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Automatic Loop Invariant Generation and
Refinement through Selective Sampling

Jiaying Li1, Jun Sun1, Li Li1, Quang Loc Le2 and Shang-Wei Lin3
1Singapore University of Technology and Design, Singapore
2School of Computing, Teesside University, United Kindom

3School of Computer Engineering, Nanyang Technological University, Singapore

Abstract—Automatic loop-invariant generation is important in
program analysis and verification. In this work, we propose
a technique for automatic loop-invariant generation through a
combination of active learning and verification. Given a Hoare
triple of a program containing a loop, we start with randomly
testing the program, collect program states at run-time and
categorize them based on whether they satisfy the invariant to
be discovered. Next, classification techniques are employed to
generate candidate loop invariants automatically. Afterwards, we
refine the candidates through selective sampling so as to overcome
the lack of sufficient test cases. Only after the candidate invariant
cannot be improved further through selective sampling, we verify
whether a candidate can be used to prove the Hoare triple. If
it cannot, the generated counterexamples are added as new tests
and we repeat the above process. Furthermore, we show that by
introducing path-sensitive learning, i.e., partitioning the program
states according to program locations they visit and classifying
each partition separately, we are able to learn disjunctive loop
invariants. We have developed a prototype tool and applied it to
verify a set of benchmark programs.

Index Terms—Loop invariant, program verification, active
learning, classification

I. INTRODUCTION

Automatic loop-invariant generation is fundamental for pro-
gram analysis. A loop invariant can be useful for software ver-
ification, compiler optimization, program understanding, etc.
In the following, we first define the loop-invariant generation
problem, review existing approaches and then briefly introduce
our proposal. Without loss of generality, we assume that we
are given a Hoare triple in the following form.

{Pre} / ? Assumption ? /

while(Cond){Body} / ? Loop Body ? /

{Post} / ? Assertion ? /

Assume that V = {x1,x2, · · · ,xn} is a finite set of program
variables which are relevant to the loop body. Pre, Cond and
Post are predicates constituted by variables in V .

Let s = {x1 7→ v1, · · · , xn 7→ vn} be a valuation of V . Let
φ be a predicate constituted by variables in V . φ is viewed
as the set of valuations of V such that φ evaluates to true
given the valuation. We thus write s ∈ φ to denote that φ is
evaluated to true given s. Otherwise, we write s 6∈ φ. Body
is an imperative program that updates the valuation of V . For
simplicity, we assume that it is a deterministic function1 on

1Our approach works as long as the non-determinism in Body or Cond
is irrelevant to whether the postcondition is satisfied or not.

valuations of variables V , and write Body(s) to denote the
valuation of V after executing Body given the variable valu-
ation s. For convenience, Bodyi(s) where i ≥ 0 is defined as
follows: Body0(s) = s and Bodyi+1(s) = Body(Bodyi(s)).

The goal is to either prove or disprove the Hoare triple. To
prove it, we would like to find a loop invariant Inv which
satisfies the following three conditions.

Pre ⊆ Inv (1)
∀s. s ∈ Inv ∧ Cond =⇒ Body(s) ∈ Inv (2)
Inv ∧ ¬Cond ⊆ Post (3)

To disprove it, we would like to find a valuation s such that
s ∈ Pre and executing the loop until it terminates results in
a valuation s′ such that s′ 6∈ Post . For simplicity, we assume
that the loop always terminates and refer the readers to [2],
[10] for research on proving loop termination.

Loop-invariant generation is a long standing problem. Many
approaches have been proposed to solve this problem [13],
[35], [31], [28], [3], [11], [27], [33], [34], [25], [12], [24], [17].
These approaches all rely on some form of constraint solving
and often suffer from scalability issues. Recently, a number of
guess-and-check approaches [48], [47], [46], [44], [19], [18]
have been proposed. These approaches start with generating a
set of valuations of V (a.k.a. the samples) and categorize them
into different groups, e.g., one containing those satisfying the
loop invariant (if there is any) and another containing those
not. Learning techniques are then applied to generalize the
valuations in a certain form to guess candidate loop invariants.
The candidates are then checked using program verification
techniques (like symbolic execution [38]) to see whether they
satisfy the three conditions. If any of the conditions is violated,
we obtain counterexamples in the form of variable valuations.
For instance, given a candidate loop invariant φ, if condition
(1) is violated, a valuation s ∈ (Pre∧¬φ) is generated, which
proves that φ is not an invariant. With this sample s, we can
learn a new candidate invariant. This guess-and-check process
is repeated until the Hoare triple is either proved or disproved.

Existing guess-and-check approaches vary in how samples
are generated and how candidate invariants are guessed.
We refer the readers to Section V for a detailed discussion.
A common problem with the existing guess-and-check
approaches is that their effectiveness is often limited by the
samples generated in their first phases. In order to guess the



right invariant, often a large number of samples are necessary.
If classification techniques are employed, often those samples
right by the boundary between variable valuations which
satisfy the actual invariant and those which do not must
be sampled so that classification techniques would identify
the right invariant. Obtaining those samples through random
sampling is however often hard. As a result, many iterations
of guess-and-check are required. Another problem is that the
kinds of loop invariants obtained through existing guess-and-
check approaches [48], [47], [46], [44] are often limited, e.g.,
conjunctive linear inequalities [48] or equalities [46]. Despite
the approaches presented in [23], [45], learning disjunctive
loop invariants remains a challenge.

Our Contribution In this work, we propose a technique to
improve the existing guess-and-check approaches [48], [47],
[46], [44] by making the following contributions. Firstly,
we propose an active learning technique, known as selective
sampling, to overcome the limitation of random sampling.
That is, selective sampling allows us to automatically generate
samples which are important in improving the quality of the
candidate invariants so that we can improve the candidates
prior to checking them using heavy program verification
techniques. As a result, we can reduce the number of
guess-and-check iterations. Secondly, we propose to generate
disjunctive invariants through path-sensitive learning. That is,
we partition the samples according to the control locations
they visit, classify each partition separately and construct
a disjunction of the learned results for each partition as
the loop invariant. Thirdly, our approach is designed to be
extensible so that we can learn different kinds of invariants.
For instance, we generate candidate invariants in the form of
polynomial inequalities or their conjunctions using different
classification algorithms. Lastly, we implement our framework
as a tool called ZILU (available at [1]) and compare it with
state-of-the-art tools like Interproc [30], CPAChecker [7],
InvGen [26] and BLAST [6]. Most of our test subjects are
gathered from previous collections as well as the software
verification repository [5]. The results show that ZILU is able
to prove the maximum number of programs. Furthermore, it
is shown that ZILU is able to reduce the need for checking,
sometimes completely, with the help of selective sampling.

