
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2017

Improving probability estimation through active probabilistic Improving probability estimation through active probabilistic

model learning model learning

Jingyi WANG

Xiaohong CHEN

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Shengchao QIN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WANG, Jingyi; CHEN, Xiaohong; SUN, Jun; and QIN, Shengchao. Improving probability estimation through
active probabilistic model learning. (2017). Formal Methods and Software Engineering: 19th International
Conference on Formal Engineering Methods, ICFEM 2017, Xi'an, China, November 13-17: Proceedings.
10610, 379-395.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4708

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4708&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Improving Probability Estimation through Active
Probabilistic Model Learning

Jingyi Wang1, Xiaohong Chen1,2, Sun Jun1, Shengchao Qin3

1Singapore University of Technology and Design
2The University of Illinois at Urbana-Champaign

3Teesside University

Abstract. It is often necessary to estimate the probability of certain events oc-
curring in a given system. For instance, knowing the probability of events trig-
gering a shutdown sequence in a system allows us to estimate the availability
of the system. One approach is to run the system multiple times and then con-
struct a probabilistic model to estimate the probability. When the probability of
the event to be estimated is low, many system runs are necessary in order to gen-
erate an accurate estimation. For complex cyber-physical systems, each system
run is costly and time-consuming, and thus it is important to reduce the number
of system runs while providing accurate estimation. In this work, we assume that
the user can actively tune the initial configuration of the system before the sys-
tem runs and answer the following research question: how should the user set the
initial configuration so that a better estimation can be learned with fewer system
runs. The proposed approach has been implemented and evaluated with a set of
benchmark models, random generated models, and a real-world water treatment
system.

1 Introduction

It is often necessary to estimate the probability of certain events occurring in a given
system. In the following, we describe a real-world scenario where such a task arises.
The SWaT testbed1 at Singapore University of Technology and Design (SUTD) is a
complex water treatment system that consists of multiple phases including filtering and
chemical dosing, etc. The system is safety critical and has built-in monitors that check
violation of safety requirements. For instance, water-level monitors are put in place to
check whether the level of water in tanks are too low or too high. Whenever a monitor
issues a safety alarm, a shutdown sequence is triggered so that the system is brought
to a halt and expert engineers are called upon to inspect the system. Such a design
guarantees that safety violation is detected at runtime, at the cost of potentially shutting
the system down from time to time. To show that the system satisfies certain availability
requirements, we would like to show that the likelihood of triggering the shutdown
sequence is low, i.e., the probability of shutdown triggering events occurring is below a
certain threshold.

One way to solve the problem is to run the system multiple times, observe how
the system evolves through time, construct a probabilistic model of the system (i.e., a

1 http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/

discrete-time Markov Chain) and estimate the probability of the interested events based
on the model. To observe how the system evolves at runtime, we can introduce a logger
in the system to record the system state, e.g., to log the sensor reading of the water
level and the status of the valves and pumps in the system. To construct the Markov
Chain model, we can apply an estimation function to estimate the transition proba-
bility between system states. Commonly used estimators include empirical frequency,
Laplace estimator [9] and Good-Turing estimator [10]. To estimate the probability of
the interested events occurring, we additionally need an initial probability distribution,
i.e., the probability of having certain initial configuration of the system (e.g., the ini-
tial water level of the tanks and the status of the actuators), which we can often obtain
either through historical data or expert experience. When we run the system for mul-
tiple times, the same initial distribution is applied to configure the initial system state
accordingly.

Such a method however may not be effective if the interested events have low prob-
ability. For instance, some events may only be triggered under certain particular initial
configurations. For instance, the event of water underflow may only occur when the
initial water level is set to be near the boundary and the water valve is set to drain the
water. If there are a large number of possible initial configurations and these particular
initial configurations have low probability according to the initial distribution, it would
take many system runs so that we can trigger the events for a sufficient number of times
and estimate their probability accurately. However, conducting an experiment to run
a system like the water treatment system (or other real-world cyber-physical systems)
often has non-negligible cost. Thus, it is desirable to reduce the number of system runs
while being able to accurately estimate the transition probability based on which we
compute the probability of the interested events.

