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ABSTRACT
On-demand taxi-calling platforms often ignore the social engage-
ment of individual drivers. The lack of social incentives impairs the
work enthusiasms of drivers and will affect the quality of service. In
this paper, we propose to form teams among drivers to promote par-
ticipation. A team consists of a leader and multiple members, which
acts as the basis for various group-based incentives such as com-
petition. We define the Recommendation-based Team Formation
(RTF) problem to form as many teams as possible while account-
ing for the choices of drivers. The RTF problem is challenging. It
needs both accurate recommendation and coordination among rec-
ommendations, since each driver can be in at most one team. To
solve the RTF problem, we devise a Recommendation-Matrix-Based
Framework (RMBF). It first estimates the acceptance probability of
recommendations and then derives a recommendation matrix to max-
imize the number of formed teams from a global view. We conduct
trace-driven simulations using real data covering over 64,000 drivers
and deploy our solution on a large on-demand taxi-calling platform
for online evaluations. Experimental results show that RMBF outper-
forms the greedy-based strategy by forming up to 20% and 12.4%
teams in trace-driven simulations and online evaluations, and the
drivers who form teams and are involved in the competition have
more service time, number of finished orders and income.
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1 INTRODUCTION
Attracting and motivating drivers is essential for the success of on-
demand taxi-calling platforms such as Didi Chuxing1, Uber2 and
Grab3. Many platforms design dynamic pricing strategies [19] to
attract drivers. Consequently, many platforms such as Uber managed
to increase the number of monthly active drivers from 50, 000 in
January 2014 to over 150, 000 in January 2015 [7].

Although momentary incentives have been widely applied in
on-demand taxi-calling platforms, social engagement is largely over-
looked in these platforms. Among the large numbers of drivers
registered, many of them feel unmotivated working as individuals,
and decide to quit after a period of time. Some studies find that only
4% of the drivers will remain on Uber after one year4.

Rather than further designing incentive mechanisms at the indi-
vidual level [12, 24, 27], we propose to team up the drivers, where
various group-based incentives can be applied. We are inspired by the
recent findings that grouping promotes participation in crowd-based
applications [1]. To explore the potential of grouping for taxi-calling
services, we conduct a survey among DiDi Chuxing drivers. Ac-
cording to the results, 15% drivers formed spontaneous groups (see
Fig. 1a). We find that drivers affiliated to at least one self-organized
group tend to remain in service for a longer time, complete more
taxi orders and earn more income than those not in any group (see
Fig. 1b). The results are consistent with the findings in [1].

Inspired by these findings, we propose to form teams among taxi
drivers. A team is a group of drivers with one leader and multiple
members. It is envisioned to promote collaboration and coordination,
and serves as the basis for group-based incentive mechanisms such
as gamification [22] and competition [4]. For instance, DiDi chuxing
has launched a team competition program where various competi-
tions are organized for its drivers to team up and the teams that finish
the highest number of taxi orders within a period can earn extra
rewards. These group-based incentive mechanisms tend to motivate
workers to produce better results and will eventually reduce the cost
and increase the profits of crowdsourcing platforms [6].

To realize the full potential of groups in incentive mechanism
design, taxi-calling platforms need to devise effective schemes to
form as many teams as possible. Self-organized groups are ineffec-
tive and only contribute to a small portion of the entire population
of drivers (see Fig. 1a). This is because drivers usually have limited

1https://en.wikipedia.org/wiki/Didi_Chuxing.
2https://en.wikipedia.org/wiki/Uber_(company).
3https://en.wikipedia.org/wiki/Grab_(application).
4https://www.cnbc.com/2017/04/20/only-4-percent-of-uber-drivers-remain-after-a-
year-says-report.html
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Figure 1: Survey results among DiDi Chuxing drivers on self-
organized groups and their performance.

information about other drivers and thus can only team up locally
in an ad hoc manner. In contrast, the platform has access to diverse
information of drivers at a large scale and should be able to optimize
the team formation process from a holistic view.

