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Feedback-Based Debugging
Yun Lin1, Jun Sun2, Yinxing Xue3, Yang Liu3, and Jinsong Dong1

1School of Computing, National University of Singapore, Singapore, 2Singapore University of Technology and
Design, Singapore, 3School of Computer Engineering, Nanyang Technological University, Singapore

Abstract—Software debugging has long been regarded as a
time and effort consuming task. In the process of debugging,
developers usually need to manually inspect many program steps
to see whether they deviate from their intended behaviors. Given
that intended behaviors usually exist nowhere but in human
mind, the automation of debugging turns out to be extremely
hard, if not impossible.

In this work, we propose a feedback-based debugging ap-
proach, which (1) builds on light-weight human feedbacks on a
buggy program and (2) regards the feedbacks as partial program
specification to infer suspicious steps of the buggy execution.
Given a buggy program, we record its execution trace and allow
developers to provide light-weight feedback on trace steps. Based
on the feedbacks, we recommend suspicious steps on the trace.
Moreover, our approach can further learn and approximate bug-
free paths, which helps reduce required feedbacks to expedite
the debugging process. We conduct an experiment to evaluate
our approach with simulated feedbacks on 3409 mutated bugs
across 3 open source projects. The results show that our feedback-
based approach can detect 92.8% of the bugs and 65% of the
detected bugs require less than 20 feedbacks. In addition, we
implement our proof-of-concept tool, Microbat, and conduct a
user study involving 16 participants on 3 debugging tasks. The
results show that, compared to the participants using the baseline
tool, Whyline, the ones using Microbat can spend on average
55.8% less time to locate the bugs.

I. INTRODUCTION

Software debugging is often regarded as one of the most
time-consuming tasks in software development and mainte-
nance [13], [16]. Given an observable fault, developers usually
need to start with the fault-revealing code, speculate where the
bugs are, and inspect the code line by line (or sometimes step
by step) with the intended code specification in mind. When
the code gets complicated, such a manual process of debugging
inevitably demands huge amount of time and mental efforts.

Researchers have proposed a lot of techniques for automa-
tion of software debugging, such as spectrum-based fault
localization [9], [10], [30], [32], [33], delta-debugging [15],
[18], [25], [28], [36], and dynamic trace recording [12], [21],
[24], [26], [27], [31], [35]. Spectrum-based fault localization
regards test cases as executable requirement. Given a set of
test cases, it quantifies the suspiciousness of source code
lines by comparing the code coverage of passed or failed test
cases. Delta-debugging analyzes differences between passed
and failed test cases, such as test inputs and running program
states, so as to simplify the test inputs [36], [38] and isolate
root cause variable of bug [37]. However, in the process of
development, developers usually lack sufficient passed test
cases [14] to apply or take full advantage of these techniques.
Some dynamic trace recording techniques, such as omniscient

debugging [12], [26], can record the execution trace for a
single run and allow developers to trace back and analyze
the faults. Nevertheless, when the trace length gets long
(especially caused by loops), the effort for stepwise checking
becomes overwhelming.

In this paper, we propose a tool-supported and feedback-
based debugging approach, which requires only one failed test
case and aims to reveal the root-cause step in the execution.
Our rationale lies in the observation that, the specification
of detailed code usually exists nowhere but in human mind.
Therefore, we leverage light-weight user feedback as “partial
specification” to feed the debugger so that it can recommend
suspicious steps. Given a buggy program, we first build a trace
model which records the execution trace and captures causality
relations (i.e., data/control dominance relation) among the
steps. On each trace step, we allow the developers to provide
four types of feedback (i.e., correct, wrong variable value,
wrong path, and unclear). Our approach then takes the feed-
back and recommends suspicious steps based on causality
relation among trace steps. After collecting a number of
feedbacks, our approach begins to learn and approximate
bug-free paths on trace, which helps reduce the number of
feedbacks to expedite the debugging process. This iterative
process starts with a user feedback on a fault-revealing trace
step and finishes when the root-cause step is recommended.

We implement our approach as an Eclipse plugin, Microbat
(A demo video of Microbat is available at [4]). We first
conduct a simulation experiment by using Microbat to find
3409 mutated bugs with simulated feedbacks on three open
source projects. The results show that Microbat is able to
detect 92.8% of the mutated bugs and 65% of detected bugs
require less than 20 feedbacks. In addition, we conduct a
user study involving 16 participants on 3 real-world bugs.
The result shows that, compared to the participants using the
baseline tool Whyline [11], the ones using Microbat can spend
on average 55.8% less time to locate the bugs.

This paper makes the following contributions: 1) We pro-
pose a feedback-based debugging approach, which incorpo-
rates four types of feedback to recommend suspicious steps.
2) We develop Microbat tool for the practical use of our
feedback debugging approach; 3) We conduct both simulation
experiment and user study to evaluate our approach and tool.
The results show that Microbat is both effective and practical.

The rest of the paper is structured as follows. Section II
presents a motivating example. Section III describes our ap-
proach. Section IV presents our tool Microbat. Section V eval-
uates our approach with a simulation experiment. Section VI
shows our user study on real-world bugs. Section VII reviews
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TABLE I
DEBUGGING CODE EXAMPLE

1 public int calculate ( String expr ){
2 int brktStartIdx = −1;
3 while ( containsBracket ( expr ) ){
4 char [ ] l i s t = expr . toCharArray ( ) ;
5 for ( int i =0; i<l i s t . length ; i++){
6 i f (ch == ’ ( ’ )
7 brktStartIdx = i ;
8 else i f (ch == ’ ) ’ ){
9 String simpleExpr = expr . substring ( brktStartIdx +1, i ) ;

10 int value = evaluateSimpleExpr ( simpleExpr ) ;
11 String beforeExpr = expr . substring (0 , brktStartIdx ) ;
12 String afterExpr = ( i >= expr . length ( ) ) ? ””
13 : expr . substring ( i + 1 , expr . length ( ) ) ;
14 expr = beforeExpr + value + afterExpr ;
15 break ;
16 }
17 }
18 }
19 int resu l t = evaluateSimpleExpr ( expr ) ;
20 return resu l t ;
21 }

related work. Section VIII concludes the paper.

II. MOTIVATING EXAMPLE

Table I shows our motivating example, which is adopted
from a code training website [6]. Given a valid algorithmic ex-
pression consisting of integers, brackets, or plus/minus signs,
e.g., “1-((1+2)-1)”, this program should compute its correct
value. Overall, the program parses the expression by iteratively
replacing the expression inside the most inner pair of brackets
with its value (line 9–15). For example, the expression “1-
((1+2)-1)” will be iteratively reduced into expressions “1-
(3-1)” and “1-2”. Finally, it will be evaluated to a number
returned as the result (line 19). In our example, however,
given the complicated expression of “(((1+((1+2)+(2-1))-(1-
3))+1)+1)+1”, it returns a wrong value of 6 instead of the
correct value of 10.

