Work

Our work is related to the domains of Spatial Crowdsourcing and Orien-
teering Problem.

5.1 Spatial Crowdsourcing

Spatial crowdsourcing has attracted extensive research interest since [2].

Task Assignment and Planning. Task assignment, task planning in particu-
lar, is one of the most important issues in spatial crowdsourcing [2][9] [21][22][23].
In [11], the authors make plans for a single worker in the offline scenario, with
the objective to maximize the number of accomplished tasks. The model is gen-
eralized to multiple workers in [12][15], but still only for the offline scenario. Both
models [11][12] try to find approximate plans for workers. In [22], a protocol is
proposed for protecting the privacy while task assignment. One recent work [16]
makes one step further to find the exact plans of maximizing accomplished tasks
for the offline scenario by using dynamic programming and graph partition.

Online Models. Since many real-world spatial crowdsourcing applications are
real-time, recent studies have proposed various online models. In [24] and [25],
the authors study the maximizing weighted bipartite matching in the one-sided
online scenario, where only nodes on one side appear dynamically. The two-
sided online scenario is explored in [10], and a solution with a competitive ratio
of 1

4 is proposed. [23] further studies the online trichromatic matching problem.
However, these works focus on task assignment as a bipartite matching problem,
which is invalid for task planning in our work. The closest related work is [13],
which studies the route planning problem for a single worker in the one-sided
online scenario (i.e., only tasks appear dynamically).

5.2 Orienteering Problem

Given a worker with a starting location, an end location, and a time budget,
and a set of n nodes in the plane, each of which is associated with a score, the

orienteering problem aims to make a scheduling for the worker to gain maximal
scores, with the constraint of costing less time than the time budget [17]. Many
variants of the orienteering problem have been proposed [26]. Among them, the
Team Orienteering Problem with Time Windows (TOPTW) [27] is the closest
to our work. In this problem, each node is associated with a valid time window
and we need to find a proper scheduling for a team of workers. However, these
time windows can be observed at the beginning of the system, which means that
the TOPTW is still an offline scenario. Furthermore, in TOPTW the workers
are foreknown, while in our MWATP problem, the arrivals of both workers and
tasks are unknown beforehand.

6 Conclusion
In this paper, we propose a new online task planning problem, called Multi-
Worker-Aware Task Planning (MWATP) problem. We prove that the offline
MWATP problem is NP-hard and no online algorithm has a constant competitive
ratio. We then propose two heuristic algorithms, called Delay-Planning and Fast-
Planning to solve the MWATP problem. We finally evaluate the effectiveness and
the efficiency of the proposed algorithms on both synthetic and real datasets.

Acknowledgment
Qian Tao, Yongxin Tong and Ke Xu’s works are partially supported by the
National Science Foundation of China (NSFC) under Grant No. 61502021 and
71531001, National Grand Fundamental Research 973 Program of China under
Grant 2014CB340300, the Base construction and Training Programme Founda-
tion for the Talents of Beijing under Grant No. Z171100003217092, and the Sci-
ence and Technology Major Project of Beijing under Grant No. Z171100005117001.
Yuxiang Zeng and Lei Chen’s works are partially supported by the Hong Kong
RGC GRF Project 16207617, the National Science Foundation of China (NSFC)
under Grant No. 61729201, Science and Technology Planning Project of Guang-
dong Province, China, No. 2015B010110006, Webank Collaboration Research
Project, and Microsoft Research Asia Collaborative Research Grant.

References

1. Tong, Y., Chen, L., Zhou, Z., Jagadish, H.V., Shou, L., Lv, W.: Slade: A smart
large-scale task decomposer in crowdsourcing. IEEE Transactions on Knowledge
and Data Engineering (2018)

2. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowd-
sourcing. In: GIS. (2012) 189–198

3. Zeng, Y., Tong, Y., Chen, L., Zhou, Z.: Latency-oriented task completion via
spatial crowdsourcing. In: ICDE. (2018)

4. Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., Ye, J., Lv, W.: The
simpler the better: A unified approach to predicting original taxi demands on
large-scale online platforms. In: SIGKDD. (2017) 1653–1662

5. Chen, L., Shahabi, C.: Spatial crowdsourcing: Challenges and opportunities. IEEE
Data Engineering Bulletin 39(4) (2016) 14–25

6. Tong, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: Challenges, techniques,
and applications. PVLDB 10(12) (2017) 1988–1991

7. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching in
real-time spatial data: Experiments and analysis. PVLDB 9(12) (2016) 1053–1064

8. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrange-
ment and its variant for online setting. IEEE Transactions on Knowledge and Data
Engineering 28(9) (2016) 2281–2295

9. Kazemi, L., Shahabi, C., Chen, L.: Geotrucrowd: trustworthy query answering
with spatial crowdsourcing. In: GIS. (2013) 304–313

10. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: ICDE. (2016) 49–60

11. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-
selected tasks in spatial crowdsourcing. In: GIS. (2013) 314–323

12. Deng, D., Shahabi, C., Zhu, L.: Task matching and scheduling for multiple workers
in spatial crowdsourcing. In: GIS. (2015) 21:1–21:10

13. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial
crowdsourcing task workers. In: SSTD. (2015) 137–156

14. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In:
SIGMOD. (2015) 1629–1643

15. Deng, D., Shahabi, C., Demiryurek, U., Zhu, L.: Task selection in spatial crowd-
sourcing from worker’s perspective. GeoInformatica 20(3) (2016) 529–568

16. Zhao, Y., Li, Y., Wang, Y., Su, H., Zheng, K.: Destination-aware task assignment
in spatial crowdsourcing. In: CIKM. (2017) 297–306

17. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval research
logistics 34(3) (1987) 307–318

18. Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity.
In: FOCS. (1977) 222–227

19. Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.: Flexible online
task assignment in real-time spatial data. PVLDB 10(11) (2017) 1334–1345

20. Roy, S.B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia, S., Das, G.:
Task assignment optimization in knowledge-intensive crowdsourcing. The VLDB
Journal 24(4) (2015) 467–491

21. To, H., Shahabi, C., Kazemi, L.: A server-assigned spatial crowdsourcing frame-
work. ACM Transactions on Spatial Algorithms and Systems 1(1) (2015) 2:1–2:28

22. Liu, A., Wang, W., Shang, S., Li, Q., Zhang, X.: Efficient task assignment in
spatial crowdsourcing with worker and task privacy protection. Geoinformatica
(3) (2017) 1–28

23. Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic
online matching in real-time spatial crowdsourcing. In: ICDE. (2017) 1009–1020

24. Mehta, A.: Online matching and ad allocation. Foundations and Trends in Theo-
retical Computer Science 8(4) (2013) 265–368

25. Ting, H., Xiang, X.: Near optimal algorithms for online maximum edge-weighted
b-matching and two-sided vertex-weighted b-matching. Theoretical Computer Sci-
ence 607 (2015) 247–256

26. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: A survey
of recent variants, solution approaches and applications. European Journal of
Operational Research 255(2) (2016) 315–332

27. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: Iterated local
search for the team orienteering problem with time windows. Computers & OR
36(12) (2009) 3281–3290

	Multi-worker-aware task planning in real-time spatial crowdsourcing
	Citation
	Author

	tmp.1579171293.pdf.dKJWS

