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FiB: Squeezing Loop Invariants by Interpolation
between Forward/Backward Predicate Transformers

Shang-Wei Lin∗, Jun Sun†, Hao Xiao∗, Yang Liu∗, David Sanán∗, and Henri Hansen‡

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore
†Singapore University of Technology and Design, Singapore

‡Tampere University of Technology, Finland

Abstract—Loop invariant generation is a fundamental problem
in program analysis and verification. In this work, we propose
a new approach to automatically constructing inductive loop
invariants. The key idea is to aggressively squeeze an inductive
invariant based on Craig interpolants between forward and
backward reachability analysis. We have evaluated our approach
by a set of loop benchmarks, and experimental results show that
our approach is promising.

I. INTRODUCTION

In program verification, loops are challenging to handle.
One way to prove that a loop satisfies its postcondition
under a precondition is based on inductive loop invariants.
Intuitively, an inductive loop invariant is a property which
holds in each iteration of the loop. Given an inductive loop
invariant, as long as it is weaker than the precondition, and
its conjunction with the negation of the loop condition is
stronger than the postcondition, we can conclude that the loop
establishes its postcondition if it terminates. However, program
verification based on loop invariants does not come for free.
The key challenge is how to construct inductive loop invariants
automatically, which is a fundamental problem in program
analysis and verification.

Given a loop with precondition P and postcondition Q,
traditional forward analysis [23], [19] tries to obtain the
reachability of the loop after each iteration, as shown in
Fig. 1 (a). Let Ft(P ) be the set of forward reachable states
starting from the precondition P after the t-th iteration of the
loop, where F0(P ) = P . Notice that Fi(P ) =⇒ Fi+1(P ) for
all i ≥ 0, does not necessarily hold if we consider the strongest
condition after the loop is executed (c.f. Section III for more
details). Assume that the loop terminates after t iterations for
some t ≥ 0, i.e., Ft(P ) does not satisfy the loop condition. If
Ft(P ) =⇒ Q, then we can conclude that the loop satisfies
its postcondition after it terminates. However, this approach
may not terminate in general, or it may take a large number
of forward iterations to find such a Ft(P ) for some t ≥ 0.

Similarly, traditional backward reachability analysis [23],
[19] tries to obtain the set of backward reachable states,
denoted by Bt(Q), from the postcondition Q after t iterations
(assume the loop condition is still satisfied). Notice that
Bi(Q) =⇒ Bi+1(Q) for all i ≥ 0 does hold if we consider
the weakest condition after the loop is executed backward
(c.f. Section III for more details). If we can find a backward
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Fig. 2. Our Approach

reachability Bt(Q) for some t ≥ 0 such that P =⇒ Bt(Q),
then we conclude that the loop satisfies its postcondition, as
shown in Fig. 1 (b). However, this backward approach may
not terminate in general as well, or it may take a large number
of backward iterations to find such a Bt(Q) for some t ≥ 0.

In this paper1, we propose an approach to automatically
constructing inductive loop invariants in the form of Bool-
ean combinations of linear integer constraints over program
variables. Our approach is to squeeze an invariant between
forward and backward reachability of the loop. Although
the forward and backward approaches may not terminate in
general, they do provide some hints to construct inductive
invariants. The intuitive idea behind our approach is as follows.
Instead of starting from the postcondition Q, we perform the
backward reachability analysis from ¬Q, the negation of the
postcondition. If the loop does have an inductive invariant I
to establish the postcondition Q, as shown in Fig. 2, then
∪∞t=0Ft(P ) will not intersect with Bt→∞(¬Q); otherwise
I would not be inductive. In addition, ∪∞t=0Ft(P ) will be
included in the inductive invariant, i.e., ∪∞t=0Ft(P ) =⇒ I.
Furthermore, I will not intersect with Bt→∞(¬Q) as well;
otherwise, I would not be an invariant to establish Q. Based
on the above observation, an inductive invariant I is actually

1The corresponding author, Shang-Wei Lin, can be contacted via the
following e-mail address: shang-wei.lin@ntu.edu.sg.
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a Craig interpolant [18] (c.f. Definition 2) for ∪ti=0Fi(P ) with
respect to Bt(¬Q). That is, we can squeeze an inductive
invariant between the forward reachability from P and the
backward reachability from ¬Q by obtaining an interpolant in
between. If the number of forward/backward steps is sufficient,
an inductive invariant in between should be squeezed out.
This observation gives a systematic way to construct an
inductive invariant. The details of our approach is described
in Section IV. To summarize, this work makes the following
contributions:

• We propose a novel approach to automatically con-
structing inductive loop invariants for loop structures
consisting of multiple paths inside. The generated inva-
riant is in the form of Boolean combinations of linear
integer constraints over program variables. The proposed
approach squeezes loop invariants between forward and
backward analysis by obtaining interpolants in between.
To the best of our knowledge, this is the first work
to combine interpolation techniques with forward and
backward predicate transformers in Hoare Logic [34].

• We have implemented our approach in a tool, called
FiB. We compared FiB with other state-of-the-art inva-
riant generation tools: BLAST [33], InvGen [31], Inter-
proc [35], CPAchecker [9], ITP[41], and HOLA[20]. Our
experimental results show that our approach is promising
for advancing the state-of-the-art invariant generation for
numeric loops.

The rest of this paper is organized as follows. Section II
illustrates our approach with motivating examples. Section III
reviews preliminary backgrounds. The details of the proposed
approach is introduced in Section IV. Evaluations of our
approach are presented in Section V. Section VI summarizes
related works, and Section VII concludes this work.

II. MOTIVATING EXAMPLES

In this section, we illustrate the intuitive idea behind our
approach using two example programs. The first example
is shown in Fig. 3 (a). The precondition of the loop is
P : (x = 0 ∧ y = 0), and the postcondition (assertion)
is Q : y = 100. Traditional forward analysis based on
strongest postcondition requires to execute 100 iterations of
the loop to reach F100(P ) : (x = 100 ∧ y = 100). Since
F100(P ) ∧ (x = 100) =⇒ Q, we can conclude that the
assertion Q is satisfied if the loop terminates.

