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ABSTRACT
Cars of the future have been predicted as shared and electric. There

has been a rapid growth in electric vehicle (EV) sharing services

worldwide in recent years. For EV-sharing platforms to excel, it

is essential for them to offer private charging infrastructure for

exclusive use that meets the charging demand of their clients. Par-

ticularly, they need to plan not only the places to build charging

stations, but also the amounts of chargers per station, to maximally

satisfy the requirements on global charging coverage and local char-

ging demand. Existing research efforts are either inapplicable for

their different problem formulations or are at a coarse granularity.

In this paper, we formulate the Electric Vehicle Charger Planning

(EVCP) problem especially for EV-sharing. We prove that the EVCP

problem is NP-hard, and design an approximation algorithm to

solve the problem with a theoretical bound of 1− 1

e . We also devise

some optimization techniques to speed up the solution. Extensive

experiments on real-world datasets validate the effectiveness and

the efficiency of our proposed solutions.

CCS CONCEPTS
•Mathematics of computing→Combinatorial optimization;
• Theory of computation→ Facility location and clustering;
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1 INTRODUCTION
Electric vehicles (EVs) are fast expanding in the fleets of car-sharing

programs, due to the limit on greenhouse gas emissions, drop in

battery cost, and more EV models on the market. Autolib’
1
, a pio-

neer EV-sharing company, runs 3, 980 EVs and more than 126, 900

registered subscribers in Paris [21]. Leading car-sharing platforms

such as Uber
2
and Lyft

3
are also adding more EVs and promoting

zero-emission rides. Morgan Stanley predicts the integration of

car-sharing and EVs as the next frontier and expects EVs to account

for 50 − 60% of global light vehicle sales by 2040 [15].

The practicability of EV-sharing relies on not only the popu-

lation of EVs, but also the infrastructure that meets the charging

demand [22]. Autolib’ offers 1, 084 charging stations in Paris [21],

while Car2Go
4
is reported to switch EVs to gas-fueled cars due to

the lack of charging stations in San Diego. Thus it is crucial for EV-

sharing platforms to plan and deploy proper charging infrastructure

to ensure user experience of clients.

It is non-trivial to plan charging infrastructure for EV-sharing.

Ideal charging infrastructure planning should (i) ensure pervasive
coverage so that EV-drivers can reach as many points of interest

(POIs) as possible and (ii) offer sufficient numbers of chargers in

each charging station since the local charging demand may vary

dramatically at different POIs. Therefore, one challenge that EV-

sharing platforms confront is how to select locations for charging
stations and deploy proper amount of chargers to meet as much char-
ging demand as possible given a limited budget.

Previous research on gas station planning is not directly appli-

cable because EV charging takes much longer time (more than

8 hours to fill up the battery [1]) and can easily saturate a gas

station [2][5][9]. There is an increasing research interest in EV

charging infrastructure deployment [12][13][10] [23][8][11]. Most

works [12][13][10][23][8] target at urban planning for governments,

where the infrastructure is expected to fulfill all the charging de-

mand of citizens. These schemes are impractical for EV-sharing

companies. On the one hand, a company may not have enough

resource and budget to meet all the charging demand. On the other

hand, the plan that yields the maximum profit may not necessarily

1
https://www.autolib.eu/

2
http://www.uber.com/

3
http://www.lyft.com/

4
https://www.car2go.com/
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cover all the charging demand. Other works focus on maximizing

the demand satisfaction at a coarse granularity of regions [11].

In this paper, we study the Electric Vehicle Charger Planning

(EVCP) problem for EV-sharing platforms. The problem accounts for

both coverage of charging infrastructure and local charging demand

per charging station. It aims to jointly select the locations of stations

and the number of chargers to maximize the charging demand

under a budget constraint. We design solutions with theoretical

guarantees and also propose techniques to speed up the solution.

Evaluations on real datasets validate the effectiveness and efficiency

of the proposed solution.

The main contributions of this paper are summarized as follows.

• We formulate a novel Electric Vehicle Charger Planning

(EVCP) problem for EV-sharing. It optimizes the distribution

of EV chargers to maximize a balance function between

coverage of POIs and local charging demand. We prove the

EVCP problem is NP-hard.

• We analyze the submodularity of the EVCP problem and

design an effective and efficient greedy approximation algo-

rithm with a competitive ratio 1 − 1

e and a time complexity

of O(m2n), wherem is the number of charging stations, and

n is the number of POIs.

• Extensive experiments on real datasets show that our al-

gorithms outperform traditional optimization methods in

terms of effectiveness and efficiency.

In the rest of this paper, we formulate the EVCP problem and

prove its hardness in Sec. 2, propose the solution and speedup

techniques in Sec. 3, and present the evaluations in Sec. 4. Finally

we review related work in Sec. 5 and conclude in Sec. 6.