Organization The remainders of the paper are organized as
follows. Section II presents an overview of our approach using
simple illustrative examples. Section III shows how candidate
loop invariants are generated through classification and refined
through selective sampling. Section IV evaluates our approach
using a set of benchmark programs. Section V reviews related
work and Section VI concludes.

II. THE OVERALL APPROACH

Through this paper, loop-invariant generation using a guess-
and-check approach is an iterative process of data collection,
guessing (i.e., classification in this work) and checking (i.e.,
verification of the invariant candidate). In the following, we

present how our approach works step-by-step and illustrate
each step with simple examples.

Example 1. Four Hoare triple examples are shown in Figure 1,
where an assume statement captures the precondition and an
assert statement captures the postcondition. The set V for
each program contains two integer variables: x and y. For
simplicity, we write (a, b) where a and b are integer constants
to denote the evaluation {x 7→ a, y 7→ b}. Furthermore, we
interpret integers in the programs as mathematical integers
(i.e., they do not overflow). One example invariant which can
be used to prove the Hoare triple is shown for each program.
For instance, the Hoare triple shown in Figure 1(a) can be
proven using a loop invariant: x ≤ y+16, whereas conjunctive
or disjunctive invariants are necessary to prove the rest of the
Hoare triples. We remark that there might be different loop
invariants which could be used to prove the Hoare triples. In
the following, we show how we generate loop invariants for
proving these Hoare triples.

Our overall approach is shown in Algorithm 1. We start with
randomly generating a set of valuations of V , denoted as SP ,
at line 1 (a.k.a. random sampling). Random sampling provides
us an initial set of samples to learn the very first candidate for
the loop invariant. In this work, we have two ways to generate
random samples. One is that we generate random values for
each variable in V based on its domain, assuming a uniform
probabilistic distribution over all values in its domain. The
other is that we apply an SMT solver [4], [15] to generate
valuations that satisfy Pre as well as those that fail Pre.
These two ways are complementary. On one hand, without
using a solver, we may not be able to generate valuations
which satisfy Pre if Pre is very restrictive (or fail Pre if the
negation of Pre is very restrictive). On the other hand, using
a solver often generates biased valuations.

Next, for any valuation s in SP , we execute the program
starting with initial variable valuation s and record the valu-
ation of V after each iteration of the loop. We write s ⇒ s′

to denote that there exists i ≥ 0 such that s′ = Bodyi(s)
and Bodyk(s) ∈ Cond for all k ∈ [0, i). That is, if we
start with valuation s, we obtain s′ after some number of
iterations. At line 3 of Algorithm 1, we add all such valuations
s′ into SP . Next, we categorize SP into four disjoint sets:
CE , Positive , Negative and NP . Intuitively, CE contains
counterexamples which disprove the Hoare triple; Positive
contains those valuations of V which we know must satisfy
any loop invariant which proves the Hoare triple; Negative
contains those valuations of V which we know must not satisfy
any loop invariant which proves the Hoare triple; and NP
contains the rest. Formally,

CE (SP) ={s ∈ SP |∃s0, s′.
s0 ∈ Pre ∧ s0 ⇒ s⇒ s′

∧ s′ 6∈ Cond ∧ s′ 6∈ Post}

A valuation s in CE (SP) starts from a valuation s0 which
satisfies Pre and becomes a valuation s′ which fails Post



1 assume(x < y);
2 while(x < y){
3 if (x < 0) x := x + 7;
4 else x := x + 10;
5 if (y < 0) y := y − 10;
6 else y := y + 3;
7 }
8 assert(y ≤ x ≤ y + 16);

(a) Invariant: x ≤ y + 16

1 assume(x > 0 ∨ y > 0);
2 while(x + y ≤− 2){
3 if (x > 0){
4 x := x+ 1;
5 } else {
6 y:=y+ 1;
7 }
8 }
9 assert(x > 0 ∨ y > 0);

(b) Invariant: x > 0 ∨ y > 0

1 assume(x = 1∧y = 0);
2 while(∗){
3 x:=x+ y;
4 y:=y+ 1;
5 }
6 assert(x ≥ y);

(c) Invariant: y ≥ 0 ∧ x ≥ y

1 assume(x < 0);
2 while(x < 0){
3 x = x+ y;
4 y++;
5 }
6 assert(y > 0);

(d) Invariant: x < 0 ∨ y > 0

Fig. 1: Example programs

when the loop terminates. If CE(SP ) is non-empty, the Hoare
triple is disproved.

Positive(SP) ={s ∈ SP |∃s0, s′.
s0 ∈ Pre ∧ s0 ⇒ s⇒ s′

∧ s′ 6∈ Cond ∧ s′ ∈ Post}

Positive(SP) contains a valuation s if there exists a valuation
s0 in SP which satisfies Pre and becomes s after zero or more
iterations. Furthermore, s subsequently becomes s′, which
satisfies Post when the loop terminates. Let Inv be any loop
invariant that proves the Hoare triple. Because s0 ∈ Pre,
s0 ∈ Inv since Inv satisfies condition (1). Since Inv satisfies
condition (2) and Body(s0) ∈ Inv if Body(s0) ∈ Cond. By
a simple induction, we prove s ∈ Inv.

Negative(SP) ={s ∈ SP |∃s0, s′.
s0 6∈ Pre ∧ s0 ⇒ s⇒ s′

∧ s′ 6∈ Cond ∧ s′ 6∈ Post}

Negative(SP) is a valuation s which starts from a valuation s0
violating Pre and becomes a valuation s′ which violates Post
when the loop terminates. We show that s 6∈ Inv for all Inv
satisfying condition (1), (2) and (3). Assume that s ∈ Inv, by
condition (2), s′ must satisfy Inv through a simple induction.
By condition (3), s′ must satisfy Post, which contradicts the
definition of Negative(SP).

NP(SP) = SP − CE (SP)− Positive(SP)−Negative(SP)

NP(SP) contains the rest of the samples. We remark that a
valuation s in NP(SP) may or may not satisfy an invariant
Inv which satisfies condition (1), (2) and (3).