In this work, we propose to smartly configure the system initially so that during the
system runs, “interesting” system transitions are more likely to be triggered (than con-
figuring the system according to the originally given initial distribution). Our idea is to
first get an initial estimation of the transition probabilities, based on which we calculate
an ‘optimal’ initial distribution which we should follow to conduct further experiments.
Intuitively, an initial distribution is considered optimal if the estimation of the transi-
tion probabilities based on the experiment results according to the initial distribution is
more accurate than other initial distributions. Afterwards, we run the system multiple
times according to the optimal initial distribution and update the estimation of the tran-
sition probabilities accordingly. We repeat the process until some stopping criteria are
satisfied.

Our method can be viewed as an active learning method for Markov Chain mod-
els [5], which are useful in modeling and analyzing a wide range of systems. Our
method is designed to learn a Markov Chain model actively in a particular setting.
That is, we assume that a prior initial distribution is given, and we are allowed to tune
the initial probability distribution but not the transition probability distributions. To the
best of our knowledge, our method is the first active learning method for Markov Chain
models. Our method is not restricted to one particular way of estimating transition prob-
ability. We show that our method works for common estimation techniques like empir-
ical frequency, Laplace estimator and Good-Turing estimator. In order to evaluate the

effectiveness of our approach, we implemented a prototype tool in Java called IDO. We
set up experiments to compare IDO with alternative approaches. The experiment results
show that IDO always estimates more accurately with the same number of system runs,
or requires fewer system runs to achieve the same level of accuracy. Our test subjects
include several benchmark systems, a set of randomly generated models, and the SWaT
testbed mentioned above.

2 Problem Definition

We will formally state the problem that we consider in this paper upon discrete-time
Markov chains (DTMCs), a widely-used formalization that models probabilistic tran-
sition system with finite states [20]. Before that, we will present a succinct review of
DTMCs and introduce our notations.

2.1 The Model

Definition 1. A discrete-time Markov Chain (DTMC) is a tuple M = (S, S0, P, µ)
with a finite nonempty set of states S, a nonempty subset of initial states S0 ⊆ S, a
transition matrix P : S × S → [0, 1], and an initial probability distribution µ over
initial states. A path is a nonempty sequence of states starting with an initial state.

Note that different from the standard definition, we distinguish a set of initial states
from the rest and constrain that the initial distribution µ only assign probabilities to
initial states. The value P (s, s′) (where s, s′ ∈ S) is the conditional probability of
visiting s′ given the current state is s. When the set of states S is indexed or enumerated,
which is often the case, we write pij for the probability P (si, sj), where si, sj ∈ S.
That is the reason why P = (pij) is called transition matrix. Given a path i1 . . . ik, the
probability of observing that path is µi1pi1i2 . . . pik−1ik , denoted2 P(i1 . . . ik), which
depends not only on the transition matrix P but also on the initial distribution µ.

Figure 1 shows a simple DTMC with four states and two initial states. Transition
probabilities are labeled upon arrows between states, and the initial distribution is at-
tached by the label “start”. By convention, not drawing an arrow means the correspond-
ing transition probability is zero.

2.2 The Problem

The problem we investigate in this work can be defined as follows. Given a system that
is modeled as a DTMC with a fixed set of states and an initial probability distribution,
how to estimate (A) its transition matrix and (B) the probability of reaching certain
states? In this paper, we assume the transition matrix is fixed and an unchanged one,
but we can try different initial configurations when running the system. In our SWaT
testbed [1], for example, we can set different levels of water in tanks (and/or other
configurations such as the initial pH value of the water) before we run the system, and

2 We use P to denote transition matrices and P to denote probability measure.

s0start

s1start

s2

s3

0.9

0.01

0.09

0.95

0.05
1

1

Fig. 1: An example DTMC

once the system is turned on, we can only observe how the system evolves through time,
but not influence how it evolves.