2 PROBLEM FORMULATION
This section formally defines the Electric Vehicle Charger Planning

problem and proves its NP-hardness.

2.1 Preliminaries
We first define the important notations to formulate the Electric

Vehicle Charger Planning (EVCP) problem.

Definition 2.1 (Road Network). A road network is an undirected

graphG = (V ,E). Each node inV is either a POIvi ∈ {v1,v2, · · · ,vn }
or a candidate locationw j ∈W = {w1,w2, · · · ,wm }, where n and

m are the number of POIs and candidate locations, respectively.

Each edge adjacent two nodes is associated with a weight, represen-

ting the distance between these two nodes. The distance dis(., .), is
the hops of the shortest path between the two nodes in G.

Note that we distinguish the nodes of POIs and candidate locati-

ons in a road network. This is because usually EV-sharing platforms

are only allowed to deploy chargers in their stores (i.e. candidate
locations) rather than any POI.

Definition 2.2 (Candidate Station). A candidate station is a tuple

c j = (w j ,dj , r j ), wherew j is a candidate location node in V , repre-

senting the location of c j , and dj is the number of local charging

demand of c j . POIs with a distance no greater than radius r j can be

covered by c j .

We assume the set of candidate stations is predetermined. Given

two candidate stations c j1 and c j2 , dj1 = dj2 and r j1 = r j2 always

hold if their locations coincide, i.e., w j1 = w j2 . For simplicity, we

use the notation c j1 = c j2 to represent w j1 = w j2 . Note that it is

not the main focus to estimate the local charging demand dj for a
candidate station c j . One simple and practical approach is to use the

number of EVs returned to a candidate station as a rough estimate.

Therefore we assume dj is a non-negative integer in our paper.

Definition 2.3 (Selection). A selection is a tuple sj = (c j ,nj ),
which means nj chargers are planned to be deployed in candidate

station c j , where nj is an integer no less than 0. Two selections sj1
and sj2 are said to be coincident if their corresponding candidate

stations coincide, i.e. c j1 = c j2 .

Definition 2.4 (EV Charger Plan). Given a set of candidate stations
C , an EV charger plan (plan for short) is a set of selections S , where
each candidate station c j appears in exactly one selection in S . That
is, S = {sj |sj = (c j ,nj ),nj ∈ Z∗, j = 1, 2, · · · ,m}. Further define the
size of S as total number of EV chargers of S , i.e. size(S) = ∑m

j=1 nj .

2.2 Reward of Meeting Charging Demand
As discussed in Sec. 1, an optimal plan should account for both

coverage of charging stations and local charging demand per char-

ging station. This subsection defines the reward a plan can derive

from these two aspects of charging demand.

2.2.1 Reward of POI Coverage. A plan is expected to cover as

many POIs as possible in a road network so that EV-drivers can

reach a wide spectrum of places. We model this requirement on

charging demand by the total number of POIs covered by the char-

ging stations in a plan.

A POI is said to be covered by a plan if it is located in the radius

of a selection with at least one charger. Denote P(sj ) as the set of
POI nodes covered by a selection sj , and P(S) as the set of POI nodes
covered by the EV charger plan S . Formally,

P(sj ) =
{
∅, if nj = 0

{v |v ∈ V −W ,dis(v,w j ) ≤ r j }, if nj ≥ 1,
(1)

P(S) = ∪mj=1P(sj ). (2)

We further define a reward of a plan S derived from POI coverage

as the total number of POI nodes covered by S :

Rc (S) = |P(S)|. (3)

2.2.2 Reward of Local Charging Demand. Another aspect of a
good plan is to provide sufficient amounts of chargers to satisfy the

local charging demand at each charging station.

Denote by u the rate of local charging demand that a single

charger can satisfy over a period of a time (e.g., a week). Then the

number of satisfied local charging demand by a selection sj is:

Rd (sj ) =min(dj ,u · nj ). (4)

Accordingly, we define the reward that a plan S can derive from

the local charging demand of all selected charging stations as:

Rd (S) =
m∑
j=1
Rd (sj ). (5)



Table 1: Parameters of candidate stations in Example 2.6.

Candidate Station Demand Radius S1 S2 S3

w1 9 6 3 2 3

w2 0 5 0 1 1

w3 1 6 1 1 0

Figure 1: The road network information for Example 2.6.

2.3 Problem Statement
Given the definitions of the rewards for POI coverage and local

charging demand, the Electric Vehicle Charger Planning problem

can be formulated as follows.

Definition 2.5 (EVCP Problem). Given a road network G = (V ,E),
a set of candidate stations C , the rate of local charging demand

satisfied by one charger u, an adjustable parameter α , and a budget

B on the total number of chargers, the EVCP problem finds a plan

S of size no greater than B, such that the total reward R(S),
R(S) = α · Rc (S) + (1 − α) · Rd (S), (6)

is maximized.