Similarly, traditional backward analysis based on weakest
precondition also requires 100 iteration to find B100(Q) :∨100

i=0(x = i ∧ y = i). Since P =⇒ B100(Q), we can
conclude that the assertion is satisfied if the loop terminates.
If we change the constant from 100 to 100000, traditional
approaches require a huge number of iterations to prove the
assertion. Fig. 3 (b) shows the second example, which is
almost the same as the first one except that the constant 100
is replaced by a variable n ≥ 0. In this example, traditional
(either forward or backward) approaches do not terminate
because the bound is now a variable instead of a constant.

assume(x == 0);
assume(y == 0);

while(x != 100){
x++; y++;

}

assert(y == 100);

(a)

assume(x == 0);
assume(y == 0);
assume(n >= 0);

while(x != n){
x++; y++;

}
assert(y == n);

(b)
Fig. 3. Simple Examples

Stmt
4
= skip | Stmt;Stmt | x := Exp | x := nondet
| if BExp then Stmt else Stmt

Exp
4
= n | x | Exp+ Exp | Exp− Exp
| Exp ∗ n | Exp % n

BExp
4
= False | b | nondet | ¬BExp | BExp ∧ BExp
| Exp < Exp | Exp = Exp

Fig. 4. Syntax of IMP

Our approach works as follows for the second program.
Let us first consider the case where the loop executes without
any iteration. In this case, the forward reachability F0(P ) is
P : (x = 0 ∧ y = 0 ∧ n ≥ 0). Then, we perform the
backward analysis. Notice that unlike traditional backward
approach starting from the postcondition Q, we obtain bac-
kward reachability from the negation of the postcondition,
i.e., ¬Q. If the loop executes backward without any iteration
from ¬Q, the backward reachability B0(¬Q) would be the
conjunction of ¬Q and the negation of the loop condition,
i.e., (y 6= n ∧ x = n). Then, we use an SMT solver to
check the satisfiability of F0(P )∧B0(¬Q). That is, we check
whether the loop violates its postcondition in zero iteration.
Obviously, the formula is not satisfiable, and we can obtain
an interpolant I : (x = y), c.f. Definition 2, for F0(P )
with respect to B0(¬Q) from the SMT solver. Intuitively, the
interpolant I is an abstraction of F0(P ), i.e., F0(P ) =⇒ I,
and I is still inconsistent with B0(¬Q). Then, we check
whether the interpolant I is inductive, i.e., if I holds initially
in the loop, no matter how many iterations the loop executes,
I still holds. The formula for the inductiveness checking is
(x = y)∧(x′ = x+1)∧(y′ = y+1)∧(x 6= n) =⇒ (x′ = y′).
We can check the validity of this formula by an SMT solver
as well (c.f. Sections III and IV), and (x = y) is inductive and
strong enough to prove the postcondition Q. Thus, (x = y)
is the loop invariant obtained by our approach. However, if I
is not inductive, we consider the second case where the loop
executes for one iteration. The same procedure is performed:
(1) check the satisfiability of (F0(P ) ∨ F1(P )) ∧ B1(¬Q),
(2) obtain an interpolant I if the formula is not satisfiable,
and (3) check the inductiveness of I. We keep increasing the
number of iterations and performing the same procedure until
we find an inductive invariant. The details of our approach is
introduced in Section IV.
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wp(skip, Q) ⇔ Q

wp(x := e,Q) ⇔ Q[x 7→ e]

wp(x := nondet, Q) ⇔ ∀x : Q
wp(s1; s2, Q) ⇔ wp(s1,wp(s2, Q))

wp(if b then s1 else s2, Q) ⇔ (b ∧ wp(s1, Q)) ∨
(¬b ∧ wp(s2, Q))

wp(if nondet then s1 else s2, Q) ⇔ wp(s1, Q) ∨
wp(s2, Q)

Fig. 5. Rules for Weakest Precondition

III. BACKGROUND

In this work, we consider the imperative (IMP) language,
whose syntax is shown in Fig. 4. In the IMP language, pro-
grams consist of one or more statements. Statements, denoted
by the symbol Stmt, include skip, sequencing, assignment,
and conditional statements. The keyword nondet denotes an
arbitrary value in the type of the assigned variable. The IMP
language supports two basic types: Booleans and integers.
There are two kinds of expressions in IMP language, namely
integer expressions (denoted by the Exp symbol) and Boolean
expressions (denoted by the BExp symbol). A term in Exp is
of the type of integers where x is an integer variable and n is
an integer constant, while a term in BExp is of Boolean type
where b is a Boolean variable.

To reason about the correctness of an IMP program, we
use the interpretation of Hoare Logic [34]. A Hoare triple is
a formula of the form {P} s {Q}, where s is a Stmt formula
representing a statement in an IMP program, and P and Q
are the precondition and postcondition of the statement s,
respectively. The Hoare triple {P} s {Q} is partially correct2

if the statement s is executed in a state in which P holds, and
then it terminates in a state in which Q holds unless it aborts
or runs forever.

In this work, we consider two predicate transformers [23],
[19]: wp and sp. The function wp takes as inputs an IMP
statement s and a postcondition Q and returns the weakest
precondition of s with respect to Q, denoted by wp(s, Q).
The function sp takes as inputs an IMP statement and a
precondition P and returns the strongest postcondition of s
with respect to P , denoted by sp(P, s). The rules to calculate
the weakest precondition and strongest postcondition for each
primitive statement are given in Fig. 5 and Fig. 6, respecti-
vely [53]. A Hoare triple {P} s {Q} can be proved if either
P =⇒ wp(s, Q) holds, or sp(P, s) =⇒ Q holds.

The target loop structure in this work is a single loop with
multiple paths, which can be represented as an annotated loop
of the form: {P} while κ do S done {Q}. The BExp
formula κ is the loop guard. The loop body S is a Stmt

2Total correctness requires that the statement s has to terminate. We only
consider partial correctness because the target statement in this work is a loop
which may not terminate in general.

sp(P, skip) ⇔ P

sp(P, x := e) ⇔ ∃x0 : P [x 7→ x0] ∧
x = e[x 7→ x0]

sp(P, x := nondet) ⇔ ∃x0 : P [x 7→ x0]

sp(P, s1; s2) ⇔ sp(sp(P, s1), s2)

sp(P, if b then s1 else s2) ⇔ sp(P ∧ b, s1) ∨
sp(P ∧ ¬b, s2)

sp(P, if nondet then s1 else s2) ⇔ sp(P, s1) ∨ sp(P, s2)

Fig. 6. Rules for Strongest Postcondition

formula representing a sequence of statements. The BExp
formulas P and Q are the precondition and postcondition of
the annotated loop, respectively.

One way to validate the Hoare triple for an annotated
loop is based on the sp predicate transformer, in which we
need to prove that sp(P, while κ do S done) =⇒ Q.
Traditionally [23], [19], it is done by approximating the
strongest postcondition of the loop. We can define the strongest
postcondition of a loop in a recursive way as follows:

sp(P, while κ do S done)
m

(P ∧ ¬κ) ∨ sp(sp(P ∧ κ,S), while κ do S done)

However, the above recursive construction of the strongest
postcondition may not terminate in general, which is not
practical to validate an annotated loop. Furthermore, even if it
terminates, it may take a large number of iterations to converge
to a fix-point.