With a traditional debugger, developers usually need to set
a number of breakpoints for tracking down the bug. However,
they will have to answer some following questions.

(1) Where to set breakpoints? In our example, given that
the result variable in line 20 is wrong, every statement possibly
influencing it is suspicious, which makes almost every line in
Table I as a potential breakpoint.

(2) How many breakpoints are appropriate? Too many
breakpoints may suspend the debugging execution when un-
necessary. However, any miss of a breakpoint may cause the
execution suspended after the bug has already occurred, which
requires the developer to re-run the program from the very
beginning.

(3) How to avoid over inspection effort caused by
loop? When the breakpoints are set inside a (nested) loop,
developers have to manually inspect variable values each time
a breakpoint is reached, e.g., a breakpoint set on line 11 in
Table I. With the number of iterations increases, the effort of
inspecting variable values soars dramatically.

In this work, we propose Microbat to address the above
issues. For the case in Table I, Microbat first generates the
execution trace by a single run and records all the read or
written variables and their values in each trace step. Given the
visualized trace (see Section IV), developers are able to start

debugging in a backward way. Specifically, developers can
start from the very end of the trace where the fault is observed,
and provide his feedback on this step, such as which variable
in this step is with wrong value, or whether this step should
be executed, then Microbat is able to recommend certain step
responsible for its cause.

In our example, the developer can first observe the program
state in the step running into line 20 in Table I, where the result
variable has the wrong value of 6 instead of the expected 10.
Thus, he can select this variable on this step, indicating its
wrong value as feedback, and ask Microbat to recommend
a suspicious step for further inspection. Using the feedback,
Microbat recommends a step by (1) simple causality analysis,
(2) bug-free path inference, and (3) clarity guidance.

Simple Causality Analysis. Simple causality analysis aims
to parse the dynamic data/control dominance relation between
steps to alleviate the burden of setting breakpoints. In above
case, Microbat first recommends the most recent step writing
the result variable (data dominance), i.e., the step running into
line 19. On this step, it reads a variable expr of value “5+1”
and writes the variable result of value 6.

Given that “5+1” equals 6 and the value of the written
variable result has been indicated as wrong, the read expr
variable must be wrong. Thus, the developer can further select
the expr variable to indicate its wrong value as feedback. With
simple causality analysis, Microbat then recommends a step
running into line 14, which writes the expr variable.

Bug-free Path Inference. Bug-free path inference aims to
reduce the inspection effort. With only above causality anal-
ysis, the developer will repeatedly inspect the steps running
into line 14 and line 10 in every iteration. In the worst case, he
would need to go through all the iterations if the bug happens
at the very beginning of the execution.

(((1 + ((1 + 2) + (2 - 1)) - (1 - 3)) + 1) + 1) + 1

    

  

  

  

  

  

  

  

Final Result

Fig. 1. Execution of Example Program

Figure 1 shows the 9 iterations along with their execu-
tion order when parsing the expression “(((1+((1+2)+(2-1))-
(1-3))+1)+1)+1”. Since the developer inspects the variables
in a backward way, he will first give wrong-variable-value
feedback on the 9th and 8th iteration sequentially. Microbat
then approximates some possible bug-free paths along the loop
trace. In this case, Microbat can skip the 6th and 7th iteration,
and recommend a step in the 5th iteration. The rationale is
as follows. Based on developer’s feedback, the bug does not
occur in the 8th or 9th iteration. In addition, Microbat finds
that the cases in 6th–9th iteration are similar in that they all
parse the addition of two positive integers, for example “5+1”
in 9th iteration, “4+1” in the 8th iteration. Therefore, Microbat
approximates that the bug may not happen in the 6th or 7th
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iteration either. Hence, Microbat stops in the 5th iteration as
the case of a positive integer (4) minus a negative integer (-2)
has never been encountered.

The developer now inspects a step running into line 10 in
Table I, in which the read expr is “4- -2” while the written
value of value variable is 2. Then, the developer can select
the returned variable from evaluateSimpleExpr() method so
that Microbat can further conduct simple causality analysis
inside the method invocation.

Clarity Guidance. In some cases, developers could get lost
when inspecting the correctness of program state. Microbat
enables the developers to provide an unclear feedback, then
Microbat will try to suggest its context step such as method
invocation or loop head (i.e., the step starting a loop iteration).
Suppose the developer cannot make sure the correctness of
a step s running into line 14, he can provide the unclear
feedback so that Microbat will recommend its loop head step
running into line 5 (by one unclear feedback) or line 3 (by two
unclear feedbacks). By this means, he can be aware of the
context information such as (1) which iteration of Figure 1
is s located in and (2) what is the reduced expression at
the beginning of this iteration. With feedbacks provided on
context steps, Microbat manages to present bigger picture and
gradually guides the developer back to understand the step he
gets lost at the first place.

III. APPROACH

Given a trace of steps, our approach aims to find the root-
cause step which deviates from developer’s expectation and
eventually causes the observable fault after program execution.

A. Trace Model
Given a run of the buggy program, we can obtain a trace

consisting of a number of steps. Each step corresponds to
an executed source code line, which can define (i.e., write)
or use (i.e., read) some variables. Given a variable var, if
var is defined by step s1 while used by step s2, then we
say that step s1 data dominates s2 on var. In addition, the
variable var is called as the attributed variable of the data
dominance relation. On the other hand, given a conditional
statement con stat, if con stat is executed in step s1 while
the evaluation value of con stat (i.e., true or false) decides
the execution of step s2, then we say that step s1 control
dominates s2. Given two steps s1 and s2, if s1 control or
data dominates s2, then we say that s1 is control or data
dominator of s2, and s2 is the control or data daminatee
of s1. In addition, we say that s1 is the contextual parent of
s2 if either of following conditions happens:
• s1 starts a loop iteration l, and s2 is executed in l but not

in any nested loop iteration or method invocation in l.
• s1 starts a method invocation m and s2 is executed in m

but not in any nested method invocation or loop iteration
in m.

The contextual parent-child relation can organize our trace into
a step tree, in which the root is the entry method and the leaves
are the steps invoking no method and starting no loop iteration.
Given a step, we define its layer on step tree as its abstract
level. By default, the abstract level of the entry method is 0.