Unlike traditional facility location problems [3], which decide

whether to build the station in each candidate location, our problem

further considers the number of chargers in each station as well as

the satisfaction of local charging demand.

We illustrate the EVCP problem via the following example.

Example 2.6. Suppose there are 3 candidate locationsw1−w3 and

8 POIsv1−v8, whose local demand and radius are shown in Table 1.

The underlying road network is shown in Fig. 1. The number on

each edge represents the distance between its adjacent nodes. Note

that v8 cannot be covered byw1 because dis(w1,v8) = 7 > r1. We

set B, u, and α as 4, 3 and 0.5, respectively.

If we build 3 chargers inw1 and 1 charger inw3, we satisfy 10

local charging demands, and 4 POIs ({v1,v4,v5,v6}) are covered.
The total reward is R(S1) = 7. If we build 1 charger in each station,

and the surplus charger inw1, there are 7 local charging demands

satisfied (6 in w1, and 1 in w3), and 7 POIs (v1 − v7) are covered.
The total reward is R(S2) = 7. However, the optimal selection is

to build 3 chargers in w1 and 1 charger in w2. In this plan 9 local

charging demands are satisfied and 6 POIs are covered. The total

reward is R(S3) = 7.5.

2.4 NP-Hardness of EVCP Problem
In this subsection we prove the NP-hardness of the EVCP problem.

Theorem 2.7. The EVCP problem is NP-hard.

Proof. We prove the NP-hardness of the EVCP problem by re-

ducing the maximum coverage problem [7] with unit weights to a

special case of the EVCP problem where α = 1.

The decision version of maximum coverage problem is illustrated

as follows. Given a finite universal set X = {x1,x2, ...,xn }, a set
of X ’s subsets T = {T1,T2, ...,Tm }, an integer k , and a threshold

t , the decision maximum coverage problem is to decide whether

there exists a set T ′ ⊆ T with its size no more than k , such that

the number of elements in X covered by T ′, i.e. | ∪T ∈T′ T |, is no
less than the threshold t .

The decision version of the special EVCP problem is illustrated

as follows. Given a road network G = (V ,E), a set of candidate

stations C , a budget B, the rate of local charging demand satisfied

by a unit charger u, and a threshold t ′, the objective is to decide

whether there exists a plan S with its size no greater than the budget
B, such that the reward, R(S) = Rc (S) is no smaller than t ′.

We map an instance of the maximum coverage problem, I =
(X ,T ,k, t), to the instance of the special EVCP problem, denoted

by I ′ = (G,C,B,u, t ′) as follows. The element xi ∈ X is mapped to a

POI nodevi ∈ V for i = 1, 2, · · · ,n, andTj is mapped to a candidate

station node w j ∈ V for j = 1, 2, · · · ,m. Then V is expressed as

{v1,v2, · · · ,vn ,w1,w2, · · · ,wm }. There is an edge with weight 1

between two nodesvi andw j if (and only if) xi ∈ Tj . The candidate
stations are then located in the nodes {w1,w2, ...,wm } with their

local demands dj = 1 and radii r j = 1. Formally, C = {c j |c j =
(w j , 1, 1), j = 1, 2, · · · ,m}. B and t ′ are mapped from the maximum

size k and threshold t in I , respectively, and u is set to be 1. Note

that the values of dj and u have no effect on the objective function.

This way, the shortest distance between any two nodes in V is 1

only if the two nodes are vi andw j , and xi ∈ Tj .
On the one hand, if there is a certification of maximum coverage

problem T ′ = {Tq1 ,Tq2 , ...,Tql }, we choose the selection sj for the
instance I ′ as

sj =

{
(c j , 1), if c j ∈ {q1, · · · ,ql }
(c j , 0), otherwise .

(7)

Then S = {sj |1 ≤ j ≤ m} is a certification of the special EVCP

problem.

On the other hand, if there is a certification of the special EVCP

problem S = {(c1,n1), (c2,n2), · · · , (cm ,nm )}, then T ′ = {Tj |nj ≥
1} is a certification of the maximum coverage problem. Note that

the total number of chargers is always no fewer than the total

number of candidate locations with at least one charger:

|T ′ | =
m∑
j=1
I(nj ≥ 1) ≤

m∑
j=1

nj = B, (8)

where I(.) is the indicator function.
Thus as long as there is a certification for the decision maximum

coverage problem, there is a certification for the decision version

of the special EVCP problem, and vice versa. Then the decision

maximum coverage problem can be reduced to the decision version



Algorithm 1: Charger-based Greedy (CG) Algorithm

input :A road networkG, a set of candidate stations C , total
budget of chargers B

output :The EV charger plan S
1 S ← {sj |sj = (c j , 0), j = 1, 2, ...,m};
2 while the number of deployed chargers does not exceed B do
3 j ′ ← arдmax1≤j≤m {α∆R jc (S) + (1 − α)∆R

j
d (S)};