Another way to validate an annotated loop is based on the
wp predicate transformer [23], [19], in which we need to
prove that P =⇒ wp(while κ do S done, Q). Similarly,
We can approximate the weakest precondition of the loop by
considering the number of iterations required to establish the
postcondition Q. Let Bt be a predicate describing the set of
states from which the loop terminates within t iterations and
establish Q. We can define Bt in a recursive way as follows,
where B0 = (¬κ ∧Q):

Bt = B0 ∨ (κ ∧ wp(S, Bt−1))

It means that to establish Q within t iterations, the loop
can either terminate immediately without any iteration and
then establish Q, or perform one iteration and reach a state
where it terminates within t − 1 iterations and then establish
Q. Theoretically, wp(while κ do S done, Q) is equiva-
lent to limk→∞Bt. Since Bt is an under-approximation of
wp(while κ do S done, Q) for all t ≥ 0, in practice,
as long as we can find Bt for some t ≥ 0 such that
P =⇒ Bt holds, then we can conclude that P =⇒
wp(while κ do S done, Q) holds. However, this approach
may not terminate in general, or it may take a large number
of iterations to find such a Bt for some t ≥ 0.
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A promising way to validate an annotated loop is based
on loop invariants, as formulated in Definition 1. However,
the main problem of validating an annotated loop based on
loop invariants is how to generate inductive loop invariants
automatically. In the next section, we are going to introduce
our approach to generating loop invariants automatically based
on Craig interpolation, as formulated in Definition 2.

Definition 1: A loop invariant I of an annotated loop is a
formula satisfying the following conditions: (1) P =⇒ I,
(2) I ∧ ¬κ =⇒ Q, and (3) {I ∧ κ} S {I}.

Definition 2: Given two Boolean formulas A and B such
that A ∧ B is unsatisfiable, a Craig interpolant for A with
respect to B is a formula Â satisfying the following properties:
(1) Â is an abstraction of A, i.e., A =⇒ Â, (2) Â ∧ B is
unsatisfiable, and (3) Â refers only to the common variables
of A and B.

The Craig interpolation lemma [18] states that an interpolant
always exists for inconsistent (unsatisfiable) formulas in first-
oder logic. Modern SAT or SMT solvers, e.g., Z3 [3] and
MathSAT [1], support Craig interpolation from unsatisfiable
formulas.

IV. SQUEEZING LOOP INVARIANTS

In this section, we introduce how an invariant of a loop can
be squeezed based on interpolation between forward/backward
reachability analyses. We propose two approaches. The first
one, introduced in Section IV-A is based on interpolation
with respect to forward reachability. The second, introduced
in Section IV-B, is based on interpolation with respect to bac-
kward reachability. Section IV-C discusses some extensions.

A. Forward Interpolation

Given an annotated loop, {P} while κ do S done {Q},
we can consider its forward reachability with the precondition
P by calculating its strongest postcondition. Let us use Ai =
sp(Ai−1∧κ,S) for i ≥ 1 to denote the strongest postcondition
after the i-th iteration, where A0 = P . If the loop does have an
inductive invariant I, then the reachability after each iteration
must be contained in I (otherwise, I would not be inductive),
i.e., the condition

∨∞
i=0Ai =⇒ I must hold.

On the other hand, we can also consider the backward rea-
chability of the loop by calculating the weakest precondition.
However, for the backward reachability, we start from ¬Q, the
negation of the postcondition. Let Bi = B0∨(κ∧wp(S, Bi−1))
for i ≥ 1 be the predicate representing the set of states from
which the loop terminates within i iterations and violates the
postcondition Q, where B0 = (¬Q ∧ ¬κ) represents that
the loop violates its postcondition Q without performing any
iterations. If the loop does have an inductive invariant I to
establish its postcondition Q, then the formula I ∧Bi must be
unsatisfiable for all i ≥ 0, otherwise I would not be inductive
and establish Q.

Based on the above observations, we can find that an
inductive invariant I (if it exists) of a loop is actually
an interpolant for (

∨∞
i=0Ai) with respect to B∞ because∨∞

i=0Ai =⇒ I and I ∧ B∞ is unsatisfiable. Notice that

Algorithm 1: Squeeze Invariant – Forward
input : An annotated loop: {P} while κ do S done {Q}
output: (yes/no, I), where I is a loop invariant

1 A0 ←− P ;
2 B0 ←− (¬κ ∧ ¬Q) ;
3 t←− r ←− 0 ;
4 while True do
5 if

(∨t
i=0Ai

)
∧Br is not satisfiable then

6 Let It be the interpolant for (
∨t

i=0At) w.r.t. Br ;
7 if {It ∧ κ} S {It} then return (yes, It) ;
8 At+1 ←− sp(It ∧ κ,S) ;
9 t←− t+ 1 ;

10 Br+1 ←− B0 ∨ (κ ∧ wp(S, Br)) ;
11 r ←− r + 1 ;

12 else
13 if At is concrete then return (no, ⊥) ;
14 else
15 while At is not concrete do t←− t− 1 ;
16 At+1 ←− sp(At ∧ κ,S) ;
17 t←− t+ 1 ;

the inverse is not true, i.e., the interpolant I is not necessary
to be inductive. However, it does provide a way to find an
inductive invariant of a loop. The basic idea is as follows.
Firstly, we calculate, for t iterations, the forward reachability
(
∨t

i=0Ai) as well as the backward reachability Bt. Secondly,
we obtain an interpolant I for (

∨t
i=0Ai) with respect to Bt

and check whether I is inductive or not. Thirdly, if I is an
inductive invariant, then we are done. Otherwise, we increase
the value of t and repeat the first and second steps until we
find an inductive invariant. Algorithm 1 shows the pseudo-code
of squeezing an inductive invariant of a loop by interpolation
between the forward and backward reachabilities. The details
of Algorithm 1 are described as follows:
• Initially, we set A0 to be P , and B0 to be (¬Q ∧ ¬κ),

respectively (lines 1–2). And, we use t to denote the
number of forward iterations, and r for the number of
backward iterations. Their initial values are set to be zero,
respectively (line 3). Notice that the values of t and r
might become different during the following process.

• A decision procedure is performed to check whether the
formula (

∨t
i=0Ai) ∧ Br is satisfiable or not (line 5).

If the formula is not satisfiable, we can further obtain
an interpolant It for (

∨t
i=0Ai) with respect to Br.

According to the characteristic of interpolants (c.f. Defi-
nition 2), we are guaranteed to have the following two
properties: (1)

∨t
i=0Ai =⇒ It and (2) It ∧ Br is

not satisfiable. That is, the forward reachability for t
iterations from the precondition P is included in It,
and It is not going to violate the postcondition Q in
r iterations, as illustrated in Fig. 7 (a). Then, we check
whether It is inductive. If yes, we are done, and the
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Fig. 7. Squeezing Invariants

inductive invariant It is returned (line 7). If It is not
inductive, we advance forward for one more iteration
based on It (lines 8–9). The reason for advancing forward
from It is that we may converge toward an inductive
invariant more quickly than from the concrete reachability
(
∨t

i=0Ai) because It is an over-approximation of the
concrete reachability, as illustrated in Fig. 7 (b). Similarly,
for backward reachability, we advance backward for one
more iteration from Br (lines 10–11).