Contrary to our approach, a passive approach to solve the problem is to set the
initial configuration of the system as the given initial distribution µ and run the system
multiple times. After a couple times of experiments, transition probability P can be
estimated (and subsequently the probability of reaching certain state). That is, an initial
state s1 is generated randomly according to µ, configure the system so that it starts with
state s1, let the system evolve according to the transition probability P ; obtain a new
state s2, and so on until a bounded number of steps are taken. We write π ∼ (M, µ) to
denote that π is a sample obtained this way with initial distribution µ. Let Π be a set of
paths ofM. We write Π ∼ (M, µ) to denote that Π is a set of samples obtained with
the initial probability distribution µ.

Once a set of samples Π ∼ (M, µ) is obtained, an estimation function (a.k.a. an
estimator) could be applied to generate an estimation P̂ of the transition matrix P . In
the following, we briefly introduce three different estimators which are commonly used.

Definition 2. Let Π ∼ (M, µ) be a set of samples. Given any state s, let #s be the
number of times state s is visited by samples in Π . For a pair of states s and t, let
#(s, t) be the number of one-step transition from state s to t in Π .

– The empirical frequency estimator sets P (s, t) to be #(s, t)/#s;
– The Laplace estimator [9] sets P (s, t) to be (1 + #(s, t))/(n+#s), where n is

the total number of states inM;
– The Good-Turing estimator [10] setsP (s, t) to be (#(s,t)+1)×N#(s,t)+1

#s×N#(s,t)
whereNr =

|{t ∈ S|#(s, t) = r}| is the number of states which are visited after s exactly r
times in Π .

The empirical frequency estimator estimates the transition probability based on the fre-
quency. It may be problematic if the system contains transitions with low probability.
That is, if a transition from state s to t is not observed inΠ because the actual P (s, t) is
small, P (s, t) is estimated to be zero by the empirical frequency estimator. The Laplace
estimator overcomes this problem by adding a constant 1 to both the numerator and de-
nominator of the estimated transition probability. In other words, if state t is never vis-
ited after state s, the probability P (s, t) is estimated to be 1/(n+#s). The Good-Turing

estimator is widely used when the amount of samples is relatively small compared to
the number of states. We skip the discussion on how the Good-Turing estimator works
intuitively and refer the readers to [10] for comprehensive discussion on when differ-
ent estimators are effective. Once an estimation of P is obtained, we can calculate the
probability of reaching certain state straightforwardly using methods like probabilistic
model checking [5].

All the above-mentioned estimators guarantee that they converge to an accurate
estimate of P with an unbounded number of samples. It might however take a large
number of samples in order to obtain an accurate estimate of P . In practice, we may not
be able to run a complex system (like the SWaT tested) for many times since each run
has non-negligible cost in terms of money and time. In this work, we aim to develop a
method which allows us to reduce the number of samples required to generate an accu-
rate estimate of P . Ideally, it should work with any of the above-mentioned estimators.
In particular, the question is: if a user is allowed to tune the initial distribution (e.g.,
by initializing the system using a probability distribution of initial configuration/inputs
different from µ0), how should she/he tune the initial distribution so that we can esti-
mate P more effectively? Note that we assume that we can neither change the transi-
tion probability nor assigning non-zero probability to non-initial states. We believe this
is a realistic assumption. Consider for example the above-mentioned SWaT test bed.
The user can decide to perform multiple experiments by choosing a set of initial con-
figurations following certain distribution and simply observe how the system evolves
afterwards.

3 Our approach

Our approach is inspired and built on the idea of “active learning”, one that has been
studied extensively in automaton learning (e.g., [4]) and classifier learning (e.g., [7]).
The basic idea is to sample smartly, based on the current estimation P̂ of the transition
matrix, so as to obtain informative samples that effectively improves the estimation.