4 if α∆R j
′
c (S) + (1 − α)∆R

j′

d (S) = 0 then
5 break;

6 S ← S
j′
+ ;

7 return S ;

of the special EVCP problem. Since the decision maximum coverage

problem is NP-complete, the general EVCP problem is NP-hard. �

3 METHODS
Due to the NP-hardness of the EVCP problem, we design an approx-

imation algorithm (Sec. 3.1) and prove its theoretical guarantees

(Sec. 3.2). We also propose speedup techniques to improve the effi-

ciency of the proposed algorithm (Sec. 3.3).

3.1 Charger-based Greedy Algorithm
In this subsection we illustrate the details of our approximation

algorithm and analyze its time complexity.

Before describing the algorithm in more detail, we first introduce

some useful notations. Denote by s+j the selection that adds one

more charger than sj in the same candidate station.

s+j = (c j ,nj + 1). (9)

Denote by S
j
+ the EV charger plan where there is one more

charger built in c j than plan S , while the numbers of chargers built

in other candidate stations are the same as that in S .

S
j
+ = (S − {sj }) ∪ {s+j }. (10)

Denote by ∆R j (S) the increased reward after we deploy one

more charger to the candidate station c j of plan S .

∆R j (S) = R(S j+) − R(S). (11)

Similarly, define the increased reward of POI coverage as ∆R jc (S)
and the increased reward of local charging demand as ∆R jd (S):

∆R jc (S) = Rc (S
j
+) − Rc (S) (12)

∆R jd (S) = Rd (S
j
+) − Rd (S) (13)

Then we propose a Charger-based Greedy (CG) algorithm, which

adds one charger to the EV charger plan greedily.

Alg. 1 shows the pseudocode of the CG algorithm. In line 1,

an empty EV charger plan S is initialized. Then in each iteration,

the CG algorithm greedily chooses the candidate station with the

maximum increased reward (line 3), and updates the plan (line 6).

Note that when themaximum increased reward decreases to 0 (“yes”

judgement in line 4), the total reward will no long change. As a

result the algorithm can break (line 5).

Table 2: Values of R j+(S) in each iteration.

Iteration ∆R1(S) ∆R2(S) ∆R3(S)
1
st

2 2.5 2

2
nd 2 0 1

3
rd 1.5 0 1

4
th 1.5 0 1

Example 3.1. Consider the example in Example. 2.6. The values of

∆R1(S), ∆R2(S), and ∆R3(S) in every iteration are shown in Table 2.
The maximum increased rewards of every iteration are marked in

bold. In the 1
st

iteration, c2 is selected because it can cover a large

number of POIs. Then in the 2
nd

, 3
rd

and 4
th

iterations, c1 is

selected because it can satisfy more demands. The total reward

gained from this selection is 2.5 + 2 + 1.5 + 1.5 = 7.5.

3.2 Algorithm Analysis
Despite the simplicity of the CG algorithm, we prove its theoretic

guarantee via submodularity. We also analyze its time complexity

in this subsection.

We first define a new set function upon the set of all chargers. It

operates the same as the objective function on the selection set S ,
but has a characteristic of submodularity.

Specifically, for each candidate station c j , make B duplicates

of the EV chargers, denoted by e
(1)
j , e

(2)
j , ..., e

(B)
j , and obtain a set

Ej = {e(1)j , e
(2)
j , ..., e

(B)
j }. Further define a universal setU = ∪

m
j=1Ej .

Given a subset E ∈ U , define a plan derived from E, denoted by SE ,
as SE = {sj |sj = (c j , |Ej ∩ U |), j = 1, 2, ..m}. This means that the

number of chargers in station c j in SE is exactly the size of Ej ∩U ,

for j = 1, 2, ...,m. Finally, define the objective function of a subset

E ∈ U , as the reward of E’s corresponding derived plan. Without

loss of generation, denote the objective function by R(E). We have

R(E) = R(SE ). In the same way define Rc (E) and Rd (E). Then we

have R(E∪{e(k )j }) = R(S
j
+) if e

(k )
j < E. This means that if we obtain

a subset E of U by using a greedy algorithm with its size |E | ≤ B,
the plan derived from E, say SE , is exactly the plan generated by

our CG algorithm, and the same as for the optimal objective values.

Theorem 3.2. The competitive ratio of Charger-based Greedy (CG)
algorithm is 1 − 1

e .

Proof. Rc (E) is nondecreasing submodular referring to [7] (when

adding one charger to the station c j with nj = 0) and Lemma 3.3

(when adding one more charger to the station c j with nj ≥ 1).

