
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2017

Parametric model checking timed automata under non-Zenoness Parametric model checking timed automata under non-Zenoness

assumption assumption

Étienne ANDRE

Hoang Gia NGUYEN

Laure PETRUCCI

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
ANDRE, Étienne; NGUYEN, Hoang Gia; PETRUCCI, Laure; and SUN, Jun. Parametric model checking timed
automata under non-Zenoness assumption. (2017). NASA Formal Methods: 9th International Symposium,
NFM 2017, Moffett Field, CA, May 16-18: Proceedings. 10227, 35-51.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4714

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Parametric model checking timed automata
under non-Zenoness assumption?

Étienne André1, Hoang Gia Nguyen1, Laure Petrucci1, and Jun Sun2

1 LIPN, CNRS UMR 7030, Université Paris 13
99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, France

2 ISTD, Singapore University of Technology and Design, Singapore

Abstract. Real-time systems often involve hard timing constraints and
concurrency, and are notoriously hard to design or verify. Given a model
of a real-time system and a property, parametric model-checking aims at
synthesizing timing valuations such that the model satisfies the property.
However, the counter-example returned by such a procedure may be
Zeno (an infinite number of discrete actions occurring in a finite time),
which is unrealistic. We show here that synthesizing parameter valuations
such that at least one counterexample run is non-Zeno is undecidable for
parametric timed automata (PTAs). Still, we propose a semi-algorithm
based on a transformation of PTAs into Clock Upper Bound PTAs to
derive all valuations whenever it terminates, and some of them otherwise.

Keywords: parameter synthesis, Zeno behaviors, parametric timed automata

1 Introduction

Timed automata (TAs) [AD94] are a popular formalism for real-time systems
modeling and verification, providing explicit manipulation of clock variables.
Real-time behavior is captured by clock constraints on system transitions, set-
ting or resetting clocks, etc. TAs have been studied in various settings (such
as planning [KMH01]) and benefit from powerful tools such as Uppaal [LPY97]
or PAT [SLDP09]. Verification tools for TA based models have proven to be
successful [LPY97,BDM+98,Wan02,BLN03].

Model checking TAs consists of checking whether there exists an accepting
cycle (i. e. a cycle that visits infinitely often a given set of locations) in the
automaton made of the product of the TA modeling the system with the TA
representing a violation of the desired property (often the negation of a property
expressed, e. g. in CTL). However, such an accepting cycle does not necessarily

? This is the author (and partially extended) version of the manuscript of the
same name published in the proceedings of the 9th NASA Formal Methods
Symposium (NFM 2017). The final version is available at dx.doi.org/10.1007/

978-3-319-57288-8_3. This work is partially supported by the ANR national re-
search program PACS (ANR-14-CE28-0002).

1

dx.doi.org/10.1007/978-3-319-57288-8_3
dx.doi.org/10.1007/978-3-319-57288-8_3

mean that the property is violated: indeed, a known problem of TAs is that
they allow Zeno behaviors. An infinite run is non-Zeno if it takes an unbounded
amount of time; otherwise it is Zeno. Zeno runs are infeasible in reality and
thus must be pruned during system verification. That is, it is necessary to check
whether a run is Zeno or not so as to avoid presenting Zeno runs as counterexam-
ples. The problem of checking whether a timed automaton accepts at least one
non-Zeno run, i. e. the emptiness checking problem, has been tackled previously
(e. g. [Tri99,TYB05,BG06,GB07,HSW12,WSW+15]).

It is often desirable not to fix a priori all timing constants in a TA: either
for tuning purposes, or to evaluate robustness when clock values are impre-
cise. For that purpose, parametric timed automata (PTAs) extend TAs with
parameters [AHV93]. Although most problems of interest are undecidable for
PTAs [And15], some (semi-)algorithms were proposed to tackle practical pa-
rameter synthesis (e. g. [ACEF09,KP12,JLR15,ABB+16]). We address here the
synthesis of parameter valuations for which there exists a non-Zeno cycle in a
PTA; this is highly desirable when performing parametric model-checking for
which the parameter valuations violating the property should not allow only
Zeno-runs. As far as the authors know, this is the first work on parametric model
checking of timed automata with the non-Zenoness assumption. Just as for TAs,
the parametric zone graph of PTAs (used in e. g. [HRSV02,ACEF09,JLR15])
cannot be used to check whether a cycle is non-Zeno. Therefore, we propose
here a technique based on clock upper bound PTAs (CUB-PTAs), a subclass
of PTAs satisfying some syntactic restriction, and originating in CUB-TAs for
which the non-Zeno checking problem is most efficient [WSW+15]. In contrast
to regular PTAs, we show that synthesizing valuations for CUB-PTAs such that
there exists an infinite non-Zeno cycle can be done based on (a light extension
of) the parametric zone graph.

We make the following technical contributions in this work:

1. We show that the parameter synthesis problem for PTAs with non-Zenoness
assumption is undecidable.

2. We show that any PTA can be transformed into a finite list of CUB-PTAs;

3. We develop a semi-algorithm to solve the non-Zeno synthesis problem using
CUB-PTAs, implemented in IMITATOR and validated using benchmarks.

Outline The paper is organized as follows. Section 2 recalls the necessary pre-
liminaries, i. e. the notations, definitions of PTAs, and explicits the two prob-
lems we address: non-Zeno-Büchi emptiness and non-Zeno parameter synthesis.
Then Section 3 shows the undecidability of non-Zeno-Büchi emptiness. We then
present the concept of CUB-PTAs (Section 4), and show how to transform a
PTA into a list of CUB-PTAs. Zeno-free parametric model-checking of CUB-
PTA is addressed in Section 5, and experiments reported in Section 6. Finally,
Section 7 concludes and gives perspectives for future work.

2

2 Preliminaries

This section recalls the different concepts we base on (clocks, parameters, con-
straints and Parametric Timed Automata) before introducing the problems we
address.

2.1 Clocks, parameters and constraints

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e. real-
valued variables that evolve at the same rate. A clock valuation is a function w :
X → R≥0. We identify a clock valuation w with the point (w(x1), . . . , w(xH)).
We write X = 0 for

∧
1≤i≤H xi = 0. Given d ∈ R≥0, w+ d denotes the valuation

such that (w + d)(x) = w(x) + d, for all x ∈ X.

We assume a set P = {p1, . . . , pM} of parameters, i. e. unknown constants.
A parameter valuation v is a function v : P → Q≥0. We identify a valuation v
with the point (v(p1), . . . , v(pM)). A strictly positive parameter valuation is a
valuation v : P → Q>0.

In the following, we assume C ∈ {<,≤} and ./ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ N. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A constraint C
(i. e. a convex polyhedron) over X ∪P is a set of inequalities of the form lt ./ lt ′,
with lt , lt ′ two linear terms. We denote by true (resp. false) the constraint that
corresponds to the set of all possible (resp. the empty set of) valuations. Given a
parameter valuation v, v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x in v(C) with w(x).
We say that v satisfies C, denoted by v |= C, if the set of clock valuations
satisfying v(C) is non-empty. We say that C is satisfiable if ∃w, v s.t. w(v(C))
evaluates to true. We define the time elapsing of C, denoted by C↗, as the
constraint over X and P obtained from C by delaying all clocks by an arbitrary
amount of time. Given R ⊆ X, we define the reset of C, denoted by [C]R, as the
constraint obtained from C by resetting the clocks in R, and keeping the other
clocks unchanged. We denote by C↓P the projection of C onto P , i. e. obtained
by eliminating the clock variables using existential quantification.

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ./ plt . We assume w.l.o.g. that, in each guard, given a clock x, at most one
inequality is in the form xCplt , that is a clock has a single upper bound (or none).
A non-parametric guard is a guard over X, i. e. with inequalities x ./ z, with
z ∈ N. A parametric zone C is a constraint over X ∪ P defined by inequalities
of the form xi − xj ./ plt . A parametric constraint K is a constraint over P
defined by inequalities of the form plt ./ plt ′, with plt , plt ′ two parametric linear
terms. We use the notation v |= K to indicate that valuating parameters p with
v(p) in K evaluates to true. We denote by > (resp. ⊥) the parametric constraint
that corresponds to the set of all possible (resp. the empty set of) parameter

3

valuations. Given two parametric constraints K1 and K2, we write K1 ⊆ K2

whenever for all v, v |= K1 ⇒ v |= K2.