The overall algorithm is shown in Algorithm 1. Initially, since we do not have any
knowledge of P , we obtain samples of the system with the user-provided initial distri-
bution µ. After obtaining some number of samples, we apply an estimator to obtain an
estimate P̂ at line 4. Based on P̂ , we compute an “optimal” initial distribution with re-
spects to our objective at line 5. Then, we repeat from line 3, i.e., acquire more samples
based on µ, and apply the estimator again to obtain an updated estimation of P̂ . The
process continues until a stopping criteria is satisfied. This approach is inspired by the
expectation-maximization (EM) algorithm from statistics [16].

3.1 Estimating Transition Probability

In order to identify the “optimal” initial distribution, we must firstly identify our analy-
sis objective. In this work, our overall objective is to estimate the transition probability
and reachability probability. In the following, we first focus on estimating the transition
matrix P . The accuracy of an estimation P̂ of P can be measured using measurements

Algorithm 1: act
1: Let µ0 be µ;
2: while not time out do
3: Sample the system to obtain Π ∼ (M, µ0);
4: Apply an estimator to obtain P̂ based on Π;
5: Set µ0 to be the optimal initial distribution computed based on P̂ ;
6: end while
7: Output P̂ ;

like mean squared error (MSE), the standard deviation or bias [3]. As an example, the
following shows the definition of MSE.

MSE(P̂ , P) =
1

(#S)2

∑
s,t∈S

(P̂ (s, t)− P (s, t))2

Ideally, we would like to identify an initial distribution µ0 such that the estimation
would be most accurate. However, since P is unknown, we cannot directly compare
the estimation P̂ and P (e.g., in term of MSE). We thus need to define an alternative
optimization objective. The optimization objective is important as it should guarantee
that not only will we eventually learn P accurately, but also we will do it in a more
effective way than sampling according to µ. Intuitively, a sample is most useful in im-
proving our estimation if it can help eliminate most uncertainty in our current learning
result. In general, if a state is rarely visited by the training samples, the estimation of
the transition probability from this state is likely to be inaccurate, whereas transition
probabilities from a state which is often visited is likely to be estimated more accu-
rately. For instance, given the DTMC in Figure 1, it is hard to estimate the probability
of transitioning from state s1 to s3 if a limited number of samples are available and
s1 is visited only a few times. Based on this observation, the following optimization
objective is adopted.

max
µ0∈D

min
s∈S

E(s, µ0, P̂ , N, k) (3.1)

where D is the set of all initial distributions that only assigns non-zero probability to
initial states; and E(s, µ0, P̂ , N, k) is the expected number of times a state s is vis-
ited if we sample N paths (each of which with k transitions) according to the initial
distribution µ0 and the transition matrix P̂ . It is defined as follows.

E(s, µ0, P̂ , N, k) = N
(
µ0(s) + µ0P̂ (s) + µ0P̂

2(s) + · · ·+ µ0P̂
k(s)

)
where µ0P̂

l(s) is the probability of visiting state s after l transitions. Intuitively, we
would like to identify an initial distribution µ0 so as to maximize the probability of
visiting the least likely state to be visited within k steps.

Applying standard optimization techniques [2, 11], we can identify the ‘optimal’
initial distribution µ0 based on the above optimization objective. In the following, we
discuss why the above objective works. In particular, we show that it guarantees we

would always converge to an accurate estimation of P and our estimation P̂ monotoni-
cally improves, no matter which of the three above-mentioned estimators are used.

In the following, we introduce some notations that will be frequently used below.
We use the norm ‖·‖ that is defined as ‖A‖ = maxi,j |aij |, whereA = (aij) is a square
matrix. The normality ‖ · ‖ has the following properties.

– ‖A+B‖ ≤ ‖A‖+ ‖B‖
– ‖AB‖ ≤ ‖A‖‖B‖

Definition 3. An estimator is strongly-consistent, if P (‖P̂ − P‖ < ε) → 1 as N =
mins∈S #s→∞. where function P (φ) with φ being a predicate is the probability of φ
being true. It is stable, if P (‖P̂ −P‖ < ε) > 1− δ(ε,N), where for any ε > 0, δ(ε,N)
is a non-increasing function as N increases.

Lemma 1. The returned value of Algorithm 1 converges to the exact transition matrix
P if an estimator is strongly-consistent and stable.