Example 2. Take the program shown in Figure 1(a) as
an example. Assume that the following three valuations are
randomly generated: (1, 2), (10, 1) and (100, 0) at line 1.
Three sequences of valuations are generated after execut-
ing the program with these three valuations: 〈(1, 2), (11, 5)〉,
〈(10, 1)〉 and 〈(100, 0)〉 respectively. Note that the loop is
skipped entirely for the latter two cases. After categoriza-
tion, set CE (SP) is empty; Positive(SP) is {(1, 2), (11, 5)};
Negative(SP) is {(100, 0)}; and NP(SP) is {(10, 1)}.

Algorithm 1: Algorithm verify()

1 let SP be a set of randomly generated valuations of V ;
2 while not time out do
3 add all valuations s′ such that s⇒ s′ for some

s ∈ SP into SP ;
4 call activeLearn(SP) to generate a candidate

invariant φ;
5 return “proved” if the program is verified with φ

otherwise add the counterexample into SP ;

After obtaining the samples and labeling them as discussed
above, method activeL(SP) at line 4 in Algorithm 1 is in-
voked to generate a candidate invariant φ. We leave the details
on how candidate invariants are generated in Section III, which
is our main contribution in this work. Once a candidate is
identified, we move on to check whether φ satisfies condition
(1), (2) and (3) at line 5. In particular, we check whether any
of the following constraints is satisfiable or not using an SMT
solver [4], [15].

Pre ∧ ¬φ (4)
sp(φ ∧ Cond,Body) ∧ ¬φ (5)
φ ∧ ¬Cond ∧ ¬Post (6)

where sp(φ ∧ Cond,Body) is the strongest postcondition
obtained by symbolically executing program Body starting
from precondition φ∧Cond [16]. If all the three constraints are
unsatisfiable, we successfully prove the Hoare triple with the
loop invariant φ. If any of the constraints is satisfiable, a model
in the form of a variable valuation is generated, which is then
added to SP as a new sample. Afterwards, we restart from
line 2, i.e., we execute the program with the counterexample
valuations, collect and add the variable valuations after each
iteration of the loop to the four categories accordingly, move
on to active learning and so on.

Example 3. For the example shown in Figure 1(a), a candidate
invariant which is automatically learned is x − y ≤ 16. It
is easy to check that this candidate satisfies all the three
conditions and thus the Hoare triple shown in Figure 1(a)



Algorithm 2: Algorithm activeL(SP)

1 while true do
2 if (CE(SP ) is not empty) exit and report

“disproved”;
3 let φ be a set of candidates generated by

classify(SP );
4 if (φ is the same as last iteration) return φ;
5 add selectiveSampling(φ) into SP ;
6 add all valuations s′ such that s⇒ s′ for some

s ∈ SP into SP ;

is proved. For Figure 1(c), a candidate invariant returned by
method activeLearn(SP) is as follows.

490 + 16x− 9y ≥ 0 ∧ 510 + 6x+ 29y ≥ 0∧
56− y ≥ 0 ∧ 166− 2x+ 5y ≥ 0

A counterexample (−28,−11) is generated when we check
the satisfiability of (5), which is then used to generate a new
candidate. After multiple iterations of guess-and-check, the
following invariant is generated.

1 + 2y ≥ 0 ∧ 1 + 2x− 2y ≥ 0 ∧ −1 + 2x ≥ 0

Since x, y in the program are integer variables, a simplify
operation can be applied according to the well-known results
in [37]. Then our learned candidate becomes as follows.

y ≥ 0 ∧ x− y ≥ 0 ∧ x ≥ 1

Different from the invariant in Figure 1(d), this candiate still
succeeds in proving the given Hoare triple. Thus, the loop
invariant is found.

III. OUR APPROACH: CLASSIFICATION, ACTIVE
LEARNING AND SELECTIVE SAMPLING

In this section, we present details on how candidate loop
invariants are generated. Algorithm 2 shows how actL(SP) is
implemented in general, i.e., it iteratively generates a candidate
through classification (at line 3) and improves it through
selective sampling (at line 5) until a fixed point is reached.
Note that once a counterexample is identified (at line 2), our
approach exits and reports that the Hoare triple is disproved.

The method call classify(SP) at line 3 in Algorithm 2 gen-
erates a candidate invariant based on classification techniques.
Intuitively, since we know that valuations in Positive(SP)
must satisfy Inv and valuations in Negative(SP) must not
satisfy Inv, a predicate separating the two sets (a.k.a. a
classifier) may be a candidate invariant. In the following,
we fix two disjoint sets of samples P and N and discuss
how to automatically generate classifiers separating P and N .
For now, P can be understood as Positive(SP ) and N can
be understood as Negative(SP ). We discuss alternatives in
Section III-D.

To automatically generate classifiers separating P and N ,
we apply existing classification techniques. There are many
classification algorithms, e.g., [36], [40], [8]. In our approach,

the classification algorithms must generate perfect classifiers.
Formally, a perfect classifier φ for P and N is a predicate
such that s ∈ φ for all s ∈ P and s 6∈ φ for all s ∈ N .
Furthermore, the classifier must be human-interpretable or
can be handled by existing program verification techniques.
In the following, we first briefly discuss how to generate
conjunctive invariants using the approach proposed in [48] and
then propose a path-sensitive approach to generate disjunctive
invariants. Afterwards, we show how to improve candidate
invariants systematically through selective sampling.

A. Conjunctive Invariants

In the following, we show how to generate loop invariants
in the form: φ1 ∧φ2 ∧ · · · ∧φk where each φi is a polynomial
inequality up to certain degree, constituted by variables in V .
Our approach is based on Support Vector Machines (SVM).

SVM is a supervised machine learning algorithm for clas-
sification and regression analysis [8]. In general, the binary
classification functionality of SVM works as follows. Given
P and N , SVM can generate a perfect classifier to separate
them if there is any. We refer the readers to [39] for details
on how the classifier is computed. In this work, we always
choose the optimal margin classifier if possible. Intuitively,
the optimal margin classifier could be seen as the strongest
witness why P and N are different. SVM by default learns
classifiers in the form of a linear inequality, i.e., a half space
in the form of c1x1 + c2x2 + · · · ≥ k where xi are variables
in V and ci are constant coefficients.