2.2 Parametric timed automata

Parametric timed automata (PTA) extend timed automata with parameters
within guards in place of integer constants [AHV93].

Syntax

Definition 1. A PTA A is a tuple A = (Σ,L, l0, X, P,K0, I, E), where:

1. Σ is a finite set of actions,
2. L is a finite set of locations,
3. l0 ∈ L is the initial location,
4. X is a set of clocks,
5. P is a set of parameters,
6. K0 is the initial parameter constraint,
7. I is the invariant, assigning to every l ∈ L a guard I(l),
8. E is a set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target

locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is a guard.

The initial constraint K0 is used to constrain some parameters (as in, e. g.
[HRSV02,ACEF09]); in other words, it defines a domain of valuation for the
parameters. For example, given two parameters pmin and pmax, we may want to
ensure that pmin ≤ pmax. Given A = (Σ,L, l0, X, P,K0, I, E), we write A.K0 as
a shortcut for the initial constraint of A. In addition, given K ′0, we denote by
A(K ′0) the PTA where A.K0 is replaced with K ′0.

Observe that, as in [WSW+15], we do not define accepting locations. In our
work, we are simply interested in computing valuations for which there is a non-
Zeno cycle. A more realistic parametric model checking approach would require
additionally that the cycle is accepting, i. e. it contains at least one accepting
location. However, this has no specific theoretical interest, and would impact the
readability of our exposé.

Given a parameter valuation v |= A.K0, we denote by v(A) the non-
parametric TA where all occurrences of a parameter pi have been replaced
by v(pi). If v 6|= A.K0, we assume the model is not defined (i. e. it corresponds
to an empty TA, with no location).

Definition 2 (Concrete semantics of a TA). Given a PTA A =
(Σ,L, l0, X, P,K0, I, E), and a parameter valuation v, the concrete semantics
of v(A) is given by the timed transition system (S, s0,→), with S = {(l, w) ∈
L × RH≥0 | w(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and
(continuous) delay transition relations:

– discrete transitions: (l, w)
e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e =

(l, g, a,R, l′) ∈ E, w′ = [w]R, and w(v(g)) is true.

4

– delay transitions: (l, w)
d→ (l, w+d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (l, w+d′) ∈

S.

A (concrete) run is a sequence r = s0α0s1α1 · · · snαn · · · s.t.
∀i, (si, αi, si+1) ∈ →. We consider as usual that concrete runs strictly alter-
nate delays di and discrete transitions ei and we thus write concrete runs in the

form r = s0
(d0,e0)→ s1

(d1,e1)→ · · · . We refer to a state of a run starting from the
initial state of a TA A as a concrete state of A. Note that when a run is finite, it
must end with a concrete state. Given a concrete state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a run of v(A). By extension,
we say that l is reachable in v(A), if there exists a concrete state (l, w) that is
reachable.

An infinite run is said to be Zeno if it contains an infinite number of discrete
transitions within a finite delay, i. e. if the sum of all delays di is bounded.

Symbolic semantics Let us recall the symbolic semantics of PTAs (as in e. g.
[ACEF09,JLR15]). A symbolic state is a pair s = (l, C) where l ∈ L is a location,
and C its associated parametric zone.

The initial symbolic state of A is s0 =
(
l0, ({0}∧ I(l0))↗ ∧ I(l0)∧K0

)
. That

is, the initial state corresponds to all clocks equal to 0 followed by time-elapsing,
intersected with the initial invariant and the initial parameter constraint.

The symbolic semantics relies on the Succ operation. Given a symbolic
state s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with

C ′ =
(
[(C ∧ g)]R

)↗
. The Succ operation is effectively computable, using polyhe-

dra operations: note that the successor of a parametric zone C is a parametric
zone.

A symbolic run of a PTA is an alternating sequence of symbolic states and

edges starting from the initial symbolic state, of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒ sm,
such that for all i = 0, . . . ,m−1, we have ei ∈ E, and si+1 = Succ(si, ei). In the
following, we simply refer to symbolic states belonging to a run of A as symbolic
states of A.

The symbolic semantics is often given in the form of a parametric zone graph,
i. e. symbolic states of A and transitions (s, e, s′) whenever s′ = Succ(s, e). Given

a symbolic run (l0, C0)
e0⇒ (l1, C1)

e1⇒ · · · en−1⇒ (ln, Cn) · · · , its untimed support is
the sequence l0e0l1 · · · en−1ln · · · . Two runs (symbolic or concrete) are equivalent
if they have the same untimed support.

Let us recall a lemma relating concrete and symbolic runs.

Lemma 1. Let A be a PTA, and let r be a symbolic run of A reaching (l, C).
Let v |= A.K0 be a parameter valuation. There exists an equivalent concrete run
in v(A) iff v |= C↓P .

Proof. From [HRSV02, Propositions 3.17 and 3.18]. �
Given a symbolic run r reaching (l, C), we call the concrete runs associated

with r the concrete runs equivalent to r in v(A), for all v |= C↓P .

5

2.3 Problems

In this paper, we aim at addressing the following two problems. They both
concern the existence of an infinite non-Zeno run. The first one aims at checking
whether the set of parameter valuations leading to such a run is empty, while
the second synthesizes such a set of valuations.

non-Zeno emptiness problem:
Input: A PTA A
Problem: Is the set of parameter valuations v for which there exists a non-
Zeno infinite run in v(A) empty?

non-Zeno synthesis problem:
Input: A PTA A
Problem: Synthesize the set of parameter valuations v for which there exists
an infinite non-Zeno run in v(A).

3 Undecidability of the non-Zeno emptiness problem

As reachability is undecidable for PTAs [AHV93], it is unsurprising that the
existence of at least a parameter valuation for which there exists a non-Zeno
infinite run is undecidable too. The result holds with as few as one parameter,
even bounded (typically in [0, 1]). Let us formalize this result below.

Theorem 1. The non-Zeno emptiness problem is undecidable for PTAs with at
least four clocks and one (bounded) parameter.

Proof. By reduction from the halting problem of a deterministic 2-counter-
machine, which is undecidable [Min67]. We encode a 2-counter machine (2CM)
using PTAs, following an encoding in [AM15]. This encoding is such that the
location lhalt encoding the halting state of the 2CM is reachable iff the 2CM
halts, and for valuations of the (unique) parameter v such that v(p) is larger
than or equal to the maximum value of the counters along the (unique) run of
the machine. Then, since this encoding is such that for any parameter valuation,
the encoding stops after v(p) discrete steps, the encoding has no infinite run for
any valuation.

Then, from the location encoding the halting location (i. e. lhalt), we add a
transition resetting x to a new location lf . This location has a self-loop guarded
with x = 1 and resetting x (where x is any of the four clocks used in the encoding
in [AM15]). Hence whenever lhalt is reachable, there is an infinite non-Zeno run
looping on lf . That is, there is an infinite non-Zeno run iff the 2CM halts.

A full proof is available in Appendix A. �
Since the emptiness problem is undecidable, the synthesis problem becomes

intractable. In the remainder of this paper, we will devise a semi-algorithm to ad-
dress the non-Zeno synthesis problem, i. e. an algorithm that computes the exact
solution if it terminates. Otherwise, we will compute an under-approximation of
the result.

6

4 CUB-parametric timed automata

4.1 CUB timed automata

It has been shown (e. g. [BG06,Tri99]) that checking whether a run of TA is
infeasible based on the symbolic semantics alone. In [WSW+15], the authors
identified a subclass of TAs called CUB-TAs for which non-Zenoness checking
based on the symbolic semantics is feasible. Furthermore, they show that not
only CUB-TAs are expressive enough to model most of the benchmark timed
systems, but more importantly, an arbitrary TA can be transformed into a CUB-
TA. Based on their work, we first show that arbitrary PTAs can be transformed
into a parametric version of CUB-TAs, and then solve the non-Zeno synthesis
problem based on parametric CUB-TAs.