• Notice that for the sequence of forward reachability
A0, A1, . . . , At, if there exists 0 < j ≤ t such that
Aj is an over-approximation (i.e., Aj is obtained by
the strongest postcondition operator from the interpolant
Ij−1 instead of from the concrete reachability Aj−1, as
shown in Fig. 7 (b), then every Am for j ≤ m ≤ t
would be an over-approximation as well. Thus, if the
formula (

∨t
i=0Ai) ∧ Br is satisfiable (line 12), there

could be two cases. The first case is that At is concrete,
which means that A0, A1, . . . , At are all concrete. In this
case, we conclude that the loop violates its postcondition
Q because the solution to the satisfiability problem of
(
∨t

i=0Ai) ∧ Br is such a counterexample starting from
P and violating Q within t + r iterations (line 13). The
second case is shown in Fig. 7 (c), where At is an over-

approximation. We cannot conclude anything for this case
because At may contain spurious counterexamples. To be
sound and simplify the process, we backtrack to the latest
concrete forward reachability (line 15), from which we
advance forward for one more iteration (lines 16–17),
as illustrated in Fig. 7 (d). After that, the new forward
and backward reachability layout will be analyzed in the
next iteration of Algorithm 1. We repeat the process until
either a counterexample or an inductive invariant is found.

The soundness of Algorithm 1 is proved by Lemma 1 and
Theorem 1. Notice that Algorithm 1 does not guarantee its
termination. In practice, we can set an upper bound on the
number of forward or backward iterations.

Lemma 1: If A ∧ (B ∨ C) is unsatisfiable, then A ∧ B is
also unsatisfiable.

Theorem 1: Algorithm 1 is correct.
Proof 1: Given a loop: {P} while κ do S done {Q}, we

want to prove that the invariant It returned by Algorithm 1
satisfies the following three conditions: (1) P =⇒ It, (2)
It∧¬κ =⇒ Q, and (3) {It∧κ} S {It}. Since It is returned
by Algorithm 1 only if condition (3) holds, we only have to
prove conditions (1) and (2).

Condition (1): we know that P = A0 =⇒ (
∨t

i=0Ai), and
(
∨t

i=0Ai) =⇒ It because It is an interpolant for (
∨t

i=0Ai)
with respect to Br. Thus, condition (1) holds.

Condition (2): Since It is an interpolant for (
∨t

i=0Ai) with
respect to Br, we know that It∧Br is unsatisfiable. According
to Algorithm 1, B0 = (¬κ ∧ ¬Q) is one of the disjuncts
of Br. By Lemma 1, we know that It ∧ (¬κ ∧ ¬Q) is also
unsatisfiable. So, its negation, ¬It ∨ κ ∨Q, is a tautology. In
addition, (¬It ∨ κ) ∨ Q is equivalent to It ∧ ¬κ =⇒ Q.
Thus, condition (2) holds.

We also want to prove that if Algorithm 1 returns “no”, the
loop violates its postcondition Q. According to Algorithm 1,
it returns “no” only when (

∨t
i=0Ai) ∧ Br is satisfiable and

At is concrete. Since At is concrete, we can conclude that
A0, A1, . . . , At are all concrete, and (

∨t
i=0Ai) represents the

set of concrete states which the loop can reach from P within t
iterations. In addition, Br is the predicate representing the set
of states from which the loop terminates within r iterations
and violates the postcondition Q. Thus, a solution to the
satisfiability problem of (

∨t
i=0Ai) ∧Br is a counterexample

starting from P and violating Q within t+ r iterations. �
Discussion. In our implementation of Algorithm 1, we use

an SMT solver to solve the formula (
∨t

i=0Ai) ∧ Br in each
iteration and directly obtain an interpolant from the solver
if the formula is not satisfiable. However, the interpolant for
an unsatisfiable formula is not unique, i.e., we may have
many candidates fulfilling the three conditions in Definition 2.
Which one is better is worthy of further investigation, and of
course we need to define what “better” means first. Currently,
our implementation relies on the quality of the interpolants
returned by the SMT solver, which dominates the performance
of our approach. In fact, initially, we have tried the Z3 [3]
SMT solver. However, Z3 always returns the trivial interpolant
(
∨t

i=0Ai), which makes our approach degenerate into traditi-
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onal forward/backward analysis. Thus, we have tried another
SMT solver, MathSAT [1], and it returns better interpolants
than trivial ones, which makes our implementation effective to
find inductive invariants (c.f. Section V). Techniques providing
quality interpolants, like beautiful interpolants [6], could help
to further improve the performance of our approach.

B. Backward Interpolation

In the previous approach, we obtain interpolants from
forward reachability. In this section, we introduce another
approach in the reverse direction. The basic idea is ba-
sed on the following observation. Given an annotated loop,
{P} while κ do S done {Q}, if it does have an inductive
invariant I, then the negation of the invariant, ¬I, must be
inductive as well. That is, starting from ¬I, no matter how
many iterations we take backward for the loop, we will still
be in the set of states satisfying ¬I, i.e., wp(S,¬I) =⇒ ¬I.
If it were not the case, ¬I could cross over to I after some
backward iterations so that I would not be inductive. This
observation provides us another way to squeeze an inductive
invariant. The intuition is that when we do the interpolation
between the forward/backward reachabilities, i.e., the unsa-
tisfiable formula (

∨t
i=0Ai) ∧ Br, we obtain an interpolant

I for Br instead of for (
∨t

i=0Ai). Then, we check whether
the negation of the interpolant, ¬I, is inductive or not. If yes,
then ¬I is an inductive invariant, and we are done. Otherwise,
we increase the values of t and r by one, respectively, and
repeat the same process until we find an inductive invariant.
Algorithm 2 shows the pseudo-code of the backward approach.
Since Algorithm 2 is very similar to Algorithm 1 by symmetry,
we omit its detailed descriptions here.

The soundness of Algorithm 2 is proved by Lemma 1 and
Theorem 2. Notice that Algorithm 2 does not guarantee its
termination. In practice, we can set an upper bound on the
number of forward or backward iterations.

Theorem 2: Algorithm 2 is correct.
Proof 2: We want to prove that ¬Ir returned by Algorithm 2

satisfies the following three conditions: (1) P =⇒ ¬Ir, (2)
¬Ir ∧¬κ =⇒ Q, and (3) {¬Ir ∧ κ} S {¬Ir}. Since ¬Ir is
returned by Algorithm 2 only if condition (3) holds, we only
have to prove conditions (1) and (2).

Condition (1): Since Ir is an interpolant for Br with respect
to (
∨t

i=0Ai), we know that Ir∧(
∨t

i=0Ai) is unsatisfiable. By
Lemma 1, Ir ∧P is also unsatisfiable because A0 = P is one
of the disjuncts of (

∨t
i=0Ai). Thus, ¬P ∨¬Ir is a tautology.

In addition, ¬P∨¬Ir is equivalent to P =⇒ ¬Ir. Therefore,
condition (1) holds.