The nondecreasing submodularity of Rd (E) can be derived from

Eq.17, sincemin(dj ,nj · u) = dj +min(0,nj · u − dj ). We omit the

details due to the space limit.

According to Proposition 2.7 in [14], the positive linear combi-

nation of nondecreasing submodular functions, R(E) = αRc (E) +
(1 − α)Rd (E), is also nondecreasing submodular. Hence we have

the competitive ratio of the greedy algorithm on E with a budget

B is 1 − 1

e , due to [14]. This consequently leads to the competitive

ratio of our CG algorithm. �

Time Complexity. Denote by n, m and B the number of POIs,

charging stations, and EV chargers, respectively. Assume that the



sets of POIs are implemented by an unordered set. Then the time

complexities of ∆R jc (S) and ∆R
j
d (S) areO(n) andO(1), respectively.

Hence each time line 3 is executed, it consumesO(m(1+n)) = O(mn)
time totally. The time complexity of lines 4-5 is O(n), and that of

line 6 isO(1). Since lines 2-6 are executed at mostO(B) times, their

total time complexity is O(mnB).

3.3 Speedup Techniques
Although the CG algorithm has a performance guarantee, it has a

time complexity of O(mnB). This subsection introduces techniques

to accelerate the algorithm.

3.3.1 Observations. The speedup techniques are inspired by

two observations.

First, if we deploy one more charger in a charging station c j ,
the total number of covered POIs increases only when there is no

charger in c j before. This observation leads to the following lemma.

Lemma 3.3. After adding one more charger to a station c j with
nj ≥ 1 upon the plan S , the increased reward for POI coverage of any
station stay invariable. Formally, if nj ≥ 1 in a selection S , then

∆R j
′
c (S

j
+) = ∆R j

′
c (S), 1 ≤ j ′ ≤ m. (14)

Proof. From the definition of the reward of POI coverage, if

adding one more charger to a station c j with nj ≥ 1, the POIs

covered by S+j is the same as that covered by S , i.e. P(S+j ) = P(S)
because P(s+j ) = P(sj ). The increased reward for POI coverage of

S
j
+, i.e. ∆R

j′
c (S

j
+), can be derived as follows:

∆R j
′
c (S

j
+) =

{
0, if nj′ ≥ 1

R((S j+)
j′
+ ) − Rc (S

j
+), otherwise.

(15)

If j ′ = j, then nj + 1 ≥ 1. ∆R jc (S
j
+) = 0, which is exactly the value

of ∆R jc (S). Otherwise if j ′ , j, since P(S+j ) = P(S), ∆R j
′
c (S

j
+) =

∆R j
′
c (S) also holds. �

The second observation is, when adding one more charger to the

charging station c j , the reward of local charging demand generated

from other stations does not change. Hence the reward of local

charging demand of S
j
+, i.e. Rd (S

j
+), can be formulated by

Rd (S
j
+) =

∑
1≤j′≤m
j′,j

Rd (sj′) + Rd (s+j ). (16)

The increased reward of local charging demand can consequently

be derived from the following equation.

∆R jd (S) = Rd (S
j
+) − Rd (S)

=
∑

1≤j′≤m
j′,j

Rd (sj′) + Rd (s+j ) −
m∑
j′=1
Rd (sj′)

= Rd (s+j ) − Rd (sj )
=min(dj , (nj + 1) · u) −min(dj ,nj · u)

(17)

Eq.17 directly leads to the following lemma.

Lemma 3.4. After adding one more charger to a charging station
c j upon the plan S , the increased reward of local charging demand of
any other stations stay invariable. Formally,

∆R j
′

d (S
j
+) = ∆R j

′

d (S), 1 ≤ j ′ ≤ m, j ′ , j . (18)

Proof. The lemma derives from the fact that ∆R j
′

d (S) can only

be affected by the selection sj′ = (c j′ ,nj′), and sj′ does not change
when adding one more charger to a different station c j . �

Lemma 3.3 and Lemma 3.4 indicate that ∆R jc (S) and ∆R jd (S) are
possibly invariable. Hence we can record these increased rewards,

and update them when their values change. In this way we can de-

crease the number of calculations of ∆R jc (S) and ∆R
j
d (S). However,

in the worst case the algorithm still needs to operate B iterations.

Finally, consider the following lemma. The lemma inspires us to

reduce the number of iterations to O(m).