As defined in [WSW+15], a clock upper bound is either ∞ or a pair (n,C)
where n ∈ Q (recall that C is either < or ≤). We write (n1,C1) = (n2,C2)
to denote n1 = n2 and C1 = C2; (n1,C1) ≤ (n2,C2) to denote n1 < n2,
or if n1 = n2, then either C2 is ≤ or both C1 and C2 are <. Further, we write
(n,C) > d where d is a constant to denote n > d. We define min((n,C1), (m,C2))
to be (n,C1) if (n,C1) ≤ (m,C2), and (m,C2) otherwise. Given a clock x and a
non-parametric guard g, we write ub(g, x) to denote the upper bound of x given
g. Formally,

ub(g, x) =

(n,C) if g is xC n
∞ if g is x > n or x ≥ n
∞ if g is x′ ./ n and x′ 6= x
∞ if g is true
min(ub(g1, x), ub(g2, x)) if g is g1 ∧ g2

Let us now introduce CUB-TAs.3

Definition 3. A TA is a CUB-TA if for each edge (l, g, a,R, l′), for all clocks
x ∈ X, we have

1. ub(I(l), x) ≤ ub(g, x), and
2. if x /∈ R, then ub(I(l), x) ≤ ub(I(l′), x).

Intuitively, every clock in a CUB-TA has a non-decreasing upper bound along
any path until it is reset.

4.2 Parametric clock upper bounds

Let us define clock upper bounds in a parametric setting. A parametric clock
upper bound is either ∞ or a pair (plt ,C).

Given a clock x and a guard g, we denote by pub(g, x) the parametric upper
bound of x given g. This upper bound is a parametric linear term. Formally,

3 Note that our definition is slightly more liberal than that in [WSW+15].

7

pub(g, x) =

(plt ,C) if g is xC plt
∞ if g is x > plt or x ≥ plt
∞ if g is x′ ./ plt and x′ 6= x
∞ if g is true
min(pub(g1, x), pub(g2, x)) if g is g1 ∧ g2

Recall that, in each guard, given a clock x, at most one inequality is in the form
x C plt . In that case, at most one of the two terms is not ∞ and therefore the
minimum (last case) is well-defined (with the usual definition that min(plt ,∞) =
plt).4

We write (plt1,C1) ≤ (plt2,C2) to denote the constraint{
plt1 < plt2 if C1 = ≤ and C2 = <
plt1 ≤ plt2 otherwise.

That is, we constrain the first parametric clock upper bound to be smaller
than or equal to the second one, depending on the comparison operator.

Given two parametric clock upper bounds pcub1 and pcub2, we write pcub1 ≤
pcub2 to denote the constraint (plt1,C1) ≤ (plt2,C2) if pcub1 = (plt1,C1) and pcub2 = (plt2,C2)

> if pcub2 =∞
⊥ otherwise.

This yields an inequality constraining the first parametric clock upper bound
to be smaller than or equal to the second one.

4.3 CUB parametric timed automata

We extend the definition of CUB-TAs to parameters as follows:

Definition 4. A PTA is a CUB-PTA if for each edge (l, g, a,R, l′), for all clocks
x ∈ X, the following conditions hold:

1. A.K0 ⊆
(
pub(I(l), x) ≤ pub(g, x)

)
, and

2. if x /∈ R, then A.K0 ⊆
(
pub(I(l), x) ≤ pub(I(l′), x)

)
.

Hence, a PTA is a CUB-PTA iff every clock has a non-decreasing upper
bound along any path before it is reset, for all parameter valuations satisfying
the initial constraint A.K0 .

Note that, interestingly enough, the class of hardware circuits modeled using
a bi-bounded inertial delay5 fits into CUB-PTAs (for all parameter valuations).

4 Note that if a clock has more than a single upper bound in a guard, then the
minimum can be encoded as a disjunction of constraints, and our results would still
apply with non-convex constraints (that can be implemented using a finite list of
convex constraints).

5 This model assumes that, after the change of a signal in the input of a gate, the
output changes after a delay which is modeled using a parametric closed interval.

8

Example 1. Consider the PTA A in Fig. 1a s.t. A.K0 = >. Then A is not CUB:
for x, the upper bound in l0 is x ≤ 1 whereas that of the guard on the transition
outgoing l0 is x ≤ p. (1,≤) ≤ (p,≤) yields 1 ≤ p. Then, > 6⊆

(
1 ≤ p

)
; for

example, p = 0 does not satisfy 1 ≤ p. ut

Example 2. Consider again the PTA A in Fig. 1a, this time assuming that
A.K0 = (p = 1 ∧ 1 ≤ p′ ∧ p′ ≤ p′′). This PTA is a CUB-PTA. (The largest
constraint K0 making this PTA a CUB will be computed in Example 4.) ut

Example 3. The three examples of ??, introduce all possible cases encountered
in Algorithm 1. Fig. 2a features a self-loop on the initial location l0. The CUB-
PTA conditions enforce a constraint p1 ≤ p2. Therefore, the model is CUB-PTA
for all valuations of p1 and p2 such that p1 ≤ p2.

Contrarily, in Fig. 2b, the edge from the initial location l0 to location l1 (or
location l2) induces a constraint ∞ ≤ p2 (respectively ∞ < p1, which is always
false. Therefore, the model is not a CUB-PTA, whatever the valuation.

Finally, the example of Fig. 2c is CUB-PTA for all valuations of p. ut

Lemma 2. Let A be a CUB-PTA. Let v |= A.K0 be a parameter valuation.
Then v(A) is a CUB-TA.

Proof. Let v |= A.K0. Let e = (l, g, a,R, l′) be an edge. Given a clock x ∈ X,
from Definition 4, we have that v |=

(
pub(I(l), x) ≤ pub(g, x)

)
, and therefore

v(pub(I(l), x)) ≤ v(pub(g, x)). This matches the first case of Definition 3. The
second case (x /∈ R) is similar. �

l0

x ≤ 1 ∧ y ≤ 1

l1

x ≤ p′ ∧ y ≤ p

l2

x ≤ p ∧ y ≤ 2
y := 0 x ≤ p′′ ∧ y ≤ p

(a) CUB for some valuations

l0

x ≤ p
l1

x < p

x ≤ 1

(b) CUB for no valuations

Fig. 1: Examples of PTAs to illustrate the CUB concept

4.4 CUB PTA detection

Given an arbitrary PTA, our approach works as follows. Firstly, we check
whether it is a CUB-PTA for some valuations. If it is, we proceed to the synthe-
sis problem, using the cycle detection synthesis algorithm (Section 5); however,
the result may be partial, as it will only be valid for the valuations for which
the PTA is CUB. This incompleteness may come at the benefit of a more effi-
cient synthesis. If it is CUB for no valuation, it has to be transformed into an
equivalent CUB-PTA (which will be considered in Section 4.5).

Our procedure to detect whether a PTA is CUB for some valuations is given
in Algorithm 1. For each edge in the PTA, we enforce the CUB condition on each

9

Algorithm 1: CUBdetect(A)

Input: PTA A = (Σ,L, l0, X, P,K0, I, E)
Output: A constraint K ensuring the PTA is a CUB-PTA

1 K ← K0

2 foreach edge (l, g, a,R, l′) do
3 foreach clock x ∈ X do
4 K ← K ∧

(
pub(I(l), x) ≤ pub(g, x)

)
5 if x /∈ R then K ← K ∧

(
pub(I(l), x) ≤ pub(I(l′), x)

)
6 return K

clock by constraining the upper bound in the invariant of the source location
to be smaller than or equal to the upper bound of the edge guard (line 4).
Additionally, if the clock is not reset along this edge, then the upper bound of
the source location invariant should be smaller than or equal to that of the target
location (line 5). If the resulting set of constraints accepts parameter valuations
(i. e. is not empty), then the PTA is a CUB-PTA for these valuations.