In this paper, we propose a recommendation-based approach to
team formation for on-demand taxi-calling platforms. Given a set
of drivers registered as either leaders or members, the platform
recommends members to leaders in multiple rounds and the leaders
can decide whether to accept the recommendation or not. The goal
is to maximize the number of teams formed (i.e. groups of a leader
and a given number of members). We define team formation as a
recommendation problem rather than a combinational optimization
problem [13] because the recommendation-based approach endows
drivers’ choices and hence improves their sense of participation.

Our recommendation problem also differs from conventional
recommendation systems [16, 18, 20] in that we not only need
high accuracy per recommendation but also coordination among
recommendations to maximize the number of teams formed (since
each member can only join one team). Specifically, we want to
maximize the Team Formation Success Number (TFSN), i.e. the
number of teams, where each team is exactly of the required team
size (called a feasible team).

Formally, we define the Recommendation-based Team Formation
(RTF) problem and prove that it is NP-hard. To solve the RTF prob-
lem, we first propose a greedy algorithm based on mainstream rec-
ommendation system designs. We further devise a Recommendation-
Matrix-Based Framework (RMBF) to solve the problem from a
holistic view. RMBF first estimates the probability for each leader to
accept a recommended member. Afterwards it uses a recommenda-
tion matrix to optimize the TFSN in each round of recommendation,
which takes both accuracy per recommendation and conflict among
recommendations into consideration, and derives globally optimized
results. We evaluate the performance of RMBF on real data in-
volving over 64,000 drivers collected by DiDi Chuxing, a large
on-demand taxi-calling platform in China. Trace-driven simulations
show that RMBF-based approaches can form up to 20% more teams
than greedy-based recommendation strategies. We also integrate our
methods into the group-based competition programs held by the
platform. Real-world online experiments show that RMBF can help
form up to 12.4% more teams than a greedy strategy.

The main contributions of this paper are as follows:

• To the best of our knowledge, we are the first to propose team
formation in on-demand taxi-calling platforms. It serves as
a basis to design group-based collaborative or competitive
incentive mechanisms for such platforms.
• We define team formation as a recommendation problem and

prove it is NP-hard. We then design a generic recommendation-
matrix-based framework (RMBF) to solve it approximately.
• We evaluate RMBF on a large-scale on-demand taxi-calling

platform using both trace-driven simulations and online eval-
uations. Experimental results show that RMBF outperforms
the greedy-based strategy by forming up to 20% and 12.4%
teams in trace-driven simulations and online evaluations.

2 RELATED WORK
This section reviews related work in recommendation systems and
team formation in social networks.

2.1 Recommender Systems
Recommendation systems attempt to recommend the most suitable
items to users and have been widely applied in entertainment (rec-
ommendations for movies, music), e-commerce (recommendations
for consumers of products), etc. Commonly used recommendation
techniques include collaborative filtering (CF) [18], content based
(CB) [16] and knowledge based (KB) [20]. These techniques can be
further combined and improved. For example, Yu et al. [25] suggest
that CB and CF can be combined under a hierarchical Bayesian
framework. Shang et al. [9] use ANN to generate the personalized
recommendation. Xue et al. [23] present a technique where individ-
uals are grouped and the unrated items are predicted by use of the
users’ ratings in a group. Zhang et al. [26] develop a Fuzzy-based
recommender system which combines user-based and item-based
collaborative filtering techniques with fuzzy set techniques to make
the personalized recommendation. We refer interested readers to [3]
for a comprehensive overview of recommendation systems.

Our work is inspired by the research on recommendation sys-
tems and takes a recommendation based approach to team formation.
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Figure 2: An example of competition-based social mechanism built upon team formation.

However, the proposed recommendation-based team formation prob-
lem differs from traditional recommendation systems in two folds.
(i) The recommendations (i.e. members) in our problem are cor-
related (i.e. each member can only be in one team). (ii) We not
only require accurate recommendation, but also coordination among
recommendations. Hence our problem is more challenging.

2.2 Team Formation in Social Networks
Team formation is one important problem in social networks. In
this thread of research, teams of experts with different skills are
formed to complete tasks requiring multiple skills. The goal is often
to find a qualified team with the minimal communication cost, which
is defined based on the social graph of the experts [2, 10, 13, 14].
Theodoros et al. [13] propose to use the diameter and the sum of
the weights of the minimum spanning tree of the team members’
social graph as the communication cost. Mehdi et al. [10] define the
communication cost as the sum of the shortest distances between
the members and the leader. Other goals such as workload balance
among members have also been considered [2, 14].