B. Recommendation Mechanism

We support four types of feedback as follows:

• Correct Step: The step is executed in correct control
flow and all the values of visible variables in this step
are correct.

• Wrong Variable Value: At least one variable in this
step is of wrong value. Once a developer provides such
feedback, he should further select the specific variables
of wrong value.

• Wrong Path: The step should not be executed.
• Unclear: The developer is not confident to make any of

the above feedback on this step.

We consider correct-step, wrong-variable-value, and wrong-
path feedback as clear feedback. We recommend a suspicious
step if the developer provides a clear feedback and recommend
a step to help understand the code if he provide an unclear
feedback. For clarity, we start illustrating our approach when
developers only provide clear feedback, then we proceed to
the case when they provide unclear feedback.

1) Overall Mechanism with Clear Feedbacks: When a
developer specifies an incorrect step by providing wrong-
variable-value or wrong-path feedback, we move forward
on trace to a suspicious previous step by data or control
dominance relation. The developer can iteratively provide
feedbacks and move forward to locate the root-cause step.
However, moving forward only by dominance relation can
be either (1) too slow so that it requires a great amount of
feedbacks or (2) too fast so that we skip the root-cause step
by a single dominance relation. Figure 2 uses a state machine
to present our overall recommending mechanism with only
clear feedbacks. The states consists of:

• Simple Casuality Analysis: we simply recommend steps
based on dominance relation.

• Bug-free Path Inference: we skip some inferred and
approximated bug-free paths to move “faster”.

• Inspect Details: when we find moving (and recommend-
ing steps) by dominance relation is too fast, we go
through steps in between a dominance relation.

Inspect 
Details

Simple Causality 
Analysis

Bug-free Path 
Inference

correct_step!pattern_matched

wrong_value|
wrong_path

pattern_matched

incorrect_approximation

correct_step

correct_approximation

Fig. 2. Overall Recommending Mechanism with Clear Feedback

In Figure 2, we assume the developer starts debugging from
a fault-revealing step, therefore, he starts in Simple Causality
Analysis state. The developer stays in this state until we find
recommending steps by dominance relation is either too slow
or too fast.

We detect the case of being too slow by inferring bug-free
paths and summarizing bug-free path patterns to approximate
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potential bug-free paths. Once we find some path matches bug-
free path patterns (i.e., bug-free prone) in Simple Causality
Analysis state, we transfer to Bug-free Path Inference state
where we expedite the moving by skipping steps. In Bug-free
Path Inference state, we also reply on user feedback to confirm
our approximation of bug-free paths. When our approximation
is confirmed, we stay in this state. Otherwise, we transfer back
to Simple Causality Analysis state.

We detect the case of being too fast as follows. Given a
path of dominance relation, if the developer provides a wrong-
variable-value or wrong-path feedback at the end step and a
correct feedback at the start step, the root-cause step must
lie in between them. In such case, we enter Inspect Detail
state. In this state, if the developer provides correct feedback,
we sequentially explore and recommend the steps between
the start and end step. Otherwise, we transfer back to Simple
Causality Analysis state.

Since Simple Causality Analysis and Inspect Detail state are
straight-forward, we focus our illustration on Bug-free Path
Inference state.

2) Bug-free Path Inference: Bug-free path inference aims
to infer bug-free paths by user feedback and approximate
potential bug-free paths. During debugging, we discriminate
the steps on more bug-free paths and recommend those on
more “bug-prone” paths to expedite the debugging process.

In our approach, we first infer and record the bug-free path
based on user feedbacks. We extract path pattern for each bug-
free path. We approximate the paths conforming to the pattern
of a bug-free path to be bug-free. During simple causality
analysis, if a path of dominance relation is approximated to
be bug-free, we will skip this path and recommend a further
forward step. Moreover, when we detect that we have over-
approximated some bug-free paths, we adopt a binary-search
based mechanism for complement.

Next, we explain the details of pattern extraction (Sec-
tion III-B2a), step skipping (Section III-B2b), and binary
search (Section III-B2c).

a) Pattern Extraction: Pattern extraction aims to identify
bug-free paths and extract their pattern keys.
Bug-free Path: Given a step step on trace, if one of its read
variables is marked as being of wrong value, then we call this
step as an attributed step. An attributed step means that its
incorrectness is spread from some step executed before. Given
a path of a data dominance relation on the trace, if it satisfies
that both its start step and end step are attributed steps, we
consider it as a bug-free path1.

14
(1)

expr variable value variable

path1 path2

R:× 
W: × 

15
(2)

5
(3)

6
(4)

7
(5)

8
(6)

5
(7)

6
(8)

8
(9)

5
(10)

6
(11)

8
(12)

5
(13)

6
(14)

8
(15)

9
(16)

10
(17)

11
(28)

12
(29)

13
(30)

14
(31)

15
(32)

R:× 
W: × 

R:× 
W: × 

...

iter1 iter2 iter3 iter4

Fig. 3. Path Example

Figure 3 shows a part of trace of the buggy program in

1It is possible that there are over two bugs in the trace, thus a bug may
exist in our defined “bug-free path”. In such case, our approach focuses on
locating the first bug appearing in the trace.

Table I. Each rectangle represents a trace step, the upper
number indicates the corresponding line number in Table I
and the lower number in brackets indicates its order. The dots
between the 17th step and 28th step indicate that the steps
inside method invocation in line 11 in Table I are omitted.
In addition, the curve lines indicate data dominance relations
and their attributed variables. Suppose the developer provided
his wrong-variable-value sequentially on value variable on the
31th step (line 14) and expr variable on the 17th step (line
10), then we have a bug-free path < step17, step31 >.
Pattern Key Extraction: For a path, we abstract it into a more
compact form, i.e., pattern key, so that the paths conforming
to the pattern key is considered as similar.

TABLE II
PATH ABSTRACTION EXAMPLE

1 private int evaluateSimpleExpr ( String simpleExpr ) {
2 String [ ] operators = parseOperators ( simpleExpr ) ;
3 String [ ] numberStrings = simpleExpr . s p l i t (”\\+|−”) ;
4
5 String numString1 = retrieveNum(numberStrings , 0) ;
6 Integer num1 = Integer . valueOf(numString1) ;
7 for ( int i = 0; i < operators . length ; i++) {
8 String operator = operators [ i ] ;
9 String numString2 = retrieveNum(numberStrings , i +1) ;

10 i f ( operator . equals (”+”) ) {
11 num1 = num1 + Integer . valueOf(numString2) ;
12 } else i f ( operator . equals (”−”) ) {
13 num1 = num1− Integer . valueOf(numString2) ;
14 }
15 }
16 return num1;
17 }

Table II shows the details of the method invoked in line
10 and 19 in Table I. The execution of the loop (line 7–
15) causes the iterations going through either path A =<
7, 8, 9, 10, 11, 12, 15 >, B =< 7, 8, 9, 10, 12, 13, 14, 15 > or
C =< 7, 8, 9, 10, 12, 15 > in which the elements represent
line number. In this example, each iteration path (i.e., A, B,
or C) represents the case when evaluating the addition of two
numbers, subtraction of two numbers, or simply one number.