Example 4. Consider again the PTA A in Fig. 1a, assuming that A.K0 = >.
This PTA is CUB for 1 ≤ p ∧ 1 ≤ p′ ∧ p′ ≤ p′′.

ut

Example 5. Consider the PTA A in Fig. 1b, with A.K0 = >. When handling
location l0 and clock x, line 4 yields A.K = > ∧ [(p,≤) ≤ (1,≤)] = p ≤ 1 and
then, from line 5, A.K = p ≤ 1 ∧ [(p,≤) ≤ (p,<)] = p ≤ 1 ∧ p < p = ⊥. Hence,
there is no valuation for which this PTA is CUB. ut

Proposition 1. Let A be a PTA.
Let K = CUBdetect(A). Then A(K) is a CUB-PTA.

Proof. From the fact that Algorithm 1 gathers constraints to match Definition 4.
�

4.5 Transforming a PTA into a disjunctive CUB-PTA

In this section, we show that an arbitrary PTA can be transformed into an
extension of CUB-PTAs (namely disjunctive CUB-PTA), while preserving the
symbolic runs.

For non-parametric TAs, it is shown in [WSW+15] that any TA can be trans-
formed into an equivalent CUB-TA. This does not lift to CUB-PTAs.

Example 6. No equivalent CUB-PTA exists for the PTA in Fig. 2b where K0 =
>. Indeed, the edge from l1 to l2 (resp. l3) requires p1 ≤ p2 (resp. p1 > p2). It is
impossible to transform this PTA into a PTA where K0 (which is >) is included
in both p1 ≤ p2 and p1 > p2. ut

Therefore, in order to overcome this limitation, we propose an alternative
definition of disjunctive CUB-PTAs. They can be seen as a union (as defined in
the timed automata patterns of, e. g. [DHQ+08]) of CUB-PTAs.

10

Definition 5. A disjunctive CUB-PTA is a list of CUB-PTAs.
Given a disjunctive CUB-PTA A1, . . . ,An, with Ai =

(Σi, Li, l
i
0, Xi, Pi,K

i
0, Ii, Ei), the PTA associated with this disjunctive PTA is

A = (
⋃
iΣi,

⋃
i Li∪{l0}, l0,

⋃
iXi,

⋃
i Pi,

⋃
iK

i
0,
⋃
i Ii, E), where E =

⋃
iEi∪

E′ with E′ =
⋃
i(l0,K

i
0, ε,X, l

i
0).

Basically, the PTA associated with a disjunctive CUB-PTA is just an addi-
tional initial location that connects to each of the CUB-PTAs initial locations,
with its initial constraint on the guard.6

Example 7. In Fig. 2d (without the dotted, blue elements), two CUB-PTAs are
depicted, one (say A1) on the left with locations superscripted by 1, and one (say
A2) on the right superscripted with 2. Assume A1.K0 is p1 ≤ p2 and A2.K0 is
p1 > p2. Then the full Fig. 2d (including dotted elements) is the PTA associated
with the disjunctive CUB-PTA made of A1 and A2. ut

The key idea behind the transformation from a TA into a CUB-TA
in [WSW+15] is as follows: whenever a location l is followed by an edge e and a
location l′ for which ub(g, x) < ub(l, x) or ub(l′, x) < ub(l, x) for some x if x /∈ R,
otherwise ub(g, x) < ub(l, x), location l is split into two locations: one (say l1)
with a “decreased upper bound”, i. e. xC ub(l′, x), that is then connected to l′;
and one (say l2) with the same invariant as in l, and with no transition to l′.
Therefore, the original behavior is maintained. Note that this transformation
induces some non-determinism (one must non-deterministically choose whether
one enters l1 or l2, which will impact the future ability to enter l′) but this has
no impact on the existence of a non-Zeno cycle.

Here, we extend this principle to CUB-PTAs. A major difference is that,
in the parametric setting, comparing two clock upper bounds does not give a
Boolean answer but a parametric answer. For example, in a TA, (2,≤) ≤ (3, <)
holds (this is true), whereas in a PTA (p1,≤) ≤ (p2, <) denotes the constraint
p1 < p2. Therefore, the principle of our transformation is that, whenever we
have to compare two parametric clock upper bounds, we consider both cases:
here either p1 < p2 (in which case the first location does not need to be split) or
p1 ≥ p2 (in which case the first location shall be split). This yields a finite list
of CUB-PTAs: each of these CUB-PTAs consists in one particular ordering of
all parametric linear terms used as upper bounds in guards and invariants. (In
practice, in order to reduce the complexity, we only define an order on the para-
metric linear terms the comparison of which is needed during the transformation
process.)

The full transformation algorithm CUBtrans(A) is given in Appendix C.

Example 8. Let us transform the PTA in Fig. 2a: if p1 ≤ p2 then the PTA is
already CUB, and l1 does not need to be split. This yields a first CUB-PTA,
depicted on the left-hand side of Fig. 2d. However, if p1 > p2, then l1 needs to

6 A purely parametric constraint (e. g. p1 > p2∧p3 = 3) is generally not allowed by the
PTA syntax, but can be simulated using appropriate clocks (e. g. p1 > x > p2∧p3 =
x′ = 3). Such parametric constraints are allowed in the input syntax of IMITATOR.

11

l1
x ≤ p1

x ≤ p2

(a) Example 1

l1

l2 l3x ≤ p1
x ≤ p2
x := 0

x ≤ p1

p1 ≤ x ≤ p2 p1 > x > p2

(b) Example 2

l0
x ≤ p

x ≤ p
x := 0

(c) Example 3

l0

l21

x ≤ p1

l11
x ≤ p1

l21
′

x ≤ p1
∧x ≤ p2

x ≤ p2 x ≤ p2

p1 ≤ p2 p1 > p2

p1 > p2

x ≤ p2

(d) Transformed version of Fig. 2a

l0

l21x ≤ p1

l23x ≤ p1

l11
x ≤ p2

l12l12
′

x ≤ p2

p1 > p2
p1 ≤ p2

x ≥ p1
∧x ≤ p2

x ≥ p1
∧x ≤ p2 x ≤ p2

∧x := 0x ≤ p2
∧x := 0

p1 > x > p2

x ≤ p1

(e) Transformed version of Fig. 2b

Fig. 2: Examples: detection of and transformation into CUB-PTAs

be split into l21
′

(where time cannot go beyond p2) and into l21 (where time can
go beyond p2, until p1), but the self-loop cannot be taken anymore (otherwise
the associated guard makes the PTA not CUB). This yields a second CUB-PTA,
depicted on the right-hand side of Fig. 2d. Both make a disjunctive CUB-PTA
equivalent to Fig. 2a.

Similarly, we give the transformation of Fig. 2b in Fig. 2e. ut

5 Zeno-free cycle synthesis in CUB-PTAs

Taking a disjunctive CUB-PTA as input, we show in this section that synthesiz-
ing the parameter valuations for which there exists at least one non-Zeno cycle
(and therefore an infinite non-Zeno run) reduces to an SCC (strongly connected
component) synthesis problem.

First, we define a light extension of the parametric zone graph as follows. The
extended parametric zone graph of a PTA A is identical to its parametric zone
graph, except that any transition (s, e, s′) is replaced with (s, (e, b), s′), where b
is a Boolean flag which is true if time can potentially elapse between s and s′.
In practice, b can be computed as follows, given s = (l, C) and edge e:

1. add a fresh extra clock x0 to the constraint C, i. e. compute C ∧ x0 = 0
2. compute the successor s′ = (l′, C ′) of (l, C ∧ x0 = 0) via edge e
3. check whether C ′ ⇒ x0 = 0: if so, then b = false; otherwise b = true.

Introducing such a clock is cheap: the check is not expensive, and the extra
clock does not impact the size of the parametric zone graph: As mentioned
in [WSW+15], introducing the clock x0 here is different from the approach of

12

introducing an extra clock for non-Zenoness detection [Tri99] as x0 is 0 in all
nodes of the zone graph and can be eliminated from the memory, therefore not
requiring more space nor extra states.