Proof. Recall that our algorithm samples according to an initial distribution which
maximizes mins∈S E(s, µ0, P̂ , N, k) during each iteration. As it goes to ∞, by the
definition of a strongly-consistent and stable estimator, the maximum difference be-
tween two entries of P and P̂ converges to 0. Thus, for every entry (i, j), we have
|Pij − P̂ij | ≤ ‖P − P̂‖ → 0, i.e., the estimation P̂ converges to P . ut

Next, we establish that all of the above-mentioned estimators are strongly-consistent
and stable.

Lemma 2. The empirical frequency estimator, Laplace estimator and Good-Turing
estimator are all strongly-consistent and stable.

Proof. Let n be the number of states in the DTMC, #sk be the number that k−th state
is visited, and N = mink#sk. For each 1 ≤ k ≤ n, we have #sk ≥ N . Let (i, j) be
the index pair such that Pij − P̂ij = ‖P − P̂‖. By Chebyshev inequality, we have

P(‖P̂ − P‖ < ε) = P(|p̂ij − pij | < ε) ≥ 1− 1

ε2
Var p̂ij

For strongly-consistency, we only need to show that for each estimator we have Var p̂ij →
0 as N = #si → ∞. For stability, we only need to show that for each estimator we
have Var p̂ij is a non-increasing function as N increases. We discuss all the three esti-
mators respectively in the following:
Empirical frequency estimator. It is easy to prove

Var p̂ij =
pij · (1− pij)

N
≤ 1

N
→ 0 as N →∞ and is non-increasing as N increases.

Laplace estimator. It is easy to prove

Var p̂ij ≤
N

4(N + n)2
∼ 1

N
→ 0 as N →∞ and is non-increasing as N increases.

Good-Turing estimator. Assume state j occures k times after state i. From [15], we have
the following for ∀σ > 0,∀σS:

|p̂ij − pij | ≤
k + 2

#si − k
+

√
2 ln(3σ)

m
·

[
k + 1

1− k/#si
+ k +

√
2k ln(

3m

σ
) + 2 ln(

3m

σ
)

]

=
k + 2

N − k
+

√
2 ln(3σ)

m
·

[
k + 1

1− k/N
+ k +

√
2k ln(

3m

σ
) + 2 ln(

3m

σ
)

]
Approximately, the bound is

‖P − P̂‖ = |p̂ij − pij | ≤


2 ln(3N/σ)

√
2 ln 3/σ
N if k small compared to ln 3N

σ

2k
√

2 ln 3/σ
N if k large compared to ln 3N

σ

.

In both cases, the bound goes to 0 as N → ∞ and is monotonically decreasing as N
increases. ut

Theorem 1. The estimation P̂ returned by Algorithm 1 eventually converges to P for
the empirical frequency estimator, Laplace estimator and Good-Turing estimator.

Proof. By Lemma 1 and Lemma 2. ut

In our approach, we calculate the optimal initial distribution based on an estimation
P̂ , instead of the actual P . In the following, we aim to quantify the distance between
the optimal initial distribution calculated based on P̂ and that based on P . Assume
‖P − P̂‖ ≤ ε. Let A and B be the l-step accumulation matrix of P and P̂ , respectively.
That is, A = I + P + P 2 + · · ·+ P l−1 and B = I + P̂ + P̂ 2 + · · ·+ P̂ l−1.

Proposition 1 For l ≥ 1, ‖A−B‖ ≤ l(l − 1)ε/2.

Proof. Let δk = ‖P k − P̂ k‖ for any k ≥ 0, then

‖A−B‖ ≤ ‖(I − I) + (P − P̂) + · · ·+ (P l−1 − P̂ l−1)‖

≤ ‖I − I‖+ ‖P − P̂‖+ · · ·+ ‖P l−1 − P̂ l−1‖
= δ0 + δ1 + · · ·+ δl−1.