Given a path p containing a number of iterations, we
approximate its semantic similarity with other paths by (1)
whether they contain similar iterations and (2) whether the
iterations are executed in similar order. Thus, we regard p
as a string of iterations, e.g., p =< A,A,B,B,B,A > or
< A,B,A,B >. Then we summarize p into a regular expres-
sion by abstracting its consecutive repetitive substrings [8],
e.g., A∗B∗A or (AB)∗. Such regular expression is the pattern
key of p.

Note that, if p contains nested loop iterations, e.g, <<
A,A,A,B,B,B >,< A,A,B,B >>, we first reduce p into
p′ by generating pattern keys for iterations in the most inner
loop, e.g., p′ =< A∗B∗, A∗B∗ >. Thus the nested hierarchies
in p′ is one level flatter. Then we apply the same procedure
on p′ to further flatten the nested hierarchies, e.g., (A∗B∗)∗.
Such a procedure is applied until all the nested hierarchies in
p is flattened into one patten key.

For the example in Table II, based on the user feedbacks,
if a path < A,B,B > (A for addition and B for subtraction)
can be implied to be bug-free, thus its pattern key is AB∗.
Then we will consider another path < A,B > as more likely
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Algorithm 1: Recommendation with Step Skipping
Input : a wrong-variable-value step step
Input : a wrong read variable of step, var
Input : existing bug-free paths bug free paths
Output: recommended step steprec

1 stepd ← dom(step, var);
2 paths ←< stepd, step >;
3 if paths.conformTo(bug free paths) then
4 is skip← true;
5 while is skip do
6 is skip← false;
7 for each read variable read var on stepd do
8 stepnew d ← dom(stepd, read var);
9 path←< stepnew d, stepd >;

10 if path.conformTo(bug free paths) then
11 stepd ← dom(stepnew d, read var);
12 is skip← true;
13 break;
14 end
15 end
16 end
17 end
18 return stepd;

to be bug-free as it conforms to the pattern key (AB∗) of
the former path. The interpretation is as follows. If adding
numbers once then subtracting numbers twice (“3+4-1-5”) is
bug-free, then we approximate that adding numbers once then
subtracting numbers once (“1+3-1”) is more likely to be bug-
free, comparing to other cases such as subtracting numbers
twice (“1-2-3”).

b) Step Skipping: When the developer provides feed-
backs and gets recommended steps with simple casuality
analysis, he is also marking the bug-freeness of the paths
of dominance relation. For the example of Figure 3, if the
developer provides a wrong-variable-value feedback on value
variable on the 31th step, then provides a wrong-variable-value
on expr variable on the recommended data dominator, i.e.,
the 17th step. Apart from recommending the 1st step as the
data dominator, we can also mark the path starting with the
17th step and ending with the 31th step as bug-free. With the
increase of feedbacks, we can have more bug-free paths for
us to conduct step skipping.

Algorithm 1 shows how we skip steps with regard to
recorded bug-free paths. Given a step step where the developer
provides a wrong-variable-value feedback on its read variable
var, we first find the data dominator stepd of step by var
(line 2). Instead of directly returning stepd, we check whether
the path paths of < stepd, step > conforms to one of the
bug-free paths bug free paths (line 2–3). If not, we return
stepd, otherwise, we consider paths prone to bug-free and try
to skip stepd as follows. We go through all the read variables
on stepd and check whether there exists a path path (starting
by stepd’s dominator stepnew d and ending by stepd) is also
bug-free prone (line 7–9). If yes, we can further skip stepnew d

and check its even forward dominators (which is assigned to
stepd) on trace (line 11–13). Otherwise, we stop skipping and
return the most forward dominator stepd.

c) Binary Search: As mentioned before, our skipping
strategy may over-approximate bug-free paths, which makes
us over-skip some steps. We can detect such case when the

Algorithm 2: Recommendation with Binary Search
Input : a list of skipped dominators list
Output: recommended step steprec

1 start← 0, end← list.length− 1, current← start;
2 while start < end do
3 feedback ← user provide feedback on list[current];
4 if feedback is correct then
5 current← 1

2
(current+ end); start← current;

6 else if feedback is wrong-variable-value then
7 path←< list[current− 1], list[current] >);
8 varattr ← findAttr(path, list[current]);
9 if varattr = feedback.var then

10 current← 1
2
(current+ start); end← current;

11 else
12 return simCA(list[current], feedback);
13 end
14 else
15 return simCA(list[current], feedback);
16 end
17 end
18 return list[current];

developer provides a correct-step feedback immediately after
we recommend a step by step skipping. Given a previous step
marked as correct, and a later step marked as wrong-variable-
value, the root cause step should lie in between. Therefore,
we adopt a binary search based strategy as Algorithm 2.

Step skipping will result in a sequential list of skipped
dominators list in execution order. Algorithm 2 applies binary
search on list. During the binary search, if the developer
provides a correct feedback, we search backward on trace in
a binary way (line 4–5). On the contrary, if the developer
provides a wrong-variable-value feedback, we search forward
on trace in a binary way (line 6–13).

Moreover, we leverage developer’s feedback on dominators
in list to confirm our approximation during step skipping.
When the developer provides a wrong-variable-value feedback
on certain dominator list[current] in list, we can check
whether the wrong variable chosen in this feedback is the
same to attributed variable of the skipped path of dominance
relation < list[current − 1], list[current] > (line 7–8). If
yes, we can confirm that we make correct approximation
when skipping < list[current − 1], list[current] > and
continue the binary search procedure (line 9–10). Otherwise,
we regard the developer is no longer debugging on the track
of our approximation during step skipping. Therefore, we
stop the binary search and adopt simple causality analysis on
list[current] instead (line 11–13). With the same reason, we
stop the binary search in the same way when the developer
provides a wrong-path feedback (line 15).

3) Clarity Guidance: Once the developer cannot decide the
correctness of a step, he can provide an unclear feedback. We
aim to guide the developer better understand the unclear step
so that he can resume where he gets lost.