In contrast to non-parametric TAs, the flag b does not necessarily mean that
time can necessarily elapse for all parameter valuations. Consider the example
in Fig. 2c. After taking one loop, we have that x0 ≤ p: therefore, x0 is not
necessarily 0, and b is true. But consider v such that v(p) = 0: then in l1 time
can never elapse.

However, we show in the following lemma that the flag b does denote time
elapsing for strictly positive parameters.

Lemma 3. Let (l, C)
e,b⇒ (l′, C ′) be a transition of the extended parametric zone

graph of a PTA A. Then, for any strictly positive parameter valuation in C ′↓P ,
there exists an equivalent transition in v(A) in which time can elapse.

Proof. First note that, for any v |= C ′↓P , an equivalent concrete transition exists
in v(A), from Lemma 1. Now, since b is true, the extra clock x0 in the state of the
extended parametric zone graph corresponding to (l, C ′) is either unbounded,
or bounded by some parametric linear term plt . If it is unbounded, then time
can elapse for any valuation, and the lemma holds trivially. Assume x0 ≤ plt for
some plt . As our parameters are strictly positive, then for any valuation v, v(plt)
evaluates to a strictly positive rational, and therefore time can elapse along this
transition in v(A). �

Definition 6. An infinite symbolic run r is non-Zeno if all its associated con-
crete runs are non-Zeno.

In the remainder of this section, given an edge e = (l, g, a,R, l′), e.R denotes
that the clocks in R reset along e.

The following theorem states that an infinite symbolic run is non-Zeno iff the
time can (potentially) elapse along infinitely many edges and, whenever a clock
is bounded from above, then eventually either this clock is reset or it becomes
unbounded.

Theorem 2. Let r = s0
(e0,b0)⇒ s1

(e1,b1)⇒ · · · be an infinite symbolic run of the
extended parametric zone graph of a CUB-PTA A. r is non-Zeno if and only if

∗ there exist infinitely many k such that bk = true; and
? for all x ∈ X, for all i ≥ 0, given si = (li, Ci), if pub(li, x) 6=∞, there exists
j such that j ≥ i and x ∈ ej .R or pub(lj , x) =∞.

Proof. See Appendix D. �
We now show in the following that synthesizing parameter valuations for

which there exists a non-Zeno infinite run reduces to an SCC searching problem.
First, given an SCC scc, we denote by scc.K the parameter constraint asso-

ciated with scc, i. e. C↓P , where (l, C) is any state of the SCC.7

7 Following a well-known result for PTAs, all symbolic states belonging to a same
cycle in a parametric zone graph have the same parameter constraint.

13

Theorem 3. Let A be a CUB-PTA of finite extended parametric zone graph G.
Let v be a strictly positive parameter valuation. v(A) contains a non-Zeno infinite
run if and only if G contains a reachable SCC scc such that v |= scc.K and

† scc contains a transition s
(e,b)⇒ s′ such that b = true; and

‡ for every clock x in X, given s = (l, C), if pub(l, x) 6= ∞ for some state s
in scc, there exists a transition in scc with label (e, b) such that x ∈ e.R.

Proof. See Appendix E. �
Therefore, from Theorem 3, synthesizing valuations yielding an infinite sym-

bolic run reduces to an SCC searching problem in the extended parametric
zone graph. Then, we need to test each SCC against two conditions: whether
it contains a transition which can be locally delayed (i. e. whether it contains
a transition where b = true); and whether every clock having an upper bound
other than ∞ at some state is reset along some transition in the SCC. Then,
for all SCCs matching these two conditions, we return the associated parameter
constraint.

We give in Algorithm 2 an algorithm synthNZ to solve the non-Zeno synthe-
sis problem for CUB-PTAs. synthNZ simply iterates on the SCCs, and gathers
their associated parameter constraints whenever they satisfy the conditions in
Theorem 3.

Algorithm 2: CUB-PTA non-Zeno synthesis algorithm synthNZ(A)

Input: CUB-PTA A and its extended parametric zone graph G
Output: constraint KNZ gathering valuations for which there is a non-Zeno

infinite run
1 KNZ ← ⊥ while there are un-visited states in G do
2 find a new SCC scc;
3 mark all states in scc as visited;
4 if scc satisfies † and ‡ then
5 KNZ ← KNZ ∨ scc.K ;

6 return KNZ ;

If the extended parametric zone graph G is finite, then the correctness and
completeness of synthNZ immediately follow from Theorem 3. If only an incom-
plete part of G is computed (e. g. by bounding the exploration depth, or the
number of explored states, or the execution time) then only the ⇐ direction of
Theorem 3 holds: in that case, the result of synthNZ is correct but non-complete,
i. e. it is a valid under-approximation. In the context of parametric model check-
ing, knowing which parameter valuations violate the property is already very
helpful to the designer, as it helps to discard unsafe valuations, and to refine the
model.

14

6 Experiments

6.1 Environment

We implemented our algorithms in the latest version of IMITATOR [AFKS12].8

The Parma Polyhedra Library (PPL) [BHZ08] is integrated inside the core of IM-
ITATOR in order to solve mainly linear inequality system problems. Experiments
were run on an Intel Core 2 Duo P8600 at 2.4 GHz and 4 GiB of memory.

6.2 Experiments

We compare three approaches:

1. A cycle detection synthesis without the non-Zenoness assumption (called
synthCycle). The result may be an over-approximation of the actual re-
sult, as some of the parameters synthesized may yield only Zeno cycles.
If synthCycle does not terminate, its result is an under-approximation of an
over-approximation, therefore considered as potentially invalid; that is, there
is no guarantee of correctness for the synthesized constraint.

2. Our CUB-detection (Algorithm 1) followed by synthesis (Algorithm 2): the
result may be under-approximated, as only the valuations for which the PTA
is CUB are considered.

3. Our CUB-transformation (CUBtrans in Algorithm 3) followed by synthesis
(Algorithm 2) on the resulting disjunctive CUB-PTA. If the algorithm ter-
minates, then the result is exact, otherwise it may be under-approximated.

We use a modified version of the Tarjan algorithm for detecting SCCs.
We consider various benchmarks to compare our techniques: protocols

(CSMA/CD, Fischer [AHV93], RCP, WFAS), hardware circuits (And-Or, flip-
flop), scheduling problems (Sched5), a networked automation system (simop)
and various academic benchmarks.

We give from left to right in ?? the case study name and its number of
clocks, parameters and locations. For synthCycle, we give the computation time
(TO denotes a time-out at 3600 s), the constraint type (⊥, > or another con-
straint) and the validity of the result: if synthCycle terminates, the result is
an over-approximation, otherwise it is potentially invalid. For CUBdetect (resp.
CUBtrans) we give the detection (resp. transformation) time, the total time (in-
cluding synthNZ), the result, and whether it is an under-approximation or an
exact result. We also mention whether CUBdetect outputs that all, none or some
valuations make the PTA CUB; and we give the number of locations in the
transformed disjunctive CUB-PTA output by CUBtrans. The percentage is used
to compare the number of valuations (comparison obtained by discretization)
output by the three algorithms, with CUBtrans as the basis (as the result is
exact).

The toy benchmark CUBPTA1 is a good illustration: CUBtrans terminates
after 0.073 s (and therefore its result is exact) with some constraint. CUBdetect

8 For experimental data including source and binary, see imitator.fr/static/NFM17

15

imitator.fr/static/NFM17

is faster (0.015 s) but infers that only some valuations are CUB and analyzes
only these valuations; the synthesized result is only 69 % of the expected result.
In contrast, synthCycle is much faster (0.006 s) but obtains too many valuations
(208 % of the expected result) as it infers many Zeno valuations.

Interpretation of the experiments Let us discuss the results. First, synthCycle
almost always outputs a possibly invalid result (neither an under- nor an
over-approximation), which justifies the need for techniques handling non-Zeno
assumptions. In only one case (CUBPTA1), it outputs a non-trivial over-
approximation. In two cases, it happens to give an exact answer, as the over-
approximation of ⊥ necessarily means that ⊥ is the exact result. In contrast,
CUBtrans gives an exact result in five cases, a non-trivial under-approximation
in two cases; the five remaining cases are a disappointing result in which ⊥ is
output as an under-approximation. By studying the model manually, we realized
that some non-Zeno cycles actually exist for some valuations, but our synthesis
algorithm was not able to derive them. Only in one of these cases (Sched5),
synthCycle outputs a more interesting result than CUBtrans.