Our team formation problem differs from the existing literature
in two aspects. (i) The teams in our problem are formed as the
basis to design social-based incentives rather than to solve complex
tasks. Hence the members in our problem are homogeneous. (ii) We
aim to maximize the number of teams formed, while the goals of
above studies are mainly related with the team’s communication cost
defined based on the social networks.

3 PROBLEM STATEMENT
This section introduces team formation in on-demand taxi-calling
platforms (Sec. 3.1) and formally define the recommendation based
team formation problem (Sec. 3.2). Finally we analyze the hardness
of the problem in Sec. 3.3.

3.1 Preliminaries
To form teams on taxi-calling platforms, each driver first registers as
either a leader or a member. Each team consists of one leader and
multiple members. We distinguish leaders and members because
research in management shows that leadership can enhance the

effectiveness of the team [15]. We set only one leader for each team
because one leader can make the team formation succinct, compared
with no-leader or multi-leader situations. For ease of management
one member can join at most one team.

Teams formed on the platform can be used to implement various
social incentive mechanisms such as competition [6]. Fig. 2 illus-
trates an example of competition-based mechanism built upon teams.
For fair competition, each team needs to be of equal size. In the rest
of this work, we will take competition (and thus equal team sizes)
as an example to define our problem and optimization framework.
Other social incentives also apply.

• Registration. The taxi-calling platform publishes informa-
tion about team-based competitions including the number
of each team. Drivers who are willing to participate in the
competitions register as leaders or members.
• Team Formation. Registered drivers form teams. It can be

achieved by leaders inviting members or the platform recom-
mending members to leaders.
• Competition. Feasible teams take part in different competi-

tions for monetary or other rewards.

Our work focuses on the team formation stage and proposes a
recommendation-based approach to maximize the number of feasible
teams that can be formed.

3.2 Problem Formulation
Denote L = {l1, l2, ..., ł |L |} as the set of drivers who register as lead-
ers and M = {m1,m2, ...,m |M |} as the set of drivers who register as
members. Let S be the required size of each team, which is prede-
fined by the specific mechanisms. A team is feasible if its size equals
S . Further assume at most NR rounds are allowed to recommend
members to leaders whose teams are not feasible yet. In each round,
a certain number of members are recommended to each leader. De-
note lckl as the number of members a leader l still lacks to form
a feasible team. Hence the number of recommendation should not
exceed lckl . Leaders decide whether to accept the recommendations
or not before the next round. Once a member is accepted, s/he will
not be recommended to other leaders in the subsequent rounds. If
the same member is accepted by more than one leader, the member
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Figure 3: An example of instance transformation.

will be allocated randomly. We define the recommendation-based
team formation problem (RTF) below.

DEFINITION 1 (RECOMMENDATION-BASED TEAM FORMA-
TION). Given sets L and M , a budget NR on the rounds of rec-
ommendations and the size of the feasible team S , the platform
recommends drivers in M who do not have a team to leaders in L
whose current team size is smaller than S in each round and observes
the decisions of the leaders. The goal is to maximize the number of
feasible teams after NR rounds.

3.3 Hardness Analysis
We analyze the hardness of the RTF problem above by considering
a simplified version, where for all l ∈ L and m ∈ M , we know in
advance whether or not l will accept m if m is recommended to l .
Such simplified version of the RTF problem can be formulated as
a bipartite matching problem called Recommendation with Oracle
(RwO) as follows.

DEFINITION 2 (RECOMMENDATION WITH ORACLE). Give an
unweighted bipartite graph G =< L,R, E > where L and R represent
the left and right nodes, respectively, and E is the set of edges
between L and R. For each l ∈ L, integer cl > 1 is the capacity of l ,
which is the maximum number of nodes in R that can be matched to
it. We say l is exhausted if exactly cl nodes in R are assigned to it.
The problem is to give a matching between L and R to maximize the
number of l ∈ L whose capacity is exhausted.