Condition (2): Since Ir is an interpolant for Br with respect
to (
∨t

i=0Ai), we know Br =⇒ Ir. Let us consider the se-
quence of B0, B1, . . . , Br. Since Bj+1 = Bj∨(κ∧wp(S, Bj))
for 0 ≤ j < r, we know B0 =⇒ B1 =⇒ . . . =⇒ Br.
Thus, B0 = ¬κ ∧ ¬Q =⇒ Ir, which is logically equivalent
to (κ∨Q)∨Ir. According to the associativity law, (κ∨Q)∨Ir
is equivalent to (κ∨Ir)∨Q, which is also logically equivalent
to ¬κ ∧ ¬I =⇒ Q. Therefore, condition (2) holds. �

Algorithm 2: Squeeze Invariant – Backward
input : An annotated loop: {P} while κ do S done {Q}
output: (yes/no, I), where I is a loop invariant

1 A0 ←− P ;
2 B0 ←− (¬κ ∧ ¬Q) ;
3 t←− r ←− 0 ;
4 while True do
5 if Br ∧

(∨t
i=0Ai

)
is not satisfiable then

6 Let Ir be the interpolant for Br w.r.t. (
∨t

i=0Ai) ;
7 if {¬Ir ∧ κ} S {¬Ir} then return (yes, ¬Ir) ;
8 Br+1 ←− Ir ∨ (κ ∧ wp(S, Ir)) ;
9 r ←− r + 1 ;

10 At+1 ←− sp(At ∧ κ,S) ;
11 t←− t+ 1 ;

12 else
13 if Br is concrete then return (no, ⊥) ;
14 else
15 while Br is not concrete do r ←− r − 1 ;
16 Br+1 ←− B0 ∨ (κ ∧ wp(S, Br)) ;
17 r ←− r + 1 ;

C. Extensions

Our approaches have been proposed to handle one single-
level loop. In this section, we discuss how to extend our
approaches to handle general loop structures, e.g., nested loops
or a sequence of loops. Fig. 8 (a) shows the general structure of
a two-level nested loop, where we only have the precondition
and postcondition of the outer loop. In this case, we are not
able to perform our approaches on the inner loop because we
do not know its precondition and postcondition. To handle
this case, one straightforward solution is to flatten the nested
loops into one single-level loop. Fig. 8 (b) illustrates how the
flattening can be done. Briefly, we just introduce an auxiliary
variable, block, indicating which loop is active now. One
can easily verify that the flattened loop is equivalent to the
original one. If the outer loop has more than one loop inside,
we can inductively perform the flattening. Once the loop is
flattened, our approaches apply.

The second case that our approaches are not directly ap-
plicable is a sequence of loops. Fig. 9 (a) shows the general
structure of two loops in a sequence. We can see that the
postcondition of the first loop as well as the precondition of
the second are missing. To bridge the gap, we can combine
them into one single-level loop. Fig. 9 (b) illustrates how
the translation is done. Similarly, we use auxiliary variable,
block, to indicate the active loop. One can easily verify that
the translation is correct. If we have more than two loops in
a sequence, we can inductively perform the translation such
that our approaches apply. In a general program, we may have
nested loops and sequence loops mixed together. In such a
situation, we can inductively perform the translation based on
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while(κ1){
S1;

while(κ2){
S2;

}

S′
1;

}

int block = 0;

while (block != -1){
if (block == 0){

if (κ1) {
S1; block = 1;

} else {
block = -1;

}
} else if(block == 1){

if (κ2){ S2; }
else { S′

1; block = 0; }
}

}

(a) Nested Loops (b) Flattened Loop

Fig. 8. Flattening Nested Loops into a Flattened Loop

while(κ1){
S1;

}

S;

while(κ2){
S2;

}

int block = 0;

while (block != -1){
if (block == 0){

if (κ1){ S1; }
else { S; block = 1; }

} else if (block == 1) {
if (κ2) { S2; }
else { block = -1; }

}
}

(a) Sequential Loops (b) Combined Loop

Fig. 9. Translation of a Sequence of Loops into One Loop

the two primitive cases in Fig. 8 and Fig. 9.
One more interesting extension is to combine the forward

and backward approaches into a bidirectional one. That is,
in each forward/backward advancing iteration, we obtain the
forward interpolant as well as the backward interpolant si-
multaneously. If either of them is inductive, we are done;
otherwise, we start from them to advance in the next iteration.
If they intersect with each other, we backtrack to the concrete
cases and then continue from there. The process is repeated
until an invariant is found.

V. EVALUATION

The proposed approach to automatically generating in-
ductive loop invariants has been implemented in a tool, called
FiB. In the implementation, we use the SMT solver, Mat-
hSAT [1], to solve the satisfiability problems as well as to
obtain interpolants if the formula is not satisfiable.

To evaluate our approach, we compared FiB with six ex-
isting state-of-the-art invariant generation tools: BLAST [33],
InvGen [31], Interproc [35], CPAchecker [9], ITP [41], and
HOLA[20]. Each of the compared tools represents a diffe-
rent family of invariant generation techniques. BLAST is a
CEGAR-based model checker that generates loop invariants
from counterexamples based on interpolations. InvGen as-
sumes that the invariant is of a given template form and
generates loop invariants by solving constraints with unknown
parameters. Interproc generates loop invariants based on ab-
stract interpretation. CPAchecker is a configurable software

1 int x = 0;
2 int y = 0;
3

4 while(x != 100){
5 x = x + 1;
6 y = y + 1;
7 }
8

9 assert(y == 100);

I : x = 0 ∧ y = 0 ∧ pc = 4

t1 : (pc = 4) ∧ (x 6= 100) ∧ (pc′ = 5) ∧ (x′ = x) ∧ (y′ = y)
t2 : (pc = 4) ∧ (x = 100) ∧ (pc′ = 9) ∧ (x′ = x) ∧ (y′ = y)
t3 : (pc = 5) ∧ (pc′ = 6) ∧ (x′ = x+ 1) ∧ (y′ = y)
t4 : (pc = 6) ∧ (pc′ = 4) ∧ (y′ = y + 1) ∧ (x′ = x)
t5 : (pc = 9) ∧ (pc′ = 9) ∧ (x′ = x) ∧ (y′ = y)

T : t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5

¬ϕ : pc = 9 ∧ y 6= 100

Fig. 10. Transition Relation Construction

model checker which supports CEGAR based verification
approaches. HOLA generates loop invariants based on logical
abduction and quantifier elimination. ITP is a transition-
relation-based model checking technique, which calculates
fixpoints by interpolation. For our experiments on ITP, we
adopt the standard approach (Chapter 2 of [14]) to encode the
transition relation of a program. Fig. 10 shows an example
illustrating the encoding. An auxiliary variable pc is required
to indicate the program counter (line number). For example,
if the next statement to be executed is x = x + 1, that is,
pc = 5, then the statement is encoded as t3 in Fig. 10. The
overall transition relatioin would be T : t1∨t2∨t3∨t4∨t5. The
initial condition would be I : x = 0∧ y = 0∧ pc = 4, and the
assertion checking problem becomes the reachability problem
of the formula: pc = 9 ∧ y 6= 100. We have implemented the
ITP approach in our FiB tool for exeperiments. Both ITP and
our approach use MathSAT as their satisfiable checking and
interpolation engine with the same configuration.