The transformation is relatively reasonable both in terms of added locations
(in the worst case, there are 40 instead of 10 locations, hence four times more, for
WFAS) and in terms of transformation time (the worst case is 1.2 s for Sched5).
Our experiments do not allow us to fairly compare the time of synthCycle (with-
out non-Zenoness) and synthNZ (with non-Zenoness assumption) as, without
surprise due to the undecidability of synthesis, most analyses do not terminate.
Only two benchmarks terminate for both algorithms, but are not significant
(< 1 s).

Note that flip-flop is a hardware circuit modeled using a bi-bounded inertial
delay, and is therefore CUB for all valuations.

An interesting benchmark is WFAS, for which our transformation procedure
terminates whereas synthCycle does not. Therefore, we get an exact result while
the traditional procedure cannot produce any valuable output.

As a conclusion, CUBdetect seems to be faster but less complete than
CUBtrans. As for CUBtrans, its result is almost always more valuable than
synthCycle, and therefore is the most interesting algorithm.

7 Conclusion

We proposed a technique to synthesize valuations for which there exists a non-
Zeno infinite run in a PTA. By adding accepting states, this allows for parametric
model checking with non-Zenoness assumption. Our techniques rely on a trans-
formation to a disjunctive CUB-PTA (or in some cases on a simple detection
of the valuation for which the PTA is already CUB), and then on a dedicated
cycle synthesis algorithm. We implemented our techniques in IMITATOR and
compared our algorithms on a set of benchmarks.

16

Future works Our technique relying on CUB-PTAs extends the technique of
CUB-TAs: this technique is shown in [WSW+15] to be the most efficient for
performing non-Zeno model checking for TAs. However, for PTAs, other tech-
niques (such as yet to be defined parametric extensions of strongly non-Zeno
TAs [TYB05] or guessing zone graph [HSW12]) could turn more efficient and
should be investigated. Studying whether other techniques can be proposed is
therefore on our agenda.

In addition, parametric stateful timed CSP (PSTCSP) [ALSD14] is a for-
malism for which the CUB assumption seems to be natively verified. Therefore,
studying non-Zeno parametric model checking for PSTCSP, as well as transform-
ing PTAs into PSTCSP models, would be an interesting direction of research.

Studying the decidability of the underlying decision problem should be done
for famous subclasses of PTAs constraining the use of parameters (namely L/U-
PTAs, L-PTAs and U-PTAs [HRSV02]) as well as for new semantic subclasses
that we recently proposed and that benefit from decidability results (namely
integer-point PTAs and reset-PTAs [ALR16]).

An interesting future will be to design a multi-core extension of our non-Zeno
synthesis algorithm; this could be done by reusing parallel depth first search
algorithms for finding cycles [ELPvdP12].

Finally, combining our synthesis algorithms with IC3 [CGMT13], as well as
extending them to hybrid systems [SÁC+15] is also of high practical interest.

References

ABB+16. Lăcrămioara Aştefănoaei, Saddek Bensalem, Marius Bozga, Chih-Hong
Cheng, and Harald Ruess. Compositional parameter synthesis. volume
9995 of Lecture Notes in Computer Science, pages 60–68, 2016.

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fri-
bourg. An inverse method for parametric timed automata. International
Journal of Foundations of Computer Science, 20(5):819–836, 2009.

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IM-
ITATOR 2.5: A tool for analyzing robustness in scheduling problems. In
FM, volume 7436 of Lecture Notes in Computer Science, pages 33–36,
2012.

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric
real-time reasoning. In STOC, pages 592–601. ACM, 1993.

ALR16. Étienne André, Didier Lime, and Olivier H. Roux. Decision problems for
parametric timed automata. In ICFEM, volume 10009 of Lecture Notes
in Computer Science, pages 400–416. Springer, 2016.

ALSD14. Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Parameter syn-
thesis for hierarchical concurrent real-time systems. Real-Time Systems,
50(5-6):620–679, 2014.

AM15. Étienne André and Nicolas Markey. Language preservation problems in
parametric timed automata. In FORMATS, volume 9268 of Lecture Notes
in Computer Science, pages 27–43. Springer, 2015.

17

And15. Étienne André. What’s decidable about parametric timed automata? In
FTSCS, Communications in Computer and Information Science, pages
52–68. Springer, 2015.

BBLS15. Nikola Beneš, Peter Bezděk, Kim G. Larsen, and Jǐŕı Srba. Language
emptiness of continuous-time parametric timed automata. In ICALP,
Part II, volume 9135 of Lecture Notes in Computer Science, pages 69–81.
Springer, 2015.

BDM+98. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.
Kronos: A model-checking tool for real-time systems. In CAV, volume
1427 of LNCS, pages 546–550. Springer, 1998.

BG06. H. Bowman and R. Gómez. How to stop time stopping. Formal Aspects
of Computing, 18(4):459–493, 2006.

BHZ08. Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Poly-
hedra Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems. Science of
Computer Programming, 72(1–2):3–21, 2008.

BLN03. D. Beyer, C. Lewerentz, and A. Noack. Rabbit: A Tool for BDD-based
Verification of Real-Time Systems. In CAV, pages 122–125. Springer,
2003.

CGMT13. Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta.
Parameter synthesis with IC3. In FMCAD, pages 165–168. IEEE, 2013.

DHQ+08. Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang Yi.
Timed automata patterns. IEEE Transactions on Software Engineering,
34(6):844–859, 2008.

ELPvdP12. Sami Evangelista, Alfons Laarman, Laure Petrucci, and Jaco van de Pol.
Improved multi-core nested depth-first search. In ATVA, volume 7561 of
Lecture Notes in Computer Science, pages 269–283. Springer, 2012.

GB07. R. Gómez and H. Bowman. Efficient detection of Zeno runs in timed
automata. In FORMATS, volume 4763 of Lecture Notes in Computer
Science, pages 195–210. Springer, 2007.

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
Linear parametric model checking of timed automata. Journal of Logic
and Algebraic Programming, 52-53:183–220, 2002.

HSW12. Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient empti-
ness check for timed Büchi automata. Formal Methods in System Design,
40(2):122–146, 2012.

JLR15. Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer param-
eter synthesis for timed automata. Transactions on Software Engineering,
41(5):445–461, 2015.

KMH01. Lina Khatib, Nicola Muscettola, and Klaus Havelund. Mapping temporal
planning constraints into timed automata. In TIME, pages 21–27. IEEE
Computer Society, 2001.

KP12. Micha l Knapik and Wojciech Penczek. Bounded model checking for para-
metric timed automata. Transactions on Petri Nets and Other Models of
Concurrency, 5:141–159, 2012.

LPY97. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. International Journal on Software Tools for Technology Transfer,
1(1-2), 1997.

Min67. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-
Hall, Inc., 1967.

18

SÁC+15. Stefan Schupp, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Goran
Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski. Current chal-
lenges in the verification of hybrid systems. In CyPhy, volume 9361 of
Lecture Notes in Computer Science, pages 8–24. Springer, 2015.

SLDP09. Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexible
verification under fairness. In CAV, volume 5643 of Lecture Notes in
Computer Science, pages 709–714. Springer, 2009.

Tri99. Stavros Tripakis. Verifying progress in timed systems. In AMAST, pages
299–314, 1999.

TYB05. Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed
Büchi automata emptiness efficiently. Formal Methods in System Design,
26(3):267–292, 2005.

Wan02. F. Wang. Symbolic Verification of Complex Real-Time Systems with
Clock-Restriction Diagram. In Formal Techniques for Networked and Dis-
tributed Systems, pages 235–250. Springer, 2002.

WSW+15. Ting Wang, Jun Sun, Xinyu Wang, Yang Liu, Yuanjie Si, Jin Song Dong,
Xiaohu Yang, and Xiaohong Li. A systematic study on explicit-state non-
Zenoness checking for timed automata. IEEE Transactions on Software
Engineering, 41(1):3–18, 2015.