We then analyze the hardness of the RwO problem.

LEMMA 1. The RwO problem is NP-Hard.

PROOF. We prove by reduction from the set packing problem [11].
In the set packing problem, we are given a list of sets S1, S2, · · · , Sn ,
and the problem is to answer whether there exists p sets among them
such that the p sets are mutually disjoint. Given an instance of the
set packing problem, we create a left node li for each Si and a right
node r j for each element sj in ∪np=1Sp . There is an edge between li
and r j if sj ∈ Si . The capacity cli for li is set to |Si |. Thus we get an
instance of the decision version of RwO problem. As the set packing
problem is NP-Complete, the RwO problem is NP-Hard. �

If the capacities of the nodes in L is a constant k (we call this the
k-RwO problem), it is still NP-Hard.

LEMMA 2. The k-RwO problem is NP-Hard.

PROOF. We prove by reduction from the k-set packing prob-
lem [8]. In the k-set packing problem, all the sets S1, S2, · · · , Sn have
the same size of k . The following proof is similar to that of Lemma 1
and we omit it here. �

We have shown that the k-set packing problem can be reduced to
the k-RwO problem. Next we prove that the k-RwO problem can be
reduced to the (k + 1)-set packing problem.

LEMMA 3. The k-RwO problem is no harder than the (k + 1)-set
packing problem.

PROOF. The reduction is as follows. Given an instance of the
k-RwO problem, for each l ∈ L, denote nl as the number of l’s
neighbor nodes. For the i-th k-combination of these nl neighbor
nodes, we create a node l i and add an edge between l i and each of
the nodes in the i-th combination. Then we create a dummy node
r ′ for R and add an edge between all the l i and r ′. Now we get an
instance of the (k +1)-set packing problem. Fig. 3 shows an example
of how to conduct the reduction. �

From Lemma. 1 to Lemma. 3 it can be inferred that the hardness
of RwO is similar to the set packing problem. Note that unless
P = NP the maximum k-set packing problem cannot be efficiently
approximated within a factor of Ω(lnk/k) [8]. The original RTF
problem is even harder than the RwO problem because it does not
know whether a leader will accept a recommendation or not. In the
next two sections, we propose two solutions to the RTF problem.

4 GREEDY-BASED BASELINE SOLUTION
This section presents a greedy based baseline solution (BL for short)
to the RTF problem.

Main Idea. To form as many feasible teams as possible, we first iden-
tify the team leader l∗ with the smallest number of lacked members
(denoted by lckl ∗ ). Ties can be broken arbitrarily. Then lckl ∗ drivers
with the highest probabilities to be accepted are recommended to l∗.



Figure 4: Recommendation-Matrix-Based Framework.

Acceptance Probability Estimation. As with mainstream recom-
mendation systems, BL estimates the probability for each leader
to accept certain recommended member from historical data. Sim-
ilar to other practical recommendation systems, the platform may
face the cold-start problem. BL solves the cold-start problem by
using the similarity between leaders and members for recommen-
dation before sufficient records on acceptance probability are col-
lected. Specifically, BL use age and hometown information to cal-
culate the similarity between leaders and members, i.e., Sim(l,m) =
αSimд(l,m)+(1−α)Simd (l,m), where Simд(l,m) = 1−|дl − дm |/G
and Simd (l,m) = 1−(11(l,m) + 12(l,m) + 13(l,m))/3. дl and дm are
the ages of leader l and member m, respectively. G is the largest
age difference among all leader-member pairs. 11(l,m), 12(l,m) and
13(l,m) indicate whether l andm have the same level 1, 2 and 3 ad-
dresses, respectively. The similarity metric proves successful in other
group-based behaviour analysis [1]. After collecting enough data,
a model on acceptance probability can be trained through existing
learning methods.

Algorithm 1: Baseline Algorithm
input :L,M
output :A recommendation between L and M

1 while ∃l ∈ L, l is not processed do
2 l∗ ← l with the minumum lckl ;
3 Rl ∗ ← set of lckl ∗ members in M who have the highest

probability to be accepted and have not been
recommended before;

4 Recommend Rl ∗ to l and mark l processed;

5 return {(l,Rl )|l ∈ L}.