HOLA was already compared with BLAST, InvGen, and
Interproc in [20] through a set of benchmarks collected
from other loop invariant generation papers [10], [29], [8],
[36], [27], InvGen test suite [5], NECLA verification bench-
marks [4], and the HOLA test suite [20]. Considering that
the set of benchmarks is rather comprehensive, we adopted
the same set for evaluation. All the details of benchmarks
and tools are collected and can be found in [2]. Out of the
original 46 benchmarks, we filtered out those with assertions
(postconditions) inside the loops and selected the 41 bench-
marks for evaluation. Each benchmark has at least one loop
and at least one assertion, and some benchmarks have nested
loops or sequence of loops. If the benchmark has nested or
sequence loops, it is manually translated into a single loop
using the translation mentioned in Section IV-C. Table I shows
the experimental results that are obtained on a machine, with
an Intel Xeon 3.5GHz CPU and 16GB memory, running the
64-bit Ubuntu version 16.04.
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TABLE I
EXPERIMENTAL RESULTS

No. LoC BLAST InvGen Interproc CPAchecker ITP HOLA FiB-F FiB-B FiB-Bi
Time Time Time Time Time Time Time Time Time
(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

1 21 4 0.28 4 0.27 4 0.04 4 0.79 4 1.84 4 0.04 4 0.48 4 0.05 4 0.11
2 26 7 0.13 7 0.17 7 0.10 4 1.21 4 14.05 4 0.31 4 0.32 4 0.19 4 0.26
4 21 4 3.72 7 0.23 7 0.03 4 0.74 4 0.21 4 0.02 4 0.01 4 0.01 4 0.01
5 27 � 4 0.31 4 0.13 � 4 16.54 4 0.04 4 0.17 4 0.04 4 0.95
6 28 7 0.14 7 0.15 4 0.09 � � 4 0.20 4 0.18 4 0.26 4 0.31
7 27 4 11.5 4 0.56 4 0.08 4 1.07 4 16.22 4 0.62 4 0.01 4 0.02 4 0.03
8 30 4 2.61 4 0.44 7 0.07 4 1.16 � 4 0.38 4 0.01 4 0.01 4 0.01
9 49 � 7 0.17 4 0.08 � 4 0.20 4 0.08 4 0.03 4 0.02 4 0.02

10 30 4 1.27 7 0.20 7 0.07 4 0.86 4 4.53 4 0.13 4 0.03 4 0.01 4 0.02
11 24 � 4 0.36 4 0.02 � 4 0.35 4 0.13 4 0.01 4 0.01 4 0.01
12 34 � 7 0.25 7 0.12 � � 4 3.13 4 1.93 4 1.69 4 2.01
13 25 4 0.76 7 0.44 4 0.04 4 0.87 4 0.94 4 0.38 4 0.01 4 0.01 4 0.03
14 26 4 5.30 4 0.58 4 0.03 4 1.10 4 5.67 4 1.07 4 0.01 4 0.01 4 0.03
15 28 4 0.78 4 0.28 4 0.02 4 0.91 4 0.63 7 11.7 4 0.01 4 0.01 4 0.01
16 23 7 1.69 4 0.38 4 0.02 4 0.89 4 0.03 4 0.12 4 0.01 4 0.01 4 0.01
17 22 4 1.14 7 0.20 4 0.08 4 0.89 � 4 0.09 4 0.15 4 0.33 4 0.19
18 24 � 4 7.26 7 0.03 � 4 0.60 4 2.75 4 0.02 4 0.01 4 0.02
19 24 4 3.74 7 0.39 7 0.03 4 1.31 4 30.09 7 14.7 4 0.04 4 0.02 4 0.04
20 33 4 5.02 4 0.74 7 0.07 4 1.05 4 5.73 4 2.56 4 0.02 4 0.02 4 0.05
21 39 7 1.84 7 0.14 4 0.09 4 0.96 � 4 0.59 � 4 0.13 �
22 26 7 0.15 7 0.16 7 0.03 4 1.20 4 21.88 4 0.26 4 0.14 4 0.14 4 0.18
23 20 � 4 0.38 7 0.05 � 4 1.60 4 0.05 4 1.74 4 0.02 4 0.01
25 33 4 1.33 7 0.20 7 0.05 4 0.86 � 4 0.04 4 0.09 4 0.05 4 0.06
26 24 7 0.12 7 0.18 7 0.09 � � 4 0.31 4 0.80 4 0.49 4 0.81
28 25 7 0.94 4 0.43 4 0.02 � 4 0.26 4 0.06 4 0.01 4 0.01 4 0.01
29 32 7 0.09 7 0.17 7 0.14 4 0.86 4 7.41 4 0.31 4 0.05 4 0.02 4 0.02
30 22 4 0.70 4 0.40 7 0.01 � 4 2.92 4 0.03 4 0.32 4 0.01 4 0.16
32 24 � 7 0.18 7 0.05 � 4 169.97 4 0.65 4 0.13 4 0.08 4 0.18
33 36 7 1.72 7 0.17 7 0.12 4 1.12 4 48.32 4 0.09 4 0.09 4 0.05 4 0.10
34 23 7 4.12 7 0.19 7 0.03 4 1.75 � � 4 0.73 4 0.33 4 0.91
35 17 4 0.39 7 0.43 7 0.02 4 0.90 4 0.06 4 0.12 4 0.01 4 0.01 4 0.01
36 71 7 3.21 7 0.24 7 0.60 4 54.31 � 4 0.89 � 4 0.23 4 0.46
37 21 4 2.01 4 0.42 7 0.03 4 0.80 4 1.47 4 0.41 4 0.01 4 0.01 4 0.01
38 20 7 0.29 7 0.21 7 0.05 4 0.99 4 11.78 4 0.27 4 0.02 4 0.04 4 0.05
40 30 7 3.97 7 0.17 7 0.11 4 5.76 � 4 0.80 4 0.04 4 0.06 4 0.06
41 25 7 0.01 4 0.38 7 0.04 7 1.03 4 3.84 4 0.43 4 0.21 4 0.03 4 0.15
42 37 7 0.06 7 0.15 4 0.06 4 65.52 4 16.37 4 0.51 4 0.06 4 0.10 4 0.08
43 27 4 0.17 7 0.14 4 0.05 4 0.72 4 0.07 4 0.07 4 0.01 4 0.01 4 0.01
44 35 4 1.33 7 0.44 7 0.05 4 0.88 4 0.48 4 1.27 4 0.04 4 0.01 4 0.01
45 44 7 0.55 7 0.20 7 0.58 � � 4 0.60 4 0.06 4 0.11 4 0.08
46 24 7 0.23 7 0.21 7 0.04 4 0.88 4 10.62 4 0.19 4 0.02 4 0.02 4 0.04

Each benchmark number in the first column of Table I cor-
responds to that in [20], and all the assertions in benchmarks
are satisfied. For each tool, the symbol 4 indicates that the
tool is able to verify all assertions in the benchmark, while the
symbol 7 indicates that the tool is not able to infer the loop
invariants to verify the assertions, or the verification result is
wrong. The columns labeled “Time” indicate the execution
time (in seconds) to generate loop invariants for verifying
the assertions. The symbol � indicates that the tool did not
terminate in 200 seconds. We mark the least execution time
of correct verification in gray color for each benchmark.