19

A Proof of Theorem 1

Theorem 1 (recalled). The non-Zeno emptiness problem is undecidable
for PTAs with at least four clocks and one (bounded) parameter.

Proof. By reduction from the halting problem of a deterministic 2-counter-
machine, which is undecidable [Min67]. Let us encode a 2-counter machine
(2CM) using PTAs. Several encodings were proposed in the literature. We rely
here on an encoding proposed in [AM15], that requires one single (bounded)
parameter p and four clocks. The proof of Theorem 1 does not require to mod-
ify the 2CM encoding of [AM15]; still, we recall it in Appendix B for sake of
completeness. Basically, that encoding is such that a special location lhalt in
the PTA is reachable iff the 2-counter machine halts. This encoding has the
specificity that the unique parameter p is used not only to denote the maximum
possible value of the 2 counters (which is often the case in PTA-based encodings
in the literature), but also to bound the number of operations of the 2CM that
the PTA can simulate. That is, for any valuation v of p, the encoding of the
2CM will stop after v(p) steps.

lhalt lfA2CM
x := 0

x = 1
x := 0

Fig. 3: Undecidability of the non-Zeno emptiness problem

Let A2CM denote the PTA encoding a given 2-counter machine using the
encoding of [AM15]. We extend A2CM as shown in Fig. 3: from the location
encoding the halting location (i. e. lhalt), we add a transition to a new location
lf . Then, this location has a self-loop guarded with x = 1 and resetting x, where
x is any of the four clocks used in the encoding in [AM15].

First, recall from [AM15] that lhalt is reachable iff the 2-counter-machine
halts, and for parameter valuations v such that v(p) is larger than or equal to
the maximum value of the counters along the (unique) run of the machine. Then,
once lhalt is reached, lf is reachable without condition. Then, once lf is reached,
it can be visited infinitely often every 1 time unit, thanks to the guard and the
reset of x. Hence, once lf is reached, there exists an infinite non-Zeno run for
any parameter valuation for which lf is reachable. However, if the 2CM does
not halt, lf is not reachable; furthermore, thanks to the encoding of [AM15],
for any valuation, any run stops after at most v(p) discrete steps, and therefore
there is no infinite non-Zeno run for any valuation. Hence, there exists an infinite
non-Zeno run iff the 2-counter-machine halts. �

20

B An existing 2-counter machine encoding

For sake of self-containment, we recall in the following the 2-counter machine
encoding of [AM15, Theorem 12].

The encoding of the two-counter machine is as follows: it uses one rational-
valued parameter p, one clock t to tick every time unit, and one paramet-
ric clock xi for storing the value of each counter ci, with xi = 1 − p · ci
when t = 0. Finally, clock z is used to count the number of steps of the two-
counter machine: this is where this construction differs from the classical ones
(e. g. [AHV93,JLR15,BBLS15]), as we use the parameter p to bound the length
(number of step) of the possible halting computation of the two-counter ma-
chine. As the number of steps is bounded by p, we know that both c1 and c2 are
also bounded by p.

An initial transition is used to initialize the values of x1 and x2 to 1, while it
sets t to zero. It also checks that the value of p is in (0, 1). Zero-tests are easily
encoded by checking whether xi = 1 while t = 0. Incrementation is achieved by
resetting clock xi when it reaches 1+p, while the other clocks are reset when they
reach 1 (see Fig. 4). This way, exactly one time unit elapses in this module, and
clock xi is decreased by p, which corresponds to incrementing ci. Decrementing
is handled similarly. Finally, notice that the use of the constraint xi = 1 + p can
be easily avoided, at the expense of an extra clock.

s0

s1

s′1

s2 s3

x1=1+p∧t≤1
x1:=0

x2=1
x2:=0

x1=1+p∧t≤1
x1:=0

x2=1
x2:=0

t=1

t:=0

t=0

Fig. 4: Encoding incrementation with a rational parameter

We wish to forbid the infinite non-halting run in the machine. For this, we add
a third counter, which will be incremented every other step of the resulting three-
counter machine. This is achieved by adding a fourth clock z that is reset when
z = 1− p, and therefore its value is “incremented” at each gadget. In addition,
we add a guard z 6= 0 to any transition leading the the initial location of a
gadget: therefore, after exactly p steps, we will have that z = 0 ∧ t = 0, and the
PTA encoding of the machine will be blocked. We then have the property that
if M does not halt, the simulation in the associated PTA will be finite.

One easily proves that if a (deterministic) two-counter machineM halts, then
by writing P for the maximal counter value reached during its finite computation,
the PTA above has a path to the halting location as soon as 0 < p ≤ 1/P .
Conversely, assume that the machine does not halt, and fix a parameter value 0 <
p < 1. If some counter of the machine eventually exceeds 1/p, then at that

21

moment in the corresponding execution in the associated PTA, the value of t
when xi = 1 + p will be larger than 1, and the automaton will be in a deadlock.
If the counters remain bounded below 1/p, then the execution of the two-counter
machine will be simulated correctly, and the halting state will not be reached.

Finally, we notice that this reduction works even if we impose a positive
upper bound on p (typically 1).

C An algorithm to transform a PTA into a CUB-PTA

Let us now show that any PTA can be transformed into a disjunctive CUB-
PTA. A PTA is not a CUB-PTA if there exists an edge entailing a decreasing
upper bound for some clock: this is “problematic” edge. A problematic edge
e = (l, g, a,R, l′) is detected by comparing the upper bounds of location l, guard
g and location l′. Unfortunately, when these upper bounds contain parameters,
their comparison might be impossible, so all cases have to be considered. Since
all problematic edges can be detected, any PTA can easily be transformed into
a disjunctive CUB-PTA by splitting locations and enforcing their invariants to
cater for all possible cases. A new initial location is created, that is connected
to these copies. Thus, all problematic edges are removed, and the transformed
model is a disjunctive CUB-PTA.

Algorithm 3 presents the transformation of a PTA into a disjunctive CUB-
PTA. It comprises five parts preceded by an initialization phase. Note that, in
order to reduce the state space explosion and to improve efficiency, the algorithm
generates only the necessary parameter relations and operates on-the-fly:

0. Initially, the automaton considered is the input one, and an empty set of
constraints is associated with each location, that will be modified by the
algorithm. The pair composed of automaton and constraints is added to a
queue of elements to be handled until all of them have been considered;

1. The first part (lines 4–33) splits the different constraints cases for the prob-
lematic edges. For each of these, K (resp. θ) gathers the parametric (resp.
timed) constraint w.r.t. the edge.

2. In lines 35–38, a location is created for each constraint in constraintsq(l).
Its associated invariant is a conjunction of K and I(l) in L′ and cub ls(l).

3. Then, these new edges are created to connect these new locations (lines 39–
42) ;

4. Finally, in lines 43–47, all problematic edges are deleted.

5. At the end of the loop (line 48), Aq is a CUB-PTA that is added to the
disjunctive CUB-PTA D. When exiting the loop, the initial state l0 is linked
to all initial states of CUB-PTAs before D is returned.