Algorithm Sketch. Algorithm 1 shows the procedure of BL. While
there exists a leader l whose set of recommended members is not
determined (Line 1), we identify the number of members l lacks in
Line 2 and recommend l the members who are not recommended
before and have the highest probability to be accepted in Lines 3-4.

Summary. BL essentially takes a greedy strategy, since it preferen-
tially recommends members who are most likely to be accepted by
the leaders whose teams are easiest to be formed. Hence its opti-
mization is local. This motivates us to design a solution to optimize
TFSN from a global view.

5 RECOMMENDATION-MATRIX-BASED
FRAMEWORK (RMBF)

In this section, we introduce RMBF, a recommendation-matrix-based
framework to solve the RTF problem. The main advantage of RMBF
is that it both increases the accuracy of each recommendation and
decreases the conflicts among recommendations, i.e. one member is
accepted by multiple leaders. Therefore RMBF is able to maximize
the number of feasible teams from a global view.

RMBF Overview. Fig. 4 shows the workflow of RMBF.

• Training. As with BL (Sec. 4) , RMBF first learns a model
to estimate the probability for each leader to accept certain
recommended member. Then a probability matrix P |M |× |L |
can be derived given the sets of registered members M and
leaders L, where Pm,l ∈ [0, 1] indicates the probability of
accepting memberm by leader l .
• Optimization. Using P , RMBF then derives a recommenda-

tion matrix R |M |× |L | which globally optimizes the TFSN in
each recommendation round. R is a zero-one matrix where
Rm,l = 1 means m is recommended to l and Rm,l = 0 means
m is not recommended.

Essential in RMBF is the optimization stage. The main challenge is
to evaluate the impact of a recommendation matrix R on the number
of teams that can be formed. Then an operational objective can
be defined upon such evaluation metric and classical optimization
methods can be applied to find the optimized recommendations. We
propose a novel method to evaluate the impact of a recommendation
matrix on team formation as follows.

Metrics to Evaluate Recommendation Matrix. To assess the im-
pact of a recommendation matrix R on the number of teams that can
be formed, we derive the expected number of teams formed in a
round under R, P and {lckl |l ∈ L}.

We recommend at most lckl members to l in each round. Thus, if
the recommended number is less than lckl , l will not form a feasible
in this round. Thus we only consider the leaders who need exactly
lckl members to be recommended. If a memberm is recommended
to a leader l , the probability thatm is eventually in l’s team is

Pr (l,m) =
1∑

r ′1=0
· · ·

1∑
r ′n=0

∏n
i=0[P

r ′i
l ′i ,m
(1 − Pl ′i ,m )

1−r ′i ]

1 +
∑n
i=1 r

′
i

(1)



where l ′i represents the leader who also receives the recommenda-
tion of member m, and r ′i is the indicator for whether l ′i accepts
m. 1 +

∑n
i=1 r

′
i is used to rescale the probability if more than one

leaders accept m. n is the number of leaders (l excluded) that m is
recommended to. r ′0 is always 1, i.e. l accepts m and l ′0 is l . Thus we
loop i from 0 in the numerator to calculate the probability whether
m is accepted by different leaders.

Based on Eq. (1), the probability that l can form a feasible team
in this round can be calculated by

Pr (l) =

lckl∏
i=1

Pr (l,mi ). (2)

Then the expected number of feasible teams formed in this round
is

E(R, P) =
∑
l ∈L

Pr (l). (3)

With Eq. (3), now we can find an optimized R given P using
existing optimization methods. Note that the major complexity to
compute Eq. (3) is the calculation of Eq. (1). It can be computation-
prohibitive to calculate Eq. (1) if n, i.e., the number of leaders
(l excluded) who m is recommended to, is too large. Fortunately,
to ensure the fairness, all the members should have equal chance
to be recommended which limits the value of n. Generally, n is
approximately the required number of a feasible team S , which can
be smaller than 10 in practice.