As Table I shows, the proposed approaches are very ef-
fective to construct loop invariants to prove the assertions
within 2 seconds for each benchmark, especially the backward
interpolation approach (FiB-B). The forward interpolation ap-
proach (FiB-F) and the bidirectional approach (FiB-Bi) failed
to prove the assertion in benchmark 21 within 200 seconds.
Among the other six tools, HOLA performs the best, which

only failed to verify three benchmarks (wrong verification
results in no. 15 and no. 19, and timeout in no. 34). Generally,
we found that the backward interpolation approach (FiB-B)
outperforms the forward approach (FiB-F) and bidirectional
approach (FiB-Bi), especially for benchmarks 5, 21, 23,
and 41.

Table II shows the statistics of our three approaches in-
cluding the number of forward iterations (f), the number of
forward backtracks (fb), the number of backward iterations
(b), the number of backward backtracks (bb), whether the
invariant is obtained based on abstract interpolants or concrete
states (a/c), and whether the obtained invariant is disjunctive
(∨?). The size of the obtained invariant refers to the number of
nodes in its syntax tree, e.g. the size of (x = y) is three. If the
benchmark has more than one assertion to be checked, we list
the average size of the invariant for all the assertions. We also
show the size of the fixpoints found by the ITP approach. Since
ITP aims to find a fixpoint instead of an inductive invariant, we
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TABLE II
EXPERIMENT STATISTICS

No. ITP FiB-F FiB-B FiB-Bi
abort k size f fb b a/c size ∨? f b bb a/c size ∨? f fb b bb a/c size ∨?

1 2 9 3, 842 2 1 1 c 2 no 1 1 0 a 13 yes 2 1 2 1 c 18 no
2 3 18 2, 914 4 2 2 c 135 no 2 2 0 a 193 yes 4 2 4 2 c 150 no
4 1 8 279 1 0 1 a 20 yes 0 0 0 c 7 yes 0 0 0 0 c 7 yes
5 4 39 18, 914 12 6 6 c 82 yes 2 2 0 a 43 yes 22 11 22 11 c 450 no
6 – – – 2 1 1 c 85 yes 1 1 0 a 62 yes 2 1 2 1 c 62 yes
7 4 28 25, 522 2 1 1 c 30 yes 1 1 0 a 25 no 2 1 2 1 c 63 no
8 – – – 0 0 0 c 13 yes 0 0 0 c 8 yes 0 0 0 0 c 8 yes
9 0 4 140 0 0 0 c 3 no 0 0 0 c 4 no 0 0 0 0 c 4 no
10 3 18 13, 454 2 1 1 c 16 yes 1 1 0 a 22 no 2 1 2 1 c 22 no
11 2 9 426 2 1 1 c 30 yes 1 1 0 a 20 no 2 1 2 1 c 23 no
12 – – – 8 4 4 c 529 yes 4 4 0 a 408 yes 8 4 8 4 c 221 no
13 3 13 1, 982 2 1 1 c 27 yes 1 1 0 a 25 yes 2 1 2 1 c 33 no
14 3 24 5, 703 4 2 2 c 35 yes 1 1 0 a 18 no 4 2 4 2 c 20 no
15 2 12 747 6 3 3 c 16 yes 2 2 0 a 16 no 4 2 4 2 c 18 no
16 0 4 105 0 0 0 c 18 yes 0 0 0 c 20 yes 0 0 0 0 c 20 yes
17 – – – 6 3 3 c 115 yes 9 10 1 a 475 yes 6 3 6 3 c 115 no
18 2 12 770 2 1 1 c 28 yes 1 1 0 a 30 no 2 1 2 1 c 28 no
19 4 48 37, 318 4 2 2 c 29 yes 2 2 0 a 56 yes 4 2 4 2 c 64 yes
20 2 14 4, 225 0 0 0 c 10 yes 0 0 0 c 10 yes 0 0 0 0 c 10 yes
21 – – – – – – – – – 2 2 0 a 53 yes – – – – – – –
22 2 17 1, 445 4 2 2 c 58 yes 2 2 0 a 38 yes 4 2 4 2 c 43 yes
23 3 19 2, 911 77 37 40 c 345 no 1 1 0 a 11 no 6 3 6 3 c 36 yes
25 – – – 2 1 1 c 29 yes 1 1 0 a 14 no 2 1 2 1 c 29 yes
26 – – – 2 1 1 c 157 no 1 1 0 a 209 yes 2 1 2 1 c 143 no
28 2 9 266 0 0 0 c 3 no 0 0 0 c 3 no 0 0 0 0 c 3 no
29 2 10 18, 095 0 0 0 c 14 no 0 0 0 c 15 no 0 0 0 0 c 15 no
30 4 35 1, 775 32 16 16 c 208 no 1 1 0 a 11 no 22 11 22 11 c 28 no
32 4 42 27, 060 6 3 3 c 104 yes 3 3 0 a 126 no 6 3 6 3 c 81 no
33 2 18 138, 121 2 1 1 c 69 yes 1 1 0 a 39 no 2 1 2 1 c 79 no
34 – – – 20 7 13 a 406 no 16 20 4 a 242 yes 28 11 28 11 c 182 no
35 0 4 104 0 0 0 c 8 yes 0 0 0 c 8 no 0 0 0 0 c 8 no
36 – – – – – – – – – 1 1 0 a 85 no 2 1 2 1 c 85 no
37 2 15 3, 673 0 0 0 c 14 yes 0 0 0 c 20 yes 0 0 0 0 c 20 yes
38 3 27 13, 414 2 1 1 c 40 yes 1 1 0 a 45 no 2 1 2 1 c 42 no
40 – – – 0 0 0 c 17 yes 0 0 0 c 16 yes 0 0 0 0 c 16 yes
41 5 34 3, 257 26 12 14 c 508 yes 1 1 0 a 12 no 16 8 16 8 c 236 yes
42 3 18 29, 392 2 1 1 c 74 yes 1 1 0 a 55 no 2 1 2 1 c 72 yes
43 0 4 184 0 0 0 c 8 yes 0 0 0 c 8 no 0 0 0 0 c 8 no
44 2 11 747 8 0 8 a 34 yes 0 0 0 c 9 yes 0 0 0 0 c 9 yes
45 – – – 0 0 0 c 17 yes 0 0 0 c 13 yes 0 0 0 0 c 13 yes
46 2 21 20, 207 2 1 1 c 20 yes 1 1 0 a 18 no 2 1 2 1 c 18 no

can observe that the size of a fixpoint is usually much larger
than that of an inductive invariant. More discussions about why
our approach outperforms ITP can be found in Section VI.