22

Algorithm 3: CUBtrans(A): Transformation into a CUB-PTA

Input: PTA A = (Σ,L, l0, X, P,K0, I, E)
Output: PTA D associated with a disjunctive CUB-PTA

1 A0 ← A; ∀l ∈ L, constraints0(l)← ∅;
2 queue Q ← 〈A0, constraints0〉;
3 while Q 6= ∅ do
4 〈Aq(Σ ,L

′, l′0 ,X ,P,K
′
0 , I ,E

′), constraintsq〉 ← dequeue(Q);
5 Kadding ← >;
6 while Kadding = > do
7 Kadding ← ⊥;
8 foreach edge (l, g, a, R, l′) ∈ E′ do
9 K ←

∧
x∈X

[
pub(I (l), x) ≤ pub(g, x) ∧

10 if x /∈ R then pub(I (l), x) ≤ pub(I (l′), x) else >
]
;

11 θ ←
∧

x∈X

[
(I (l), x) ∧ (g, x) ∧ if x /∈ R then (I (l′), x) else >

]
;

12 if θ /∈ constraintsq(l) then
13 if K is ⊥ then
14 constraintsq(l)← constraintsq(l) ∪ {θ};

15 if K is a parameter constraint and K ∧K′0 6= ∅ then
16 if (¬ K ∧K′0) 6= ∅ then
17 A′ ← (Σ ,L′, l′0 ,X ,P, (¬ K ∧K ′0), I ,E

′);

18 Q ← 〈A′, constraintsq(l) ∪ {θ}〉;

19 K ′0 ← K ′0 ∧K ;

20 foreach constraint K in constraintsq(l) do
21 K ′ ←

∧
x∈X

[
pubI (l), x) ≤ pub(g, x) ∧

22 if x /∈ R then pub(I (l), x) ≤ pub(k , x) else >
]
;

23 θ′ ←
∧

x∈X

[
(I (l), x) ∧ (g, x) ∧ if x /∈ R then (K , x) else >

]
;

24 if θ′ /∈ constraintsq(l) then
25 if K′ is ⊥ then
26 constraintsq(l)← constraintsq(l) ∪ {θ′};

27 if K′ is a parameter constraint and K′ ∧K′0 6= ∅ then
28 if (¬ K′ ∧K′0) 6= ∅ then
29 A′ ← (Σ ,L′, l′0 ,X ,P, (¬ K ′ ∧K ′0), I ,E

′);

30 Q ← 〈A′, constraintsq(l) ∪ {θ′}〉;

31 K ′0 ← K ′0 ∧K ′;

32 if constraintsq(l) is increased then
33 Kadding ← >;

34 cub ls ← ∅;
35 foreach constraint K in constraintsq(l) do
36 create a new location cub l;

37 I(cub l)← K ∧ I(l); L′ ← L′ ∪ {cub l};
38 cub ls← cub ls ∪ {cub l};
39 foreach location cub l in cub ls do
40 foreach edge (l′, g, a, R, l) or (l, g, a, R, l′) respectively with l′ ∈ L′ do
41 E′ ← (l′, g, a, R, cub l) or (cub l, g, a, R, l′);

42 E′ ← (cub l′, g, a, R, cub l) or (cub l, g, a, R, cub l′) with cub l′ ∈ cub ls;

43 foreach edge e(l, g, a, R, l′) ∈ E′ do
44 K ←

∧
x∈X

[
pub(I (l), x) ≤ pub(g, x) ∧

45 if x /∈ R then pub(I (l), x) ≤ pub(I (l′), x) else >
]
;

46 if K = ⊥ or (K is a parameter constraint and K ∧K′0 = ∅) then
47 E′ ← E′ \ {e}

48 D ∪Aq ;

49 foreach Aq(Σ,L
′, l′0, X, P,K

′
0, I, E

′) ∈ D do
50 add edge from l0 of D to set of cub ls ∈ l′0 ∪ l

′
0 with K′0 as guard;

51 return D;

23

D Proof of Theorem 2

Theorem 2 (recalled). Let r = s0
(e0,b0)⇒ s1

(e1,b1)⇒ · · · be an infinite sym-
bolic run of the extended parametric zone graph of a CUB-PTA A. r is
non-Zeno if and only if

∗ there exist infinitely many k such that bk = true; and
? for all x ∈ X, for all i ≥ 0, given si = (li, Ci), if pub(li, x) 6= ∞, there

exists j such that j ≥ i and x ∈ ej .R or pub(lj , x) =∞.

Proof. ⇒ If r is non-Zeno, ∗ is trivially true. Consider the case when a clock x
is bounded from above (i. e. with a parametric upper bound other than ∞):
for any parameter valuation, x is bounded from above (even for arbitrarily
large valuations). Therefore the clock x must be reset later, or the upper
bound becomes infinity since by definition its value goes unbounded along
the run; otherwise, we have an empty symbolic state and thus an infeasible
run. Hence, ? holds.

⇐ In the following, we show that if ∗ and ? are true, then r is non-Zeno. Let
the following be a segment of r according to ∗ and ?:

(li, Ci)
(ei,bi)⇒ (li+1, Ci+1)

(ei+1,bi+1)⇒ · · · (lj , Cj)
(ej ,bj)⇒ · · · (lk, Ck)

(ek,bk)⇒ · · ·

where i ≤ j ≤ k and bj = true. Furthermore, for all x ∈ X, if pub(lj , x) 6=∞,
there exists m,n such that i−1 ≤ m < j ≤ n ≤ k−1 such that x ∈ em.R (or
m = −1, i. e. x is “reset” before the initial state as all clocks are initially 0)
and, x ∈ en.R or pub(ln, x) = ∞ (from condition ?). That is, the segment
contains a transition which can be delayed locally. Furthermore, the segment
covers the “life-span” (between two resets) of all clocks in lj which have an
upper bound other than ∞.
The infinite symbolic run r is progressive if and only if it takes an unbounded
amount of time for any parameter valuation. Since there are infinitely many
segments as above in r, if any such segment can take a positive amount of
time for all its valuations, then the run r is progressive and thus non-Zeno,
and then non-Zeno for any valuation (from Definition 6). Next, we show that
the segment can take a positive amount of time.
Note that because bj is true, then from Lemma 3, for any strictly positive
valuation in Cn↓P , the time than can elapse from lj to lj+1 is strictly posi-
tive. Furthermore, since A is a CUB-PTA, therefore for any strictly positive
valuation v |= Cn↓P , from Lemma 2 v(A) is a CUB-TA. From the syntax of
CUB-TAs, a run cannot be blocked in the future due to a too small clock
upper bound, as clock upper bounds are always non-decreasing. Therefore,
for any strictly positive valuation in Cn↓P , the parametric time than can
elapse from lm to ln is strictly positive. Therefore, for any strictly positive
valuation v |= Cn↓P , there exists an equivalent concrete run in v(A) that is
progressive. Hence r is progressive. With the arguments above, we conclude
that the theorem holds.

�

24

E Proof of Theorem 3

Theorem 3 (recalled). Let A be a CUB-PTA of finite extended parametric
zone graph G. Let v be a strictly positive parameter valuation. v(A) contains
a non-Zeno infinite run if and only if G contains a reachable SCC scc such
that v |= scc.K and

† scc contains a transition s
(e,b)⇒ s′ such that b = true; and

‡ for every clock x in X, given s = (l, C), if pub(l, x) 6=∞ for some state s
in scc, there exists a transition in scc with label (e, b) such that x ∈ e.R.

Proof. ⇒ Assume v(A) contains a non-Zeno infinite run. From Lemma 1, there
exists an equivalent symbolic run r in G. Since G is finite-state, r must visit
a set of states and transitions, denoted as Inf , infinitely often. There must
be an SCC, say scc, which contains Inf . Inf must contain a transition with
a label b being true (by contradiction) and therefore † is trivially true.
Next, we prove ‡ by contradiction. Assume there is a state s in scc where a
clock x has an upper bound plt which is not ∞ and there is no transition
in scc which resets x. Because the upper bound of x never decreases (by
definition of CUB-PTAs), the upper bound of x at every state in scc must be
equal to plt . Since scc contains Inf , this implies that r is Zeno as x is always
bounded from above and never reset, which contradicts our assumption that
r is non-Zeno. Thus, scc must satisfy ‡.

⇐ Assume there is an SCC in G satisfying † and ‡. Let r be a symbolic run which
visits every state/transition in the SCC infinitely often. It is easy to see that
r satisfies ∗ of Theorem 2 because of †. By ‡, we conclude that every clock
which has an upper bound other than ∞ at a state is reset later. Therefore,
r is non-Zeno by Theorem 2. From Definition 6, any concrete run associated
with r is non-Zeno; from Lemma 1, the parameter valuations having such an
equivalent run are exactly scc.K. Therefore, we conclude that the theorem
holds.

�

25

	Parametric model checking timed automata under non-Zenoness assumption
	Citation

	Parametric model checking timed automata under non-Zenoness assumption