Lemma 3.5. If we add one more charger to station c j upon the plan

S , and nj satisfies 1 ≤ nj ≤ ⌊
dj
u ⌋ − 2, then

∆R j′(S j+) = ∆R j′(S), j ′ = 1, 2, ...,m (19)

Proof. On the one hand, since nj ≥ 1, ∆R j
′
c (S

j
+) = ∆R j

′
c (S) = 0

according to Lemma 3.3. On the other hand, we have obtained that

∆R j
′

d (S
j
+) = ∆R j

′

d (S) for 1 ≤ j ′ ≤ m, j ′ , j. Now consider the value

of ∆R jd (S
j
+) and ∆R jd (S). Since nj < nj + 1 < nj + 2 ≤ ⌊

dj
u ⌋ ≤

dj
u ,

we get nj · u < (nj + 1) · u < (nj + 2) · u ≤ dj . Substituting the

inequation into Eq.17, we get,

∆R jd (S
j
+) =min(dj , (nj + 2) · u) −min(dj , (nj + 1) · u)
= (nj + 2) · u − (nj + 1) · u

= u = (nj + 1) · u − nj · u = ∆R jd (S)
(20)

�

Based on Lemma 3.5, when a charger is deployed in a station

with the maximum increased reward, say c j , and there are at least

one charger deployed in c j , we can deploy multiple chargers in c j

until it reaches ⌊ dju ⌋ chargers.
3.3.2 Fast-CG Algorithm. Based on Lemma 3.3, Lemma 3.4, and

Lemma 3.5, we propose the Fast-CG algorithm. It has the same

theoretical guarantee as the CG algorithm, but is more efficient in

terms of time complexity.

Alg. 2 shows the pseudocode of the Fast-CG algorithm. In line

1, an empty EV charger plan S is initialized. Lines 2-3 initialize

arrays rc [1..m], rd [1..m], which record the values of ∆R jc (S) and
∆R jd (S) in the current iteration, respectively. Then in each iteration,
the algorithm first greedily chooses the candidate station with the

maximum increased reward (line 5). Note that the same as Alg. 1,

the Fast-CG algorithm stops when the maximum increased reward

reduces to 0 (lines 6-7). According to Lemma 3.3, the increased

rewards of POI coverage rc [1..m] are updated only when there is

no charger deployed to the chosen station before, as lines 8-10 show.

According to Lemma 3.4, only the increased reward of local charging

demand of the chosen station, rd [j ′], is updated in each iteration,

as line 15 shows. Otherwise if the number of current deployed



Algorithm 2: Fast-CG Algorithm

input :A road networkG, a set of candidate stations C , total
budget of chargers B

output :The EV charger plan S
1 S ← {sj |sj = (c j , 0), j = 1, 2, ...,m};
2 Define arrays rc [1..m],rd [1..m];
3 rc [j] ← ∆R jc (S), rd [j] ← ∆R jd (S) for j = 1, 2, ...,m;

4 while number of deployed chargers nb < B do
5 j ′ ← arдmax1≤j≤m {α · rc [j] + (1 − α) · rd [j]};
6 if α · rc [j ′] + (1 − α) · rd [j ′] = 0 then
7 break;

8 if nj′ = 0 then
9 S ← S

j′
+ ;

10 rc [j] ← ∆R jc (S) for j = 1, 2, ...,m;

11 else if nj′ = 1 and nj′ < ⌊
dj
u ⌋ then

12 Deploymin(⌊ dju ⌋ − nj′ ,B − nb ) chargers to c j′ and
update S ;

13 else if nj′ = ⌊
dj
u ⌋ then

14 S ← S
j′
+ ;

15 rd [j ′] ← ∆R j
′

d (S);
16 return S ;

chargers nj′ is smaller than the integer ⌊ dj′u ⌋, we straightly deploy

chargers until there are ⌊ dj′u ⌋ chargers in c j′ , as shown in lines

11-12. Finally, in lines 13-14, if there are already ⌊ dj′u ⌋ chargers in
c j′ , we can only deploy one more charger to c j′ . This is because

when nj′ ≥ ⌊
dj′
u ⌋ + 1, ∆R j

′(S) = 0 according to Eq.15 and Eq.17.

This means the algorithm will break in line 7.

Table 3: Values of R j+(S) in each iteration.

Iteration ∆R1(S) ∆R2(S) ∆R3(S) Chargers

1
st

2 2.5 2 1

2
nd 2 0 1 1

3
rd 1.5 0 1 2

Example 3.6. Back to our running example in Example. 2.6. The

values of ∆R1(S), ∆R2(S) and ∆R3(S), and numbers of deployed

chargers in every iteration are shown in Table 3. The maximum

increased rewards of every iteration are marked in bold. The 1
st

iteration and the 2
nd

iteration are the same as those in Example. 3.1.

Note that after choosing w1 in the 3
rd

iteration, ∆R2(S) and
∆R3(S) do not need to be updated because of Lemma 3.3 and Lemma

3.4. In the 3
rd

iteration, 1 = n1 < ⌊ d1u ⌋ = 3, hence ⌊ d1u ⌋ − n1 = 2

chargers are deployed in c1, and the Fast-CG algorithm returns the

final EV charger plan.