We can also observe that the backward (FiB-B) approach
has zero backtracks except benchmarks no. 17 and 34, which
explains why it performs the best among the proposed three
approaches. After our investigation based on the statistics
given in Table II, we summarize the reasons why FiB-B is the
best: (1) The assertion (postcondition) to be proved is usually
more symbolic (abstract), e.g., x > 0, than the precondition
of the loop (e.g., x = 0 ∧ y = 0). Thus, the interpolant
for the backward reachability would converge to be inductive
more easily. (2) For the assignment statement, the weakest
precondition (wp) calculation is faster than the strongest
postcondition (sp) calculation because wp does not require
quantifier elimination (except the nondeterminism assignment
statement), but sp does. (3) Considering the assertion of a
loop is usually more symbolic than its precondition, after the
same number of iterations, the backward analysis based on

wp provides more general information than forward analysis
based on sp. Thus, the interpolant for the backward direction
would be more close to an inductive invariant, which can
be confirmed in the a/c column in Table II by the fact that
FiB-B often obtains an inductive invariant based on abstract
interpolants from previous iterations. That is why FiB-B has
much less backward backtracks than FiB-F.

VI. RELATED WORKS AND DISCUSSIONS

Automatic loop invariant generation is a fundamental pro-
blem in program analysis and verification. Theoretically, it is
an undecidable problem. To tackle this problem in practice,
both static and dynamic analysis based techniques have been
proposed. Static analysis based techniques can be further
classified to the following categories based on the underlying
techniques that are used: abstract interpretation [17], [44], [16],
[37], [38], SMT solving based techniques such as counte-
rexample guided abstraction refinement (CEGAR) [33], [7],
[13], constraint-based methods [31], [15], [30], Craig interpo-
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lation [43], [32], [41], [42], [40], abduction [45], [11], [26],
[28], [12], [20], learning-based approach [39], and algebraic
approaches [47], [46], [48]. Dynamic analysis based techni-
ques include guess-and-check techniques [22], [21], [49], [50],
[51] and learning-based techniques [24], [25]. Our approach
belongs to the static analysis category.

The very related work to ours is ITP [41], in which a
transition system (I, T ), where I is the initial condition and
T is the transition relation, as well as a safety property ϕ
are considered. Given a value k, their approach constructs a
BMC formula in k+1 steps: I ∧T ∧T k ∧¬ϕ, and obtains an
interpolant I for I ∧ T with respect to T k ∧¬ϕ. That is, I is
an over-approximation of states that can be reachable within
one step and not going to violate ϕ within k steps. Then, I
is considered in the formula: I ∧ T ∧ T k ∧ ¬ϕ. If it is not
satisfiable, an interpolant I ′ for I∧T with respect to T k∧¬ϕ
is an over-approximation of state that can be reachable in two
steps and not going to violate ϕ within k steps. However, if
the formula is satisfiable, then nothing can be concluded, and
the algorithm aborts. The value of k needs to be increased by
a certain value, and the same process is repeated until a real
counterexample is found or the obtained interpolant reaches a
fix-point. If ITP advances t steps and then aborts, we increase
k by t in the next iteration. Table II shows the number of aborts
and the sufficient value of k to have a conclusive result. In our
experiments, we start with k = 4, which is small but sufficient
to find fix-points, e.g., benchmark no. 9, 16, 35, and 43.

Our approach is different from ITP in several aspects. We
list the differences and try to analyze why our approach
outperforms ITP in the followings:
• Our approach obtains the concrete forward/backward

reachability and tries to squeeze out an inductive inva-
riant based on the interpolation in between; ITP over-
approximates the set of reachable states for each step
with a k-lookhead to see if a fixpoint can be quickly
reached based on the abstraction. If our approach fails to
find an inductive invariant in one iteration, we only have
to advance one further step from the current reachability
for the next iteration because the reachability is concrete
and can be accumulated. However, if ITP fails to find a
fixpoint in one iteration, it has to be restarted from scratch
with a new k larger than the previous one, whose value
is tricky to decide because if the increment of k is too
small, many restarts may be required; if the increment is
too big, the satisfiability checking problem may become
difficult to solve.

• Our approach handles program statements compositio-
nally. As we know, quantifier elimination is computa-
tionally expensive [41]. However, in our approach, we
process one program statement at a time; thus, only one
quantified variable has to be eliminated at a time. In addi-
tion, only assignment statements require quantifier elimi-
nation. Thus, quantifier elimination is not a performance
bottleneck in our approach, which is also confirmed in our
experiments. On the contrary, the ITP approach considers
the global transition relation of all program statements.

If there are n variables in the program, the k-step BMC
problem consists of k × n variables. If the value of k
is large, solving the BMC formula takes longer time, as
evidenced by benchmark no. 19 and 32. Furthermore, if
the transition relation of a program is lengthy, the BMC
problem also becomes difficult to solve.

Another closely related work is DAR [52], which also
considers a transition system (I, T ) and a safety property ϕ.
Their approach obtains two interpolation sequences: (1) The
forward interpolation sequence 〈(F0 = I), F1, F2, . . . , Fk〉
satisfying Fi ∧ T =⇒ Fi+1 for 0 ≤ i < k and Fi =⇒ ϕ
for 0 ≤ i ≤ k. (2) The backward interpolation sequence
〈(B0 = ¬ϕ), B1, B2, . . . , Bk〉 satisfying Bi ∧ T =⇒ Bi+1

for 0 < i ≤ k and Bi =⇒ ¬I for 0 ≤ i ≤ k. The two inter-
polation sequences are strengthened or extended by the local
and global strengthening procedures until a counterexample is
found or either interpolation sequence reaches a fix-point.

Our approach is different from DAR in several aspects. We
list the differences as follows:

• Our approach handles program statements compositio-
nally, while the DAR approach, similar to ITP, considers
the global transition relation.

• What DAR maintains are sequences of abstractions (inter-
polants). Once each interpolation sequence is changed or
extended, some subsequent process has to be performed
so that the properties mentioned above are still valid.
What our approach maintains are concrete forward and
backward reachable states step by step, whose validity is
not changed. They can be accumulated for the following
iterations without any recalculations.

We have tried to obtain the DAR tool on internet for evalua-
tion, but failed. According to the experimental results reported
in [52], the performance of DAR and ITP are evenly balanced.
We are interested in implementing the DAR approach by
ourselves in the future for evaluation.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose an novel approach to automa-
tically constructing inductive loop invariants, which solves
the fundamental problem in program analysis and verification.
Our approach squeezes an inductive invariant based on Craig
interpolants between forward and backward predicate trans-
formers. In the future, we would like to investigate the quality
of interpolants.
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[44] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[45] C. Peirce. Collected Papers of Charles Sanders Peirce. Belknap Press,
1932.

[46] R. Rebiha, A. V. Moura, and N. Matringe. Generating invariants for non-
linear loops by linear algebraic methods. Formal Aspects of Computing,
27(5):805–829, 2015.

[47] E. Rodrı́guez-Carbonell and D. Kapur. Automatic generation of polyno-
mial invariants of bounded degree using abstract interpretation. Science
of Computer Programming, 64(1):54–75, 2007.

[48] S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop
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