Algorithm 3 shows how clarity guidance works. Given an
unclear step step, we first back up the debugging context of
step such as the details of step skipping or binary search,
in addition, we maintain a stack stack and push step into it
(line 1). Then we retrieve the context step stepcon of step
by getContext() method (line 2). The getContext() method
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Algorithm 3: Recommendation with Unclear Feedback
Input : an unclear step step
Output: recommended step steprec

1 back up context of step; stack ← ∅; stack.push(step);
2 stepcon ← getContext(step) and recommend stepcon;
3 while true do
4 feedback ← user provide feedback on stepcon;
5 if feedback is unclear then
6 stepcon ← getContext(stepcon);
7 stack.push(stepcon);
8 recommend stepcon;
9 else if feedback is correct then

10 stepcon ← stack.pop();
11 if stack = ∅ then
12 resume context of stepcon;
13 return stepcon;
14 else
15 recommend stepcon;
16 end
17 else
18 return simCA(stepcon, feedback);
19 end
20 end

returns the step executed before step if its abstract level of
step is 1, and returns the contextual parent (i.e., loop head or
method invocation step) of step otherwise (see definition in
Section III-A). The context aims to provide a big picture so
that the developer can better understand the unclear step.

Then, the developer needs to provide feedback on stepcon.
If the developer provides an unclear feedback on stepcon,
we further retrieve and recommend its context step and push
it into stack (line 5–8). If the developer provides a correct
feedback on stepcon, we pop stack to get the most recent
unclear step and assign it to stepcon (line 9–10). In this case,
if stack is empty, it means that stepcon is the very first step
he gets unclear, therefore, we resume its backed up context
and recommend stepcon (line 11–13). Otherwise, we consider
that the developer is partially clear as he can now tell the
correctness of the context of some unclear step. Thus, we
recommend stepcon for his further feedback (line 14–16).
In addition, if the developer provides a wrong-variable-value
or wrong-path feedback, we consider that the developer has
gotten new debugging clue. Hence, we stop the procedure and
conduct simple causality analysis for stepcon (line 18).

IV. TOOL SUPPORT

We implemented our approach as an Eclipse plugin. A
screenshot can be checked at Microbat Github website [3].
Microbat consists of three views, i.e., Trace view, Feedback
view, and Reason view. The recorded trace will be presented
in Trace view. In Trace view, the steps are organized in a tree
structure conforming to the contextual parent-child relation
and each step is labeled with its execution order, class file
name, and line number. Once the developer clicks a step on
Trace view, the corresponding line of code will be highlighted
in Java Editor, and its detailed information will be showed
on Feedback view. At the top of Feedback view shows the
four types of feedback. Given a selected step, Feedback view
lists its read and written variables, as well as a snapshot of
program states. Once a feedback is provided, the developer can

click the Find Bug button to make Microbat to recommend a
step. After a step is recommended, Reason view shows its
recommendation explanation in natural language. In addition,
the developer can click Undo button to get back to the state
before the recommendation for the current step.

V. SIMULATION EXPERIMENT

We conduct a simulation experiment to answer the following
research questions:
• RQ1: How effectively and efficiently can Microbat facil-

itate the debugging process?
• RQ2: What is the contribution of bug-free path inference

to the debugging process?
• RQ3: What is the impact of unclear feedback?
In the simulation experiment, we generate mutants which

can kill a given test case as buggy code, and apply Microbat
with simulated feedbacks on the trace of mutants to see
whether Microbat can recommend a step running into where
the mutation happens.

We first collect test cases from three Apache open source
projects (see Table III). For each passed test case, we mutate
its tested code with a standard mutator. The mutator replaces
algorithmic operators, logical operators, and number constants,
e.g., replacing “+” with “-”. In each mutation, only one source
code line is modified. If a mutation kills the test case, we
generate the correct trace before mutation, tracec, and the
buggy trace after mutation, tracem. Then, we can reference
tracec to check the correctness of the steps in tracem.

We customize a dynamic programming algorithm [19] [23]
to match the steps between the two traces. If a step in tracem
cannot be matched to a step in tracec, we simulate a wrong-
path feedback. Otherwise, we difference the read and written
variables between two matched steps to check whether the
variable values on the step of mutated trace are correct. If not,
we simulate a wrong-variable-value feedback, otherwise, we
simulate a correct-step feedback.

As for the unclear feedback, we design the simulation as
follows. If the step is the first fault-revealing step at the end of
the trace, the “simulated developer” will not provide a unclear
feedback. Otherwise, given a step s which has an abstract
level (see definition in Section III-A), l, and it is the kth times
checked by our “simulated developer”, then, the probability
to simulate an unclear feedback is P (l, k) = (1 − 1

el−1 )/k.
Intuitively, this is designed such that the lower level s is or
the less times s is checked, the more likely an unclear feedback
is simulated on s.

We call each simulated debugging process on a mutated
trace as a trial. In a trial t, we consider the mutated line
of source code linem as the root cause of the bug. Let the
trace length be lt, if Microbat can recommend a suspicious
step which runs into linem within lt feedbacks, we consider
the trial as effective. In addition, we limit the generated trace
length for each trial to 10,000 steps to avoid infinite loop bugs
introduced by mutation.

For each mutation, we generate multiple trials by enabling
the feature of bug-free path inference and controlling the
amount of provided unclear feedbacks to observe their differ-
ence. We control the amount of simulated unclear feedbacks
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to be 0%, 0.5%, 1%, 5%, and 10% of the trace length. We
choose the trials with inference feature enabled and provided
1% unclear feedbacks as representative trials.

A. RQ1: Effectiveness and Efficiency

Table III shows the experiment results on representative
trials, including the number of test cases (TC), number of mu-
tation (MU), average trace length (ATL), average clear/unclear
feedback number (ACF/AUF), median clear/unclear feedback
number (MCF/MUF), and the effective ratio (ER).

TABLE III
EXPERIMENT RESULT

Project TC MU ATL ACF AUF MCF MUF ER
Apache Math2.2 374 2103 2310.8 45.9 14.6 15.0 6 92.4%
Apache Lang3.3 471 1008 233.0 8.5 0.5 2.0 0 93.8%
Apache CLI1.3 80 298 818.4 52.9 3.5 2.0 0 91.3%
Total 925 3409 1565.9 35.5 9.4 6 0 92.8%

Table III shows that Microbat can find 92.8% of the mutated
bugs with our recommendation paradigm. We investigated
the failed trials and found that Microbat could miss some
data dominance relation due to third party library calls. Our
implementation does not analyze the third party library, thus
some missing the data dominance relation results in Microbat
failing to recommend data dominator step in such cases.