Time Complexity. Similarly to Sec. 3.2, denote by n,m and B the

number of POIs, charging stations, and EV chargers, respectively.

For any 1 ≤ j ≤ m, c j is chosen by line 5 at most 3 times: the

first time nj from 0 to 1, the second time nj from 1 to ⌊ dju ⌋ (if
possible), and the third time from ⌊ dju ⌋ to ⌊

dj
u ⌋ + 1 (if possible).

This means that lines 5-15 are executed at most O(m) times. Based

on this conclusion, the total time complexity of line 5 isO(m2), that
of line 10 is O(m2n), and that of any other lines is O(m). Total time

complexity of this Fast-CG algorithm is O(m2n).

4 EXPERIMENTAL EVALUATION
This section presents the evaluations of our proposed algorithms.

4.1 Experimental Settings
Datasets. Our dataset is generated from a real electric car-sharing

platform in Beijing, China. Totally there are 55, 715, 107 real-time

GPS data of 5, 216 vehicles, and their renting and returning records

from June 2017 to September 2017. 1, 684 stations and 699, 142 POIs

scatter on the map of Beijing, as shown in Fig. 2 and Fig. 3.

Table 4 lists the important constants in our experiments. Only

those stations and POIs with longitudes between [116.42, 116.52]
and latitudes between [39.86, 39.96] are considered. For simplicity,

we reshape the area to be a 1000 × 1000 square. There are 139

stations and 11, 757 POIs located in this square. The number of local

charging demand in each station is generated from the summation

of charging demands of this station in a week in June 2017.

Table 5 shows the major parameters in our experiments. We

assume that all candidate stations have the same coverage radius r .
Since 1km on the real map is transformed to about 10 on the square,

r varies from 10 to 50 with a step 10. As for u, since it takes 8 − 12
hours to fill up an EV [1], the number of local charging demand

satisfied by a single charger u varies from 6 to 14, with a step 2.

Finally, since the running time of our algorithms is related tom,

n and B, we change the values ofm and B in the experiments of

scalability (n is ignored because it is large enough). Note that in the

experiments of scalability, since there are not enough stations in

reality, the locations are synthetically generated.

Baseline. Most of existing works model their problems as inte-

ger programming problems, and use the optimization methods to

Table 4: Experimental constants.

Constant Values

Longitude [116.42, 116.52] × 10k
Latitude [39.86, 39.96] × 10k
Number of Stations 139

Number of POIs 11, 757

Table 5: Experimental variable settings.

Variable Values

r 10, 20, 30, 40, 50
α 0.1, 0.3, 0.5, 0.7, 0.9
B 200, 400, 600, 800, 1000
u 6, 8, 10, 12, 14
Scalability(m × B) 200×2k, 400×4k, 600×6k, 800×

8k, 1k × 10k



Figure 2: Distribution of stations.

Figure 3: Distribution of POIs.

obtain the result [13][10][23][8][4][6][11]. Thus for the baseline,

we formulate the EVCP problem as an integer programming pro-

blem, and then use the methods of simplex and branch and bound

[16] to approximately achieve the solution.

Implementation. All the algorithms are implemented in C++,

and the experiments were performed on a machine with 4 Intel(R)

Core(TM) i5-5200H CPU and 8G memory.

Metrics. We compare the performances of the algorithms in terms

of the output rewards, as well as time and memory costs.

4.2 Experiment Results
Effect of r . The first column of Fig. 4 shows the results of varying

r . The total reward output by all the three algorithms increases

when r increases, and our algorithms outperform the baseline. This

is because when r increases, the number of covered POIs increases

as well. Fast-CG consumes least time among the three algorithms.

With the increase of r , CG and Fast-CG consume more time, but

the time Fast-CG varies far less than that of CG. This might be

because when r increases, it takes more time to make set union,

but the union times of Fast-CG are less than CG. CG and Fast-CG

also outperform the baseline in terms of the running time. As for

memory, CG and Fast-CG consume a little more space as r increases,

but are more efficient than the baseline. This is because when r
increases, these two algorithms need more space to store the set of

POIs covered by each candidate station.

Effect of α . The second column of Fig. 4 shows the results of va-

rying α . The first observation is that when α increases, the rewards

of the three algorithms all decrease linearly. This might be because

the number of satisfied demands lessens than the number of co-

vered POIs as α decreases (since a charger leads to a coverage of

all POIs in range, but only satisfies at most u demands). Besides,

CG and Fast-CG outperform the baseline, and Fast-CG performs

the best in terms of running time. The memory costs of the three

algorithms stay stable as α increases. CG and Fast-CG consume

less space than the baseline.