Summary. RMBF is a generic framework to solve the RTF problem.
Central in RMBF is a metric to assess the impact of a recommen-
dation matrix on the expected number of teams that can be formed.
As with BL, RMBF needs to calculate the acceptance probability
of recommendations. We experiment with multiple representative
methods and choose XGBoost for its simplicity and effectiveness
(Sec. 6.1). With the proposed metric to evaluate a recommendation
matrix, RMBF optimizes E(R, P) in each round of recommendation.
Many classical optimization methods can be applied to the optimiza-
tion. In this work, we choose genetic algorithms as the optimization
method via both simulation (Sec. 6.2) and real-world experiments
(Sec. 6.3).

6 EVALUATION
This section evaluates the performance of BL and RMBF. Because
estimating the acceptance probability of recommendations is the cor-
nerstone of both BL and RMBF, we first evaluate different models
for acceptance probability estimation and the effectiveness of differ-
ent features in Sec. 6.1. As the cost of doing online evaluation is
very high, trace-driven simulation (in Sec. 6.2)via the data collected
from DiDi Chuxing is necessary, through which we can identify the
best candidates for online evaluation. Finally, we conduct online
evaluation on the DiDi Chuxing platform in Sec. 6.3 and discuss the
effect of our group-based incentive via competition in Sec. 6.4.

6.1 Acceptance Probability Estimation
Since both BL and RMBF need to estimate the acceptance probabil-
ity of drivers, in this part we explore models suited for acceptance
probability estimation.
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Figure 5: AUC of the compared methods.
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Figure 6: F1-Score of the compared methods.

Setup. We use data collected from group-based competition activ-
ities organized by DiDi Chuxing held in October, 2017 in Wuhan
and Hangzhou. The dataset contains information of leaders and
members, and the historical recommendation records. There are
1,705,374 records in total. Among them 5.24% are recommenda-
tions accepted by the leaders. To balance the positive and negative
samples, we conduct down-sampling, after which 178,714 samples
remain, and the proportion of positive samples is 50%. We use 70%
of the samples for training the acceptance estimation model and the
remaining 30% for testing.

We use the following features to estimate the acceptance proba-
bilities of leaders:

• Similarity Features: the similarity of the ages, and home-
towns of the leaders and members;
• Individual Features: hometown, gender and age of the lead-

ers, and members;
• Platform Features: average online time, average number of

finished orders in a day, and average weekly income of the
leaders and members.

Table 1 summarizes the features we use for acceptance probability
estimation.

To assess the importance of features, we calculate their mutual
information (MI). Table 2 shows the results. As is shown, features
with the highest MI are (i) the similarity of hometown, (ii) the
similarity of age and (iii) the age of the members, which is aligned
with previous studies [1].



Table 1: Description of features.

Type Feature

Similarity Features
The similarity of the ages of the leaders and members
The similarity of the hometowns of the leaders and members

Individual Features

Hometowns of the leaders
Gender of the leaders
Age of the leaders
Hometowns of the members
Gender of the members
Age of the members

Platform Features

The average online time of the leaders in a day
The average number of finished orders of the leaders in a day
The average weekly income of the leaders
The average online time of the members in a day
The average number of finished orders of the members in a day
The average weekly income of the members

Table 2: Mutual information of features.

Rank Feature MI
1 The similarity of the hometowns of the leaders and members 0.607175279
2 The similarity of the ages of the leaders and members 0.569887252
3 Age of the members 0.553651225
4 Hometowns of the members 0.354052674
5 Hometowns of the leaders 0.062810456
6 Age of the leaders 0.024951617
7 The average weekly income of the members 0.024767756
8 The average online time of the members in a day 0.024659155
9 The average number of finished orders of the members in a day 0.017719414

10 The average online time of the leaders in a day 0.013553273
11 The average weekly income of the leaders 0.009437473
12 The average number of finished orders of the leaders in a day 0.001606935
13 Gender of the leaders 0.001203234
14 Gender of the members 0.001123594

We compare five models for acceptance probability estimation:
Logistic Regression (LR), RandomForest, SVM, Gradient Boosted
Decision Tree (GBDT) and XGBoost.

Results. Fig. 5 and Fig. 6 show the AUC and F1-Score of the five
models using the three categories of features on acceptance proba-
bility estimation. XGBoost achieves the highest AUC and F1-Score
and will be used for BL and RMBF hereafter.