We can easily extend SVM to learn polynomial classifiers.
Given P and N as well as a maximum degree d of the poly-
nomial classifier, we can systematically map all the samples
in P (similarly N ) to a set of samples P ′ (similarly N ′) in a
high dimensional space by expanding each sample with terms
which have a degree up to d. For instance, assume that the
maximum degree is 2, the sample valuation {x 7→ 2, y 7→ 1}
in P is mapped to {x 7→ 2, y 7→ 1, x2 7→ 4, xy 7→ 2, y2 7→ 1}.
SVM is then applied to learn a perfect linear classifier for
P ′ and N ′. Mathematically, a linear classifier in the high
dimensional space is the same as a polynomial classifier in
the original space [29]. Note that the size of each sample in
P ′ or N ′ grows rapidly with the increase of the degree and
thus the above method is limited to polynomial classifiers with
a relatively low degree.

A polynomial classifier can represent some classifiers in
the form of disjunctive or conjunctive linear inequalities. For
instance, the classifier (x ≥ d0 ∧ x ≤ d1) ∨ (x ≥ d2) where
d0 < d1 < d2 are constants can be represented equivalently
as the following polynomial inequality.

x3 + (d0d1 +d0d2 +d1d2)x2− (d0 +d1 +d2)x−d0d1d2 ≥ 0

However, this representation is not always possible, i.e., some
conjunctive or disjunctive linear inequalities cannot be ex-
pressed as a polynomial classifier. One typical example is:
x ≥ 0 ∧ y ≥ 0.

To generate conjunctive classifiers, we adopt the algorithm
proposed in [48]. The idea is to pick one sample s from N each



time and identify a classifier φi in the form of a polynomial
inequality to separate P and {s}, remove all samples from
N which can be correctly classified by φi, and then repeat
the process until N becomes empty. The conjunction of all
the classifiers φi is then a perfect classifier separating P and
N . We refer the readers to [48] for details of the algorithm.
We remark that if we switch P and N , the negation of the
learned classifier using this algorithm is a classifier which is
in the form of a disjunction of polynomial inequalities.

B. Disjunctive Invariants

It is often challenging to automatically generate disjunctive
invariants [45], [23], whereas certain Hoare triples can only be
proved with disjunctive invariants. Two examples are shown
in Figure 1(b) and Figure 1(d). In the following, we show
one way to learn disjunctive invariants, i.e., invariants in the
general form of

φ1 ∨ φ2 ∨ · · · ∨ φm
where each φi = ϕi,1∧ϕi,2∧· · ·∧ϕi,n is a conjunctive polyno-
mial inequality. Our observation is that disjunctive invariants
are often required to prove certain Hoare tripe because the
program contains branching commands (i.e., if and while).
For instance, proving the Hoare triple shown in Figure 1(b)
requires a disjunctive loop invariant, which is largely due to the
branch at line 3. Based on this observation, we propose to learn
disjunctive invariants through path-sensitive classification.

Without loss of generality, we assume that the loop
body Body can be modeled as a transition system
(C, init, end, T, L). C is a finite set of control locations.
init ∈ C is a unique entry point (i.e., the start of the program).
end ∈ C is a unique exit point (i.e., the end of the program,
which is assumed to be always reachable). T : C → C is a
transition function2 which captures the control flow. Lastly, L
is a labeling function which labels each transition with a pair
(g, f) where g is a guard condition and f is a function updating
variable valuation. Note that g is used to model branching
conditions whereas f is used to model program statements like
assignments. For instance, the loop body in the first program
in Figure 1(b) can be modeled as a transition system with
four control locations representing line 3, 4, 5 and 6; and the
transition from the control location representing line 3 to the
one representing line 4 is labeled with a guard condition x > 0
and a function which does not change any variable valuation.

Given a valuation s of V satisfying the loop condition
Cond, we can obtain a unique path through the program
path(s) = 〈c1, c2, · · · , ck〉 where ci ∈ C for all i such that
c1 = init, ck = end and every guard condition along the path
is satisfied. For instance, given the loop body in Figure 1(b)
and valuation {x 7→ 0, y 7→ −3}, the unique path is 〈3, 5, 6〉.
If s violates the loop condition Cond, we set path(s) to be
an empty sequence. Intuitively, path(s) is the set of sequence
of control locations visited by s in one iteration of the loop.

Our path-sensitive classification starts with partitioning P
into a set of disjoint partitions such that for each partition

2It is a function as we assume Body is deterministic.

Pi, path(s) = path(s′) for all valuation s and s′ in Pi.
For each Pi, we can construct a unique path condition pci,
i.e., a formula over the symbolic variables in V and the
accumulated constraints which the symbolic variables must
satisfy in order for an execution to follow the corresponding
path. For instance, given the program shown in Figure 1(b),
if P is set to be Positive(SP ), we have three partitions. The
first one contains all valuations s with path(s) being 〈3, 4〉
whose path condition is x+ y ≤ −2 ∧ x > 0; the second one
contains all valuations s with path(s) being 〈3, 5, 6〉 whose
path condition is x+y ≤ −2∧x ≤ 0 and the last one contains
all valuations s with path(s) being 〈〉 whose path condition
is x+ y > −2.

Next, we apply the approach presented in Section III-A
to learn a conjunctive classifier for each partition Pi, i.e.,
we learn a classifier φi for separating Pi from Ni. Then
the disjunction

∨
i(φi ∧ pci) is a perfect classifier separating

P from N . Since φi is a conjunctive predicate, we learn
candidate invariants in the form of disjunction of conjunction
of polynomial inequalities.

Example 4. Though the program shown in Figure 1(d) con-
tains no if command, variable valuations in Positive(SP )
can be partitioned into two partitions according to our def-
inition: one containing those visit line 3 and 4, the other
containing those skipping the loop. In the following, we show
how to learn a disjunctive loop invariant based on these two
partitions. Note that a valuation s is in Negative(SP ) only
if s ∈ (y ≤ 0 ∧ x ≥ 0). If we have every valuation of V
for these two partitions, a classifier we could learn for the
former partition is x < 0 (i.e., a valuation must satisfy the
invariant if it enters the loop) and the classifier we learn
for the latter partition is y > 0. As a result, conjuncted
with the path condition, we learn the candidate invariant:
(x < 0 ∧ x < 0) ∨ (y > 0 ∧ x ≥ 0) which can be simplified
as x < 0 ∨ y > 0 and proves the Hoare triple.

We remark that in the above discussion, we assume that we
can obtain every variable valuation, which is often infeasible
in practice as there are too many of them. In the following
subsection, we aim to solve this problem.