Table III also shows that, compared to the average trace
length of 1565.9 steps, Microbat generally requires the de-
veloper to provide on average 35.5 clear feedbacks (with on
average 9.4 unclear feedbacks) and a median of 6 feedbacks.
Figure 4 shows the distribution of required feedback number
versus the trace length. In general, our statistic shows that 65%
of the representative trials require less than 20 clear feedbacks
to locate the bug (the details can be checked at [4]).
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Fig. 4. Feedback Number versus Trace Length

We investigated the trials with a large number of feedbacks,
we found that these cases happen when the bug lies in between
a dominance relation where dominator is correct and the
dominatee is incorrect. In such case, Microbat will transfer to
Inspect Detail state to sequentially inspect the steps. When the
path of the dominance relation is long, it causes a great number
of correct feedbacks. An extreme case happens in one trial
of the test case testUnstableDerivative() in Math project. The
simulated developer provided a wrong-variable-value feedback

on the 5611st step and a correct feedback on the 495th step
where the variable is defined. However, the mutated bug
happens at the 4536th step. After providing a correct-step
feedback at 495th step, Microbat transits the debugging state to
Inspect Detail state. The simulated developer then sequentially
provided 4042 correct feedbacks until he finally found the
mutated bug. We call such case as long-dominance effect.
We will discuss more about it in Section V-D.

B. RQ2: Contribution of Bug-free Path Inference

We regard the inference feature takes positive effect if it
can save feedbacks and negative effect otherwise. Overall, the
feature takes positive effect on 514 (i.e., 15.1%) trials and
negative effect on 10 (i.e., 0.2%) trials. Among these trials,
the feature saves an average of 6.3 (i.e., 10.4%) feedbacks
per trial, and a maximum of 110 feedbacks in one trial. More
comprehensive details can be checked at [4].

C. RQ3: Impact of Unclear Feedback

a) Impact on Feedback Number and Effective Ratio: Ta-
ble IV shows that, when the unclear feedback ratio increases,
the clear feedback number (both on average and median)
increases while the effective ratio almost keeps intact.

TABLE IV
IMPACT ON ER, ACF, AND MCF

Unclear Ratio 0% 0.5% 1% 5% 10%
Feedback
Number

ACF 29.0 32.9 35.5 48.9 55.4
MCF 4.0 5.0 6.0 8.0 10.0

ER 92.7% 92.8% 92.8% 92.4% 92.3%

b) Impact on Inference Feature: Table IV shows that,
on those 524 inference-effective trials, the positive effect
decreases and negative effect increases with the increase
of unclear feedback ratio. Our investigation finds that the
reason lies in the randomness of simulated unclear feedbacks.
First, randomly provided unclear feedback sometimes makes
Microbat hard to stably summarize bug-free path pattern.
Meanwhile, if the random unclear feedback leads Microbat
to Inspect Detail state when long-dominance effect happens,
a large number of correct feedbacks makes the case turn
negative. Nevertheless, the majority of trials (430 out of 524)
still take positive effect under 10% unclear feedbacks.

TABLE V
IMPACT ON INFERENCE FEATURE

Unclear Ratio 0% 0.5% 1% 5% 10%
Inference
Feature

Positive 514 455 436 408 430
Negative 10 39 64 92 83

D. Discussion

In this work, our collected feedbacks are partial
specification. The gap between the partial information
collected through feedbacks and the real specification causes
Microbat sometimes require a large number of feedbacks
when the long-dominance effect happens. Obviously, there
is a trade-off between the effort for developers to provide
feedback and the accuracy of step recommendation. In this
work, we favour the developers’ effort over recommendation
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accuracy. Our future work will explore more alternatives of
such trade-off.

In summary, we conclude that Microbat can detect the
majority of our mutated bugs with an acceptable number of
feedbacks; the bug-free path inference makes considerable
contribution to reduce the feedbacks; and the increase of
unclear feedback number impacts little on trial effective rate,
but sometimes offsets the effect of bug-free path inference and
requires more feedbacks to find the bug.

E. Threat to Validity

The main threat in our simulation experiment lies in that
the mutated bugs are still different from the real-world bugs
in practice. Nevertheless, Andrew et al. [11] empirically assess
the effect of mutation and their result shows that the use of
mutation operator yields trustworthy results and seeded faults
are harder to detect.

VI. USER STUDY

We conducted a user study to investigate whether our
technique can help developers debug in practice. We design
the study to answer the following research questions:
• RQ1: Whether can Microbat help developer debug the

program more efficiently in practice?
• RQ2: How does developers use Microbat in practice?

A. Study Design

In this study, we asked the participants to finish three
debugging tasks. We chose Whyline [21], [22] as the baseline
tool to compare with Microbat (A demo of Whyline can be
checked at [7]). Whyline can record the execution trace, allow
developers to ask why or why not questions on trace steps
(e.g., why does the variable equal 3? or why is this statement
executed?), and answer the questions by showing a relevant
source code line. The user study for Whyline showed that
novice programmers with Whyline were twice as fast as expert
programmers without it [21]. The main difference between
Microbat and Whyline lies in that Microbat (1) allows richer
types of feedback such as correct and unclear, and (2) supports
more sophisticated inference for suspicious steps such as bug-
free path inference and clarity guidance.

We recruited 16 graduate students or research staffs as
participants in this study from two universities in Singapore.
We surveyed all the participants and divided them into two
equivalent groups based on their programming experience.
Participants were matched in pairs by their capability and each
pair was randomly allocated to the experimental or control
group. The experimental group used Microbat and the control
group used Whyline to accomplish the same tasks in the study.
We gave tutorials of both tools three hours before the study
and asked the participants to familiarize themselves with an
exercise using their respective tool.

We chose three bugs as debugging tasks which were once
used as the debugging problems in the final exam of software
testing course in Nanjing University (ranking top 5 in China)

TABLE VI
TASK DESCRIPTION

Task Name LOC General Description Bug Reason
#1 Simple Cal-

culator
145 Given a valid algorithmic

expression, parse it into cor-
rect value.

Some negative signs
are parsed to minus
sign.

#2 Longest
Consecutive
Sequence

70 Given an integer array, find
the size of its largest subset
which consists of consecu-
tive elements.

Duplicated elements
in the set are not con-
sidered.