Effect of B. The third column of Fig. 4 shows the results of varying

B. We can observe that the rewards of three algorithms increase

when B increases. This is reasonable because more chargers mean

more satisfied local charging demand and covered POIs. The run-

ning time of Fast-CG is stable, but that of CG and the baseline

increases as B increases. This is because CG takes B iterations to

get the results, but Fast-CG does not. The memory costs of three

algorithms are similar to that when varying α .

Effect of u. The forth column of Fig. 4 shows the results of varying

u. The rewards of all the three algorithms increase as u increases,

and CG and Fast-CG outperform the baseline. As for running time,

CG and Fast-CG take stable time and outperform the baseline. Fast-

CG performs the best in terms of running time. Still, CG and Fast-CG

consume less memory than the baseline, which is similar to the

trends in Fig. 4j, and Fig. 4k.

Scalability. The experimental results on scalability are shown in

Fig. 5. CG and Fast-CG still outperform the baseline in terms of

reward, and we omit the trend due to the limited space. The running

time of CG becomes extremely large whenm × B increases, due

to redundant iterations in CG. The running time of Fast-CG also

increases asm × B increases, but is still acceptable (307.97 seconds

when m × B = 10
7
). The memory costs of the three algorithms

increase as m × B increases, but CG and Fast-CG consume less

memory than the baseline.

Summary of Results. CG and Fast-CG always perform the same

in terms of reward, since our speedup techniques do not change

the results of the greedy algorithm. For real dataset, CG and Fast-

CG outperform the baseline in terms of the total reward, time

and memory. Besides, comparing with CG, Fast-CG has the same

reward and similar consuming memory, but consumes less time.

CG consumes most time, and is unfit for large-scale dataset (e.g.
17398.6 seconds whenm × B = 10

7
). Fast-CG performs the best on

the real datasets, and has an acceptable running time even on large-

scale datasets. The experiment results validate the effectiveness and

efficiency of our algorithm and the speedup techniques.

5 RELATEDWORK
With the rapid development of spatial crowdsourcing and car-

sharing platforms, various issues in car-sharing have attracted

extensive research attention [18][17][20][19]. EV-sharing, as an

environment-friendly car-sharing service, is also gaining growing

research interests. A particularly active topic is planning charging
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Figure 4: Results on varying r , α , B, and u.

infrastructure for EVs under different constraints and with diverse

objectives. This section reviews the most representative works that

involve charging demand either as constraints or objectives.

5.1 Charging Demand as Constraints
This thread of research requires all charging demand to be fulfilled

when planning the placement of EV charging infrastructure. These

schemes are mainly designed to facilitate governments for urban

planning and policy making. Liu et al. [13] minimize the total cost

of a charging transformer plan under the constraints of voltage

and current of grids. Li et al. [10] minimize the average seeking

and waiting time of all charging demands based on large scale taxi

trajectory data. Xiong et al. [23] model the movements of charging

demands among regions as the integer variables, and apply the

Nash equilibrium tominimize the expectation of total charging time.

Jia et al. [8] consider the construction cost and charging time at the

same time. The objective is a summation of the construction cost,

affected by the number of chargers in stations, and the operation

cost, derived from the movement of consumers among regions.

Our work is different from these studies in two aspects. (i) We

aim to provide an EV charger plan for EV-sharing platforms rather

than for urban planning. The target is to maximize the satisfied

charging demand with a limited budget to make profit. (ii) Most of

these studies optimize not only the deployment of chargers but also

the movement of charging demands. Our work has no assumptions

or requirements on the movement of EV-drivers.

5.2 Charging Demand as Objectives
A more related thread of research focuses on maximizing the co-

verage or revenue of charging demand under different constraints.
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Figure 5: Results on scalability.

Frade et al. [4] formulate the problem as a traditional maximum co-

verage problem. He et al. [6] deploy chargers with the equilibrium

of transportation and electric power flow. Lam et al. [9] propose to
maximize the revenue and minimize the cost at the same time. A

bilevel optimization is formulated to solve the problem.

Our work is different from [4] by considering both coverage

and the local demand at each charging station. Compared with [6]

and [9], which optimize charger deployment for different regions,
our work is finer-grained by planning charger deployment for each

location. We also provide solutions that have theoretical guarantees.

6 CONCLUSION
In this paper, we formulate the Electric Vehicle Charger Planning

(EVCP) problem, which deploys charging infrastructure (locations

of stations and numbers of chargers per station) that maximizes

the satisfied charging demand (POI coverage and local charging

demand). We show the EVCP problem is NP-hard, and design a

charger-based greedy solution with theoretical guarantees. We furt-

her propose some speedup techniques. Extensive experiments on

real-world datasets from EV-sharing platforms validate the effecti-

veness and efficiency of our solutions. We envision our work as

a practical reference for EV-sharing platforms to optimize their

planning on their private charging infrastructure.
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