C. Active Learning and Selective Sampling

One fundamental problem with applying machine learning
techniques to learn loop invariants is that we often have
only a limited set of samples. That is, with the limited
samples in Positive(SP ) and Negative(SP ), it is unlikely
that we can obtain an “accurate” classifier. For instance, as
shown in Example 2, Positive(SP ) is {(1, 2), (11, 5)} and
Negative(SP ) is {(100, 0)}. A linear classifier identified
using SVM for this example is: 3x − 10y ≤ 152. Although
this classifier perfectly separates the two sets, it is not useful
in proving the Hoare triple and is clearly the result of having
limited samples. One obvious way to overcome this problem
is to generate more samples. However, often a large number of
samples are necessary in order to learn the correct classifier.
One particular reason is that we often need the samples right



on the classification boundary in order to learn the correct
classifier, which are often difficult to obtain through random
sampling. In existing guess-and-check approaches [48], [47],
[46], [44], [19], [18], the problem is overcome by checking
whether the candidate invariant proves the Hoare triple through
program verification. That is, new samples are obtained from
counterexamples generated by the program verification engine,
which are then used to refine the classifier. The issue is that
often many iterations of guess-and-check are required before
the invariant would converge to the correct one.

Researchers in the machine learning community have stud-
ied extensively on how to overcome the problem of limited
samples. One of the remedies is active learning [43]. Active
learning is proposed in contrast to passive learning. A passive
learner learns from a given set of samples that it has no control
over, whereas an active learner actively selects what samples to
learn from. It has been shown that an active learner can some-
times achieve good performance using far fewer samples than
would otherwise be required by a passive learner [49], [50].
Active learning can be applied for classification or regression.
In this work, we apply it for improving the candidate invariants
generated by the above-discussed classification algorithms.

A number of different active learning strategies on how to
select the samples have been proposed. For instance, version
space partitioning [41] tries to select samples on which there
is maximal disagreement between classifiers in the current
version space (e.g., the space of all classifiers which are
consistent with the given samples); uncertainty sampling [32]
maintains an explicit model of uncertainty and selects the
sample that it is least confident about. The effectiveness of
these strategies can be measured in terms of the labeling cost,
i.e., the number of labeled samples needed in order to learn
a classifier which has a classification error bounded by some
threshold ε. For some classification algorithms, it has been
shown that active learning reduces the labeling cost from
Ω( 1

ε ) to the optimal O(d lg 1
ε ) where d is the dimension of

the samples [21], [14]. That is, if passive learning requires a
million samples, active learning may require just lg 1000000
(≈ 20) to achieve the same accuracy.

In this work, we adopt the active learning strategy for
SVM proposed in [42], called selective sampling, to improve
the invariant candidates. This strategy has been shown to be
effective in achieving a high accuracy with fewer examples
in different applications [49], [50]. In particular, at line 5 of
Algorithm 2, after obtaining a classifier φ based on existing
samples in SP , we apply method selectiveSampling(φ) to
selectively generate new samples. It works by generating
multiple samples on the current classification boundary φ.
Afterwards, the samples are added into SP at line 5 and 6
and we repeat from line 2 until the classifier converges.

The implementation of selectiveSampling depends on
the type of classifiers. For classifiers in the form of linear
inequalities, identifying samples on the classification boundary
is straightforward, i.e., by solving an equation. In the above
example, given the current classifier 3x − 10y ≤ 152, we
apply selective sampling and generate new valuations (7,−13)

and (14,−11) by solving the equation 3x − 10y = 152. For
classifiers in the form of polynomial inequalities, the problem
is more complicated since existing solvers for multi-variable
polynomial equations have limited scalability. We thus use a
simple approach to identify solutions of a polynomial equation,
which we illustrate through an example in the following.
Assume that we learn the classifier: −4x2 + 2y ≥ −11. The
following steps are applied for selective sampling.

1) Choose a variable in the classifier, e.g., x.
2) Generates random value for all other variables. For

example, we let y be 12.
3) Substitute the variables in the classifiers with the gen-

erated values and solve the univariable equation, e.g.,
−4x2 + 24 = −11 . If there is no solution, go back to
(1) and retry. In our example, x ≈ 2.9580.

4) Roundoff the values of all the variables according to
their types in the program. In our example, we obtain
the valuation (3, 12).

In the case that a conjunctive or disjunctive classifier is
learned, we apply the above selective sampling approach to
every clause in the classifier to obtain new samples. With
the help of active learning and selective sampling, we can
often reduce the number of learn-and-check iterations. As the
empirical studies shown in Section IV, one iteration of guess-
and-check is sufficient in some cases to prove the Hoare triple.

Advantages of Selective Sampling In the following, we
briefly discuss why selective sampling is helpful from a high-
level point of view. In this work, we collect samples in
three different ways. Firstly, random sampling provides us
an initial set of samples. The cost of generating a random
sample is often low. However, we often need a huge number
of random samples in order to learn accurately. Secondly,
selective sampling has a slightly higher cost as it requires us
to solve some equation system. However, it has been shown
that selective sampling is often beneficial compared to random
sampling [49], [50]. The last way of sampling is sampling
through verification. When a candidate invariant fails any of
the three conditions (1), (2) and (3) in the candidate verifica-
tion stage, the verifier provides counter-examples, which are
added as new samples. Sampling through verification provides
useful new samples by paying a high cost. Furthermore, for
complex programs, sampling through verification may not be
feasible due to the limited capability of existing program
verification techniques. Thus, in this work, our approach is to
start with random sampling, use selective sampling to improve
the classifier as much as possible and apply sampling through
verification only as the last resort.

Figure 2 visualizes how different sampling methods work
in a 2-D plane. We start with the figure in the top-left
corner, where the dots are the samples obtained through
random sampling. The (green) area above the line represents
the space covered by the actual invariant. Based on these
samples, a classifier (shown as the red line) is learnt to
separate the random samples, as shown in the top-right figure.
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Fig. 2: Sampling approaches

Selective sampling allows us to identify those samples along
the classification boundary, as shown in the bottom-left figure.
In comparison, sampling through verification would provide
us a sample between the two lines, as shown in the bottom-
left figure. The classifier will be improved by either selective
sampling or sampling through verification, as shown in the
bottom-right figure. The benefit of always applying selective
sampling before applying sampling through verification is that
verification is often costly or even worse, not available due to
the limitation of existing program verification techniques. Thus
we would like to avoid it as much as possible.