#3 Search In
Rotated
Sorted
Array

85 Given a sorted array is
rotated at some unknown
pivot, find an element in
O(lg(n)) time.

Some boundary
checking is wrong.

in May, 2016. The source code of debugging tasks can be
checked at [2]. Table VI shows brief description of the tasks.
Despite these programs consist of only 70∼145 lines of code,
we regard them as non-trial because (1) the code involves
complicated logic (the statistic of the final exam in Nanjing
University shows that 15.2% of the students failed to locate
the bugs); (2) the participants had to spend some effort to
understand the code details as they were unfamiliar with the
code in advance.

Before the study, we explained the general idea of how each
buggy program works to reduce their effort for program com-
prehension. In the study, the participants were given a failed
test case and required to find the bug with respective debugger.
Since bug fixing is out of the capability of both tools, we did
not require them to fix the bug. Instead, they should write
down the detailed reason why the buggy programs fail with
the given test case. In order to conduct post-mortem analysis
on participants’ behaviors on Microbat, we instrumented the
tool to record the usage frequency of each feature. In addition,
we required the participants in both groups to run a full-screen
recorder throughout the experiment session.

B. Results: Debugging Efficiency (RQ1)

In this study, all the participants in both groups successfully
figured out why the bugs happen. Therefore, we evaluated the
task completion time as their performance.

TABLE VII
PERFORMANCE OF BOTH GROUP (MIN)

Par\Task Task #1 Task #2 Task #3
P1/P9 5.7 15.5 8.1 18.0 10.0 12.1
P2/P10 10.0 10.2 9.8 25.5 7.8 25.4
P3/P11 9.7 25.5 4.2 10.1 7.0 19.5
P4/P12 12.1 36.2 9.5 32.7 10.5 25.1
P5/P13 20.4 35.2 7.3 35.1 13.5 35.3
P6/P14 16.0 42.3 11.4 34.8 6.5 13.0
P7/P15 12.2 27.2 10.7 47.4 11.2 22.5
P8/P16 33.2 48.6 22.9 39.5 12.6 43.4
Avg 14.9 30.1 10.5 30.4 9.9 24.5
p-value 0.012 0.012 0.012

Table VII shows the time used by the participants in both
groups to accomplish three debugging tasks. In Table VII,
P1∼P8 are the participants in Microbat group and P9∼P18 are
the ones in Whyline group. Overall, Microbat group accom-
plished the tasks in shorter time compared with Whyline group.
We introduced the following null and alternative hypotheses
to evaluate how different the performance of both groups is.
• H0: The primary null hypothesis is that there is no sig-

nificant performance difference between the two groups.
• H1: An alternative hypothesis to H0 is that there is sig-

nificant performance difference between the two groups.
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We used Wilcoxon’s matched-pairs signed-ranked tests to
evaluate the null hypothesis H0 in terms of the completion
time on each task at a 0.05 level of significance. Table VII
shows that all the p-values are less than 0.05, thus we reject the
null hypothesis for the completion time of all the three tasks
and conclude that there is a significant performance difference
between the two groups. In addition, Table VII shows that
Microbat group completed those tasks in shorter average time.
Hence, we conclude that Microbat group accomplished all the
three debugging tasks in significant shorter time.

C. Results: User Behavior (RQ2)

Table VIII shows the frequency of each feature of Microbat
is used in each debugging task. The features include four types
of feedback provided by the participants, frequency of bug-free
path inference taking effect (noted by “inference”), partici-
pants’ manual clicks on the trace steps (noted by “exploration
on trace”), and undoing certain feedback on a trace step (noted
by “undo”).

TABLE VIII
USER BEHAVIOR OF Microbat GROUP

Task\Par P1 P2 P3 P4 P5 P6 P7 P8 Avg

wrong-variable-
value feedback

#1 12 12 18 16 15 14 31 17 17.13
#2 19 15 6 7 18 8 24 15 14.00
#3 9 21 8 3 5 6 10 9 8.88

wrong-path
feedback

#1 0 0 0 0 0 0 0 0 0.75
#2 0 0 0 0 0 0 0 0 0.00
#3 1 2 1 0 1 2 2 1 1.25

correct feedback
#1 0 7 1 0 0 0 0 0 4.13
#2 5 3 4 3 19 2 1 7 5.50
#3 10 15 12 0 0 3 8 2 5.00

unclear
feedback

#1 0 1 0 0 0 0 0 0 0.13
#2 0 0 0 0 0 2 0 0 0.25
#3 0 0 0 0 0 0 0 0 0.00

inference
#1 1 6 3 0 2 2 4 2 2.50
#2 6 2 5 1 9 3 8 8 5.25
#3 0 0 0 0 0 2 0 0 0.25

exploration on
trace

#1 4 5 1 3 2 2 15 57 11.13
#2 15 21 1 23 7 13 1 8 11.13
#3 15 32 3 36 1 8 1 35 16.38

undo
#1 0 1 2 0 2 0 11 0 2.0
#2 0 0 0 0 28 7 15 0 6.25
#3 0 14 0 0 0 2 3 0 2.38

Overall, we have the following observations. First, wrong-
variable-value feedback is the most frequent among all four
types of feedback. Second, the amount of unclear feedback
is fairly low (only P2 and P6 provided one such feedback).
Third, the bug-free path inference took effect for many par-
ticipants in Task#1/Task#2 but not in Task#3. Fourth, the
participants also actively explored additional steps other than
those recommended ones (average 11.13 times for Task#1 and
Task#2, and 16.38 times for Task#3). Last but not least, some
participants would make wrong feedbacks so that they need
to apply “undo” to correct their previous mistakes.

D. Analysis on Study Results

We analyzed the recorded videos and interviewed some
participants to uncover the reason of the results showed in
Table VII and Table VIII.

1) Why Microbat group debug faster?: We found that the
reason lies in the bug-free path inference and the more explicit
context information provided in Microbat.

First, the bug-free path inference reduced the number of
inspected steps. For example, the trace in Task#1 consists
of 864 steps. It involves 6 loop iterations, each of which
further involves an average of 8 nested loop iterations. With
the inference feature, Microbat can skip a large number of less
suspicious iterations and recommend a more relevant one. In
contrast, the generated questions in Whyline are only relevant
to data and control dominance relations. When the iteration
number increases, the participants in Whyline group usually
need to manually go through a large number of iterations,
which takes considerable time and effort.