6.2 Offline Evaluation on Team Formation
This part evaluates the performance using trace-driven simulation
with data collected from DiDi Chuxing.

Setup. We collect the data from six team-based competitions or-
ganized by DiDi Chuxing, held in November, 2017 in Changshan
and Shenzhen, two cities in China. Fig. 7 shows the statistics of
the collected data sets. Specifically, it shows the number of drivers
who registered as leaders and members in each competitions and the
ratios between the number of members and leaders. The team size
of all the six competitions are seven. In others words, each feasible

team requires one leader and six members. There are over 41,400
drivers who participated in the six competitions. On average, there
are about 5,963 drivers who registered as member and 943 who
registered as leader, and the average ratio is about 6.32.

Compared Algorithms. We use the best model (i.e. XGBoost) to
obtain the acceptance probabilities for each round of recommenda-
tion in BL and RMBF. Since RMBF is a generic framework where
different optimization methods can be applied, we compare the
following optimization methods: Genetic Algorithm (GA) [5], Sim-
ulated Annealing (SA) [21] and Hill Climbing Algorithm (HC) [17].
The implement details of the above algorithms are as follows.

• GA. We first generate population (namely many recommen-
dation matrices) randomly. Each matrix of the population is
viewed as an individual. Then we perform crossover which
chooses rows from two individuals randomly. Next, we per-
form mutation where we randomly choose a row of an indi-
vidual and exchange a ‘0’ and a ‘1’. Last, we keep the indi-
viduals with the highest fitness according to Eq. (1), Eq. (2)
and Eq. (3) (selection step). Note that all the individuals will
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Figure 7: Statistics of dataset for offline evaluation.
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Figure 8: Results of offline evaluation.

satisfy the constraint that at most lckl members are recom-
mended to leader l . The crossover, mutation and selection
steps are performed iteratively until convergence or the itera-
tion number exceeds the threshold.
• HC. We first generate the recommendation matrix randomly.

Then with a probability we change ‘0’ to ‘1’ and ‘1’ to ‘0’ to
get a new recommendation matrix. We use Eq. (1), Eq. (2)
and Eq. (3) to evaluate the original matrix and the new one.
The better one is remained and a new matrix based on the

remained one is generated with a probability. The above steps
are performed iteratively until convergence or the iteration
number exceeds the threshold.
• SA. The implement of SA is similar with that of HC. The

difference is that each time a new matrix is generated, with a
probability we remain the matrix which is not the better one.

After obtaining the recommendations, we simulate the decisions
of leaders to accept or reject the recommendations according to the
acceptance probabilities P .
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Figure 9: Results of online evaluation.
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Figure 10: Statistics of dataset for online evaluation.

Results. Fig. 8 plots the percentage of leaders with feasible teams
with the increase of recommendation rounds. We plots the results of
the first 20 rounds because (i) all the algorithms saturate in the first
20 rounds; and (ii) in practice we may have very limited budget for
recommendation e.g. only 10 rounds in the group-based competitions
held by DiDi Chuxing (see Sec. 6.3) and thus 20 rounds is enough
for simulation. We observe that except Fig. 8b, after 20 rounds all the
algorithms can help form feasible teams for all the leaders. This is
because during the simulation, the decisions of the leaders are based
on the estimated probability. Accordingly, given sufficient chances
(rounds) to recommend members, we can always form feasible teams
for all the leaders. In Fig. 8b, all the algorithms fail to form teams for
every leader. The reason is that the ratio between the members and
leaders for the Changsha-3 dataset is lower than 6, while a feasible
team needs 7 drivers in total (see Fig. 7). Therefore in Changsha-3
dataset, some drivers are bound to fail in team formation due to
insufficient members.

Among the algorithms, the RMBF-based algorithms (namely
RMBF-GA, RMBF-SA and RMBF-HC) all perform better than BL.
Particularly, given the same rounds of recommendation, RMBF-GA
is able to form up to 20% more teams than BL. This is reasonable
as compared with BL, the RMBF-based algorithms can optimize
recommendations from a global view. RMBF-GA is better than
RMBF-SA and RMBF-HC, indicating that genetic algorithm based
optimization method may be more suitable for our problem.