D. Making Use of Undetermined Samples

So far we have focused on learning and refining classi-
fiers between Positive(SP) and Negative(SP) as candidate
invariants. The question is then: how do we handle those
valuations in NP(SP)? If we simply ignore them, there
may be a gap between Positive(SP) and Negative(SP) and
as a result, the learnt classifier may not converge to the
invariant we want, even with the help of active learning.
This is illustrated in Figure 3, where the set of valuations
in Positive(SP) (marked with +), Negative(SP) (marked
with −) and NP(SP) (marked with ?) for the example in
Figure 1(a) are visualized in a 2-D plane. Many samples
between the line x = y and x − y = 16 may be contained
in NP(SP). As a result, without considering the samples in
NP(SP), a classifier located in the NP(SP) region (e.g.,
x − y ≤ 10, or x − y ≤ 13) may be learned to perfectly
classify Positive(SP) and Negative(SP). Worse, identifying
more samples may not be helpful in improving the classifier
if the new samples are in NP(SP).

To solve the problem, in addition to learn a classifier sep-
arating Positive(SP) and Negative(SP), we learn candidate
invariants making use of NP(SP). In principle, we should
enumerate all the possible categorization of the samples in
NP (SP ) and run classification algorithm on each of them.
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Fig. 3: Samples visualization

However at most time it is very time-consuming and instead
we only try two extreme case in our implementation, which
is far from perfect and will be refined in the future. In our
current setting, we learn classifiers separating Positive(SP)
from Negative(SP) ∪ NP(SP) (i.e., assuming valuations in
NP(SP) fail the actual invariant), and classifiers separating
Negative(SP) from Positive(SP) ∪NP(SP) (i.e., assuming
valuations in NP satisfy the actual invariant). For the example
in Figure 1(a), if we focus on classifiers in the form of
linear inequalities, the classifier separating Positive(SP) from
the rest converges to NULL (no such classifier), whereas the
classifier separating Negative(SP) from the rest converges to
x − y ≤ 16, which can be used to prove the Hoare triple.
Note that this is orthogonal to which classification algorithm
is used and whether selective sampling is applied.

IV. IMPLMENTATION AND EVALUATION

We have implemented our approach for loop-invariant gen-
eration in a tool called ZILU (available at [1]). For candidate-
invariant verification, we modify the KLEE project [9] to
symbolically execute C programs prior to invoking Z3 [15] for
checking satisfiability of condition (4), (5) and (6). We remark



that, as a concolic testing engine, KLEE may concretely exe-
cute the programs and return under-approximated abstraction.
This may affect the soundness of our system. To overcome
this problem, we detect those path conditions produced from
concrete executions and return a sound abstraction (i.e., true).

Our evaluation subjects include a set of C programs gath-
ered from multiple resources, such as previous publications
(e.g., [23], [18], [48], [22], [30], [17]) and the software
verification competitions 2017 (SV-Comp [5]). We remark that
the loops in these benchmark programs often contain non-
deterministic choices, which are often used to model I/O envi-
ronment (e.g., an external function call). As non-determinism
is beyond the scope of this work in general, we manually
examine each program to check whether our assumption is
satisfied or not, i.e., whether the non-determinism is relevant
in satisfying the post-condition or not. Only those programs
which do not satisfy our assumption are excluded from our
experiments. For those which do satisfy our assumption,
we replace those non-determinism with random free boolean
variables. In total, out of the 323 benchmark programs we
gathered, 59 programs (all of which are from SVComp)
are excluded as they do not satisfy their specification; 140
programs are excluded as they do not have non-trivial precon-
dition or postcondition or the loop body contains unsupported
constructs like ‘break’ or ‘goto’ statement; 59 are excluded as
they contain unsupported operations such as array operation;
8 are excluded due to multiple loops; and 15 are excluded
due to non-determinism. We also exclude programs which are
trivial to prove and copies of the same program. Furthermore,
we construct 11 programs (benchmarks[43-53] in the table)
due to lack of programs requiring polynomial or disjunctive
invariants in these benchmarks. All 53 evaluated programs are
available at [1].

The parameters in our experiments are set as follows. For
random sampling, we generate 10 random values for every
input variable of a program from their default ranges. During
selective sampling, we generate 2 values for every input
variable along the classification boundary. The ratio between
random samples and selective samples is thus 5:1, which we
consider to be reasonable as selective sampling is slightly
more costly. When we invoke LibSVM for classification,
the parameter C (which controls the trade-off between
avoiding misclassifying training examples and enlarging
decision boundary) and the inner iteration for SVM learning
are set to their maximum value so that it generates only
perfect classifiers. During candidate verification, integer-type
variables in programs are encoded as integers in Z3 (not
as bit vectors). Since we have different ways of setting the
samples for classification, e.g., by setting the two sets of
samples P and N differently as discussed in Section III-D,
and different classification algorithms (linear vs. polynomial
or conjunctive vs. disjunctive), we simultaneously try all
combinations and terminate as soon as either the Hoare
triple is proved or disproved. For polynomial inequalities, the
maximum degree is bounded by 4. In order to give priority
to simpler invariants, we look for a polynomial classifier with

degree d only if we cannot find any polynomial classifier with
lower degree. All of the experiments are conducted using x64
Ubuntu 14.04.1 (kernel 3.19.0-59-generic) with 3.60 GHz
Intel Core i7 and 32G DDR3. Each experiment is executed
five times since there is randomness in our approach and we
report the median as the result.

RQ1 The first research question which we would like to
answer is: does selective sampling help to reduce the number
of guess-and-check iterations? Thus, we compare ZILU with
and without selective sampling. The experiment results are
summarized in Table I. The first column shows the number of
the program; the second column shows the type of loop invari-
ant needed to prove the Hoare triple; and the next six columns
show details on verifying the Hoare triple with and without
selective sampling. We compare the total number of samples
generated and the number of guess-and-check iterations. To
reduce randomness, the same set of initial random samples
are used in both settings. Each experiment has a time limit of
10 minutes. The winner of each measurement is highlighted
with a bold font.

The results show that ZILU successfully verifies all pro-
grams with help of selective sampling, and fails to verify 9
programs without selective sampling. For these 9 programs,
ZILU timeouts due to too many guess-and-check iterations.
This clearly evidences the usefulness of selective sampling.
Furthermore, in 36 cases, selective sampling helps to reduce
the number of guess-and-check iterations. Though it rarely
happens, due to the randomness in our approach, it may
happen that the right invariant is learned by luck with fewer
samples. This happens in 3 cases (i.e., 5%) where ZILU
without selective sampling has fewer (by 1 or 2) iterations.