Second, the more explicit context information provided by
Microbat speeds up the debugging process. Most participants
started debugging in a backward manner. After a step (or a
source code line) is recommend by Microbat or Whyline, they
usually need to grasp the context of the recommended step.
Otherwise, they would easily get lost in the trace and fail
to provide a clear feedback (for Microbat) or select a correct
question (for Whyline). Microbat organizes the trace steps in a
visualized hierarchical way so that participants can explore the
tree structure to keep track of which iteration or which method
invocation a step belongs to. For example, the buggy program
in Task#2 adopts a greedy strategy to search the size of the
largest consecutive subset (see specification at [1]). In each
iteration of search, the participants should be aware of how
many consecutive subsets had been formed. The participants
in Microbat group can retrieve such contextual information
by simply exploring the parent or children of a step and
checking relevant variables in program state. In contrast, the
participants in Whyline group had to retrieve such information
by iteratively checking the predecessors and successors of the
recommended step in a stepwise manner, which would usually
break their mental flow and affect the debugging efficiency.

2) Why few unclear feedback were provided?: Our inter-
view with some participants in Microbat shows that they often
cannot make a decisive wrong-variable-value, wrong-path, or
correct feedback. However, they did not prefer to provide the
unclear feedback in Microbat either. We found the reason as
follows. Despite participants would get unclear about certain
step during debugging, they usually knew how to explore the
trace to make it clear. Since the participants were the first
time to use Microbat, they had not built much confidence in
the tool. In addition, they needed to keep their debugging
mental flow when inspecting the trace. Hence, when they
had a clue to understand a step, their choice is conservative,
i.e., manually exploring the trace rather than relying on the
tool’s recommendation. It also explains why the frequency of
exploration on trace in Table VIII is high (average 11.13 for
Task#1/Task#2 and 16.38 for Task#3).

3) Why bug-free path inference took effect differently on
tasks?: The recorded video shows that some participants
in Microbat group adopt different strategies when accom-
plishing Task#1/Task#2 and Task#3. When accomplishing
Task#1/Task#2, they located the bug in a backward manner
as we expected. Therefore, the wrong-variable-value feed-
back was provided more frequently (average 17.13/14.00 in
Task#1/Task#2) and the bug-free path inference can take
effect (average 2.50/5.25 in Task#1/Task#2). However, some
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participants located the bug in Task#3 in a forward manner
rather than backward manner. The reason is as follows. The
buggy program in Task #3 adopts a binary search strategy to
find an element in a rotated sorted array (see specification
at [5]). After providing several feedbacks at the end of trace,
some participants got no clue of the correct search range
on an intermediate step even after checking its contextual
steps. Therefore, they decided to start from the very beginning
step and explored the trace in a top-down manner, i.e., going
through the trace from high-level steps to low-level steps, and
finally locate the bug. It also explains why the frequency of
exploration on trace increases (average 16.38 times) in Task#3.
In contrast, other participants took some time to summarize
the loop invariants, based on which they provided correct
feedbacks on intermediate steps so that they can debug in a
backward manner as in Task#1/Task#2.

In summary, the user study shows that Microbat outperforms
the state-of-the-art tool in debugging efficiency. Nevertheless,
it also reveals possible useful improvement of our tool, such
as supporting loop invariant summarization and wrong user
feedback detection. We will pursue these improvements in our
future work.

E. Threats to Validity

There are mainly three threats in our user study. First, our
recruited participants were not very familiar with the buggy
programs, which may potentially incur their spending lots of
effort on understanding the code. In order to mitigate this
threat, we describe the general idea of how each program
works with one given test case. Second, we assume that the
experimental group is equivalent with the control group in
their capability and experience, which may be threatened by
the actual differences between the two groups. To mitigate this
threat, we allocated participants with comparable capability
and experience into different groups based on our pre-study
survey. Third, we used three debugging tasks in this study,
which may not be representative for all the cases. Further
studies are required to generalize our findings in large-scale
industrial systems.

VII. RELATED WORK

Spectrum-based fault localization techniques [9], [10], [30],
[32], [33] are widely used to locate bugs in terms of lines of
source code. These techniques compare the code coverage of
passed and failed test cases to provide the most suspicious-
ness code to developers. Reps et al. [30] first proposed the
idea of spectrum-based fault localization, and the researchers
keep improving technique over the years. Renieris et al. [29]
proposed a simple spectrum-based technique and implemented
a tool called WHITHER. Wang et al. [33] improved the effect
of fault localization by addressing the coincident correctness
problem. Abreu et al. [9] further proposed an approach to
detecting multiple faults by combining spectra and model-
based diagnosis. An overview of spectrum-based techniques
can be checked in [10].

Similar to spectrum-based techniques, delta-debugging [15],
[18], [25], [28], [36], [37], [38] also requires a set of passed

and failed test cases. However, these techniques compare the
difference of test cases in more aspects than code coverage,
such as test input [38], program states [15], [37], path con-
straints [28], etc. Zeller et al. [36] first proposed the idea
of delta debugging and used it in regression testing. Then,
they exploited the technique to simplify test case [38], isolate
bug-causing variable [15], [37], and etc. Followed by their
work, Misherghi et al. [25] proposed an improvement to refine
the result of delta-debugging. With similar ideology, Qi et
al. [28] and Yi et al. [34] referenced the “delta” in versions
of regression testing to facilitate fault localization.

Different from these techniques, our approach assumes no
comparison with a passed test case. In addition, our approach
locates the bug in finer grain in terms of buggy step instead
of line of source code.

Similar to our approach, a lot of techniques [12], [20], [21],
[22], [26], [27], [31], [35] leverage program execution trace for
the fault localization. Ressia et al. [31] proposed an object cen-
tric debugging approach which facilitates tracking a specific
object instance during the execution. Yuan et al. [35] proposed
a tool called SherLog which infers the reason of program
failure by combining recorded program log and source code.
Pohier et al. [26], [27] proposed omniscient debugger which
records the whole execution trace of a debugged program and
enables user to explore it. Ko et al. [20], [21], [22] built a
tool called Whyline which provides an interface to allow user
to select some questions on program output and the tool can
find possible explanation by dynamic slicing on the recorded
program trace. Our approach is different from these works in
that we (1) allow richer types of feedbacks and (2) support
more sophisticated inference for suspicious steps.

Additionally, Lo et al. [17] proposed a feedback-based ap-
proach to improve spectrum-based fault localization approach
with user feedback on recommended suspicious program state-
ments. In contrast, our approach allows developers to provide
feedback on execution steps to localize the fault.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a feedback-based debugging
approach which incorporates developers’ feedback on recorded
program execution steps. By inferring and approximating the
bug-free paths, our approach aims to iteratively guide them to
localize the root-cause step. Our simulation experiment shows
that our approach can effectively and efficiently locate the
buggy step, and our case study indicates that our tool Microbat
is practical to facilitate the debugging tasks. In our future
work, we would pursuit new features such as solving long-
dominance effect, summarizing loop invariant on trace steps,
and detecting mistaken feedback on Microbat.
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