6.3 Online Evaluation on Team Formation
In this part, we integrate our methods into the group-based com-
petition activities held by DiDi Chuxing platform to evaluate the
performance on team formation in the wild.

Setup. We integrate BL and RMBF-GA into DiDi Chuxing as the
member recommendation algorithms for three team-based competi-
tions held in December, 2017 in Changshan, Shenzhen and Wuhan,
three cities in China. We did not compare RMBF-HC and RMBF-SA
due to the high cost to organize competitions for online evaluation.
The statics of the three competitions are shown in Fig. 10. Similar
with that in Fig. 7, Fig. 10 also shows the number of drivers who reg-
istered as leaders and members in each competitions and the ratios
between the number of members and leaders. The team size of all
the three competitions are seven. In others words, each feasible team
requires one leader and six members. There are over 23,300 drivers
who participated in the six competitions. On average, there are about
6,692 drivers who registered as member and 1,085 who registered
as leader, and the average ratio is about 6.17. Upon receiving the
recommendations by our methods, real-world leaders registered for
the competitions decide whether to accept them or not.

Results. Fig. 9 shows the results of team formation. Note that limited
by the cost of online evaluation, only ten rounds of recommendation
are conducted. Overall RMBF-GA performs better than BL in all the
three competitions, which is aligned with the trace-driven simulation
results. After 10 rounds of recommendation, RMBF-GA manages
to form 7.8% to 12.4% more teams than BL. The only exception is
Shenzhen-4 (Fig. 9b), where RMBF-GA and BL performs similarly.
This may be because in this dataset, the ratio between the drivers
registered as members and leaders is high (7.24 in Fig. 10), which
gives BL more choices when conducting its greedy strategy.

Comparing the results of online evaluation and offline simulation
for the first 10 rounds, the results of online evaluation are worse
by about 10%. Specifically, in the simulations, if the ratio of the
members and the leaders is larger than 6, after 10 rounds almost
all the leaders can form teams using RMBF-based algorithms (see
Fig. 8 except Fig. 8b). In the online experiments, 88.8% leaders form
teams (see Fig. 9b). This is because during the offline simulation we
simulate whether the leaders will accept the recommended members
according to the acceptance probability matrix P , while in the online



evaluation the response of the leaders may differ from P . This result
indicates that it will increase the number of teams formed by further
improving the accuracy of acceptance probability estimation.

6.4 Discussion
In the above subsections we focus mainly on the effectiveness of
our recommendations methods for team formation. However, the
ultimate goal is to stimulate the drivers through the group-based
incentive which is via competition in our paper.

During the online evaluation conducted in Changsha, Shenzhen
and Wuhan in December 2017, we also record other data generated
the competition to evaluate the effectiveness of our group-based
incentive via competition among different teams. We find that on
average, after participating in the competition and forming teams,
the service time, number of finished orders and income of drivers
have improved by 33.8%, 34.4% and 27.4%, respectively. This result
indicates that the group-based incentives are promising and can be a
constructive supplement for other incentives at the individual level.

7 CONCLUSION
In this paper, we propose a Recommendation-based Team Formation
(RTF) problem to promote participation in on-demand taxi-calling
platforms. The aim is to form as many teams as possible while
accounting for the choices of drivers. We prove that the RTF problem
is NP-hard. To solve the RTF problem, we first propose a greedy-
based recommendation strategy. Then we design a Recommendation-
Matrix-Based Framework (RMBF). It first estimates the acceptance
probability of recommendations and then derives a recommendation
matrix to maximize the number of formed teams from a global view.
We evaluate the performance of the proposed solutions via trace-
driven simulations using real data covering over 64,000 drivers as
well as real-world online evaluations on a large on-demand taxi-
calling platform. Experimental results show that RMBF can form
up to 20% and 12.4% teams in trace-driven simulations and online
evaluations than the greedy-based strategy. We also find that after
participating in the competition and forming teams, the service time,
number of finished orders and income of drivers have improved
obliviously, indicating the effectiveness of group-based incentive.
We envision our work as a generic and effective building block to
design various group-based incentive mechanisms for current and
future on-demand transportation services.
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