We would like to highlight that for 10 programs, ZILU
is able to learn the correct invariant within one guess-and-
check iteration with selective sampling. It is never the case
without selective sampling. Furthermore, it happens when the
invariant is a linear inequality. We remark that being able
to learn the correct invariant without program verification is
useful for handling complex programs. That is, even if we
are unable to automatically verify the generated invariant due
to the limitation of existing program verification techniques,
ZILU’s result is still useful in these cases as the generated
invariant can be used to manually verify the program.

In addition, we observe that ZILU often takes more
samples and guess-and-check iterations to learn conjunctive
or disjunctive invariants. On average, ZILU takes 1.7, 3, 5.9
and 4.5 guess-and-check iterations to learn linear, polynomial,
conjunctive and disjunctive loop invariants. For conjunctive
invariants, more iterations are needed because the algorithm
adopted from [48] for learning conjunctive classifiers often
requires more samples before convergence. For disjunction
invariants, this is because we need sufficient samples in each
partition in order to learn the right invariant.

RQ2 The second research question which we would like
to answer is: does selective sampling incur significant



TABLE I: Experiment results

ZILU ZILU - Selective Sampling
benchmark type ]sample ]iter time(s) ]sample ]iter time(s) Interproc CPAChecker BLAST InvGen

benchmark01 conjunctive 136 9 8.34 63 13 12.79 3 3.19 3 3
benchmark02 linear 29 1 3.06 12 2 2.68 3 3.73 3 3
benchmark03 linear 62 2 2.88 22 2 2.88 3 3.57 3 3
benchmark04 conjunctive 197 5 8.71 35 5 3.93 3 3.26 3 3
benchmark05 conjunctive 444 12 10.83 42 12 6.66 7 3.51 3 3
benchmark06 conjunctive 166 4 4.48 34 4 3.53 3 3.55 3 3
benchmark07 linear 110 2 3.85 to to to 7 7 7 7
benchmark08 linear 117 3 3.96 33 3 3.28 7 7 to 3
benchmark09 conjunctive 145 5 4.06 25 5 4.08 3 3.20 3 3
benchmark10 conjunctive 213 25 37.06 to to to 7 3.26 3 3
benchmark11 linear 81 1 5.6 22 2 55.95 3 3.32 3 3
benchmark12 linear 262 4 7.55 74 44 16.22 3 3.16 3 3
benchmark13 conjunctive 240 6 15.2 36 6 4.54 3 3.18 3 3
benchmark14 linear 31 1 2.78 12 2 2.95 3 3.40 3 3
benchmark15 conjunctive 331 8 77.21 to to to 3 3.76 3 3
benchmark16 conjunctive 87 3 3.96 23 3 3.63 3 3.42 3 3
benchmark17 conjunctive 154 4 4.2 34 4 3.5 3 3.63 3 3
benchmark18 conjunctive 406 10 65.65 39 9 21.31 3 3.67 3 3
benchmark19 conjunctive 345 9 10.34 40 10 8.09 3 3.68 3 3
benchmark20 conjunctive 148 4 4.79 34 4 8.44 7 7 3 3
benchmark21 disjunctive 72 3 91.92 to to to 7 3.39 3 7
benchmark22 conjunctive 158 6 34.46 93 13 44.78 7 3.71 7 7
benchmark23 conjunctive 170 6 18.83 to to to 3 47.82 to 3
benchmark24 conjunctive 357 9 55.42 38 8 26.97 7 3.64 3 3
benchmark25 linear 31 1 4.3 12 2 4.31 3 3.05 3 3
benchmark26 linear 57 1 83.57 22 2 60.2 3 3.63 3 3
benchmark27 linear 104 2 28.34 33 3 3.32 3 3.39 3 3
benchmark28 linear 66 2 5.32 22 2 5.07 7 7 7 7
benchmark29 linear 36 1 4.69 24 4 6.31 3 3.09 3 3
benchmark30 conjunctive 83 3 6.27 24 4 5.76 3 3.40 3 3
benchmark31 disjunctive 30 2 28.06 40 4 72.18 7 3.61 3 7
benchmark32 linear 33 1 11.6 12 2 15.68 3 3.41 3 3
benchmark33 linear 37 1 9.94 12 2 13.46 3 3.45 3 3
benchmark34 conjunctive 345 9 75.36 37 7 27.43 3 4.04 3 3
benchmark35 linear 39 1 10.45 12 2 13.14 3 3.61 3 3
benchmark36 conjunctive 83 3 6.64 23 3 6.2 3 3.28 3 3
benchmark37 conjunctive 104 4 7.84 24 4 19.87 3 3.40 3 3
benchmark38 conjunctive 108 4 26.06 24 4 25.72 3 3.51 3 3
benchmark39 conjunctive 112 4 19.89 24 4 18.83 7 3.65 3 3
benchmark30 polynomial 180 4 34.05 25 5 38.76 7 7 7 7
benchmark41 conjunctive 263 5 17.1 68 7 14.15 3 3.70 3 3
benchmark42 conjunctive 334 6 54.38 to to to 3 3.33 3 3
benchmark43 conjunctive 214 2 45.04 to to to 7 3.42 3 3
benchmark44 disjunctive 40 4 24.71 24 4 16.5 3 3.34 3 3
benchmark45 disjunctive 51 3 5.23 56 16 7.19 7 3.31 3 7
benchmark46 disjunctive 194 9 23.17 122 32 19.91 7 3.41 3 7
benchmark47 linear 61 1 63.55 to to to 3 3.61 3 3
benchmark48 linear 297 3 25.93 34 4 17.03 3 3.77 3 3
benchmark49 linear 80 2 37.52 34 4 16.77 3 3.36 3 3
benchmark50 linear 90 2 13.63 22 2 14.83 3 3.51 3 3
benchmark51 polynomial 48 2 12.2 42 4 22 7 3.25 3 3
benchmark52 polynomial 180 4 69.99 to to to 7 7 7 7
benchmark53 polynomial 176 3 61.71 105 5 63 7 7 7 7

overhead? This is a valid question as selective sampling
requires solving simple equation systems. In Table I, we
show the total execution time of both ZILU with and without
selective sampling. It can be observed that the overhead of
selective sampling is reasonable. All programs are verified
with 2 minutes. A close look reveals that most of the
time is spent on classification and selective sampling. For
29 programs, the overall time is reduced with selective
sampling, due to a reduced number of guess-and-check
iterations. ZILU often takes more time to learn conjunctive,
polynomial or disjunctive invariants. This is because in such

a case, SVM classification is invoked many times in one
guess-and-check iteration. Comparing the number of samples
generated for each program, it can be observed that ZILU
with selective sampling often generates more samples. This
is expected as we generate multiple samples for each call of
selectiveSampling, whereas only one sample is generated
during the verification phase. This is because sampling
through verification has, in general, a high cost and we aim
to avoid it as much as possible.

RQ3 The third research question is: does ZILU outperform



existing state-of-the-art program verification tools on verifying
these programs? Ideally, we would like to compare with those
tools reported in [48], [47], [46], [44], [19], [18]. Unfortu-
nately, those tools are not maintained. We instead compare
ZILU with four state-of-the-art tools on loop invariant genera-
tion and program verification. In particular, Interproc [30] is a
program verifier which generates invariants based on abstract
interpretation. In the experiments, it is set to use its most ex-
pressive abstract domain, i.e., the reduced product of polyhedra
and linear congruences abstraction. CPAChecker [7] is a state-
of-the-art program verifier. The CPAChecker which we use in
this work is the version used for SV-COMP 2017 [5]. Note that
CPAChecker supports a variety of verification methods and it
is configured in the exact same way as in SV-COMP 20173.
BLAST is a software model checker based on counterexample-
guided abstraction refinement [6]. Lastly, InvGen [25] is a tool
which aims to generate linear arithmetic invariants, using a
combination of static and dynamic analysis techniques.

The results are shown in the last 4 columns of Table I where
3 means that the Hoare triple is verified and 7 means either
it outputs no conclusive results or false positives. We remark
that because the tools use approaches which are different from
each other, the comparison should be taken with a grain of
salt. Interproc and InvGen are very efficient in handling the
programs, i.e., within 1 second for each program, and thus we
skip the verification time. BLAST is similarly efficient except
that it timeouts in two cases. We show the timed taken by
CPAChecker in case it successfully verifies the program.

We have the following observation based on the experiment
results. First, for all 53 programs, ZILU is able to find a
loop invariant which proves the Hoare triple. In comparison,
Interproc failed in 18 cases; CPAChecker failed in 7 cases;
BLAST failed in 8 cases; and InvGen failed in 10 cases.
Secondly, existing tools often complement each other. For in-
stance, BLAST successfully proves all programs which require
disjunctive loop invariant, whereas it failed in several cases
where a polynomial loop invariant is required. In contrast,
programs which require disjunctive loop invariants are often
challenging for other tools (except ZILU). Thirdly, due to its
approach, ZILU often requires more time. Nonetheless, we
consider that ZILU is relatively efficient. For all 53 programs,
ZILU finishes the proof within 92 seconds.

V. RELATED WORK

The closest related work are those guess-and-check ap-
proaches on invariant generation. In [48], the authors proposed
to generate samples through constraint solving and learn loop
invariants based on SVM classification. In comparison, ZILU
learns more expressive invariants in the form of polynomial
inequalities or their disjunctions and conjunctions. More im-
portantly, we apply active learning with selective sampling so
as to overcome the limitation of too few samples or too many
guess-and-check iterations. In [47], the authors proposed to
apply PAC learning techniques for invariant generation. It has

3We thank the help from a researcher in the SV-COMP evaluation team.

been demonstrated that their approach may learn invariants
in the form of arbitrary boolean combinations of a given
set of propositions (under certain assumptions). In [46], the
authors developed a guess-and-check algorithm to generate
invariants in the form of the algebraic equation. It learns
invariants of polynomial form by operating the null space
operation on matrix. In [44], the authors proposed a framework
for generating invariants based on randomized search. In
particular, their approach has two phases. In the search phase,
it uses randomized search to discover candidate invariants
and uses a checker to either prove or refute the candidate
in the validate phase. In [18], Pranav Garg et. al proposed
to synthesize invariants by learning from implications along
with positive and negative samples. They further extend their
approach by modifying existing decision tree classification
algorithm with heuristics adopted from [20]. In this way, they
could cope with implication better and, as a result, handle
invariants of combination of conjunctions and disjunctions in
theory. One limitation of their work is that the terms in the
decision tree (e.g., the propositions) must be pre-defined.

Compared to the above-mentioned work, ZILU is proposed
to improve loop invariant generation through active learning
with selective sampling, so as to avoid applying the invariant
checker as much as possible. To the best of our knowledge,
ZILU is the first to combine selective sampling with invariant
inference. In particular, in the guessing phase, we additionally
adopt a learn-and-refine iteration which improves the invariant
candidates through classification and selective sampling. In
comparison, other guess-and-check approaches solely rely on
the checkers to improve invariant candidates. Furthermore, we
show ZILU can be extended easily to learn disjunctive loop
invariants through data partitioning and classification.

Lastly, in principle, our approach can be extended to
learn arbitrary mathematical classifiers using methods like
SVM with kernel methods [29]. Nonetheless, we focus on
invariants in the form of polynomial inequalities or conjunc-
tions/disjunctions of polynomial inequalities in our evaluation.
The experiment results show that our approach effectively
learns loop invariant for proving a set of benchmark programs
and complements the existing approaches.

Besides the guess-and-approaches, many alternative ap-
proaches have been proposed for loop invariant generation. Ex-
amples include those based on abstraction interpretation [13],
[35], [31], those based on counterexample-guided abstraction
refinement [28], [3], [11] or interpolation [27], [33], [34], and
those based on constraint solving and logical inference [25],
[12], [24], [17]. These approaches all depend on constraint
solving and thus suffer from scalability. For instance, the work
in [35], [31], [25] is restricted to generate invariants in abstract
domains for which constraint solving is manageable.

VI. CONCLUSION

In this work, we propose a systematic approach to learn
loop invariants based a combination of selective sampling
and guess-and-check. As for future work, we are currently
exploring methods for learning more expressive loop invariants



as well as methods for discovering and synthesizing new
features for our classification.
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[35] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[36] M. Minsky and S. Papert. Perceptrons: An Introduction to Computa-
tional Geometry, 2nd edition. The MIT Press, 1972.

[37] G. L. Nemhauser and L. A. Wolsey. Integer programming and
combinatorial optimization. Wiley, Chichester. GL Nemhauser, MWP
Savelsbergh, GS Sigismondi (1992). Constraint Classification for Mixed
Integer Programming Formulations. COAL Bulletin, 20:8–12, 1988.
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