As P and P̂ are transition matrices whose elements are between zero and one. So for
any k > 0,

δk = ‖P k − P̂ k‖ = ‖P k − P k−1P̂ + P k−1P̂ − P̂ k‖

≤ ‖P k−1(P − P̂)‖+ ‖P̂ (P k−1 − P̂ k−1)‖

≤ ‖P k−1‖‖P − P̂‖+ ‖P̂‖‖P k−1 − P̂ k−1‖
≤ 1 · ε+ 1 · δk−1 = ε+ δk−1 ≤ 2ε+ δk−2 ≤ · · · ≤ kε+ δ0

= kε.

Therefore ‖A−B‖ ≤ l(l − 1)ε/2. ut

Approximation of optimization. Recall our objective as written in formula (3.1). Also
note that the expectation of #si (given that the transition matrix is P , the initial distri-
bution is µ and the index i ∈ {1, 2, . . . , n}) is E#si = (µA)i where A is the accumu-
lation matrix of P . Therefore, we consider the following objective

|max
µ

min
i
(µA)i −min

i
(µ̂A)i| < δ if ‖P − P̂‖ < ε, (3.2)

where µ̂ = argmaxµmini(µB)i.

Proposition 2 For any µ and i, |(µA)i − (µB)i| ≤ l(l − 1)ε/2.

Proof. Note that every element of µ and A are between zero and one, it is easy to
observe that |(µA)i − (µB)i| < ‖A−B‖ ≤ l(l − 1)ε/2. ut

Then we have the following proof sketch for inequality 3.2.

Proof.

|max
µ

min
i
(µA)i −min

i
(µ̂A)i| ≤ |max

µ
min
i
(µA)i −max

µ
min
i
(µB)i|

+ |max
µ

min
i
(µB)i −min

i
(µ̂A)i|

= |max
µ

min
i
(µA)i −max

µ
min
i
(µB)i|

+ |min
i
(µ̂B)i −min

i
(µ̂A)i|

≤ l(l − 1)ε/2.

ut

Remark 1. All the above happen with a probability of 1− δ(ε,N).

Thus, we have the following theorem.

Theorem 2. |maxµmini#si−mini#ŝi| < δ if ‖P̂−P‖ < ε , where si is the sample
set from the initial distribution µ and ŝi is the sample set from the initial distribution µ̂,
which is the optimal distribution given that the transition matrix is P̂ .

Note that all si and ŝi are sample sets from the transition matrix P .

3.2 Estimating Reachability Pobability

Recall that our objective is also to estimate the probability of certain event occurring or
equivalently reaching a certain state. This can be done based on the estimated transition
matrix P̂ . Given a DTMCM = (S, S0, P, µ), the probability of reaching state t from
state s within l steps is defined as follows.

PM(Reachl(s, t)) =


1 if s = t ∧ l ≥ 0,

0 if s 6= t ∧ l = 0,∑
x∈S PM(Reachl−1(x, t))P (s, x) otherwise.

We write P instead of PM and P̂ instead of PM̂ for conciser notation.
We now aim to prove that under the optimization objective stated in Equation 3.1,

our algorithm for estimating reachability probability also converges to the actual reach-
ability probability and improves monotonically, no matter which estimator is used.

Let us fix a target state s. We will show that P̂(Reachl(s)) converges to P(Reachl(s))
as the number of samples approaches infinity. Recall from Definition 3 and Lemma 2,
for all the three estimators, we have P(‖P̂ −P‖ < ε)→ 1 as N = mini#si →∞
and P(‖P̂ − P‖ < ε) > 1 − δ(ε,N), where for any ε > 0, δ(ε,N) is non-increasing
as N increases.

Remind that the reachability probabilities can be obtained by computing the tran-
sient probabilities according to the following steps. First, amend P to Pa by making
state s absorbing, i.e., all outgoing transitions of s is replaced by a single self-loop at s.
Then, the reachability probability of s can be calculated as:

P(Reachl(s)) = µ · Pa · Pa · · ·Pa︸ ︷︷ ︸
l times

(s) = µ · P la(s) (3.3)

Proposition 3 If ‖P − P̂‖ < ε, then ‖P la − P̂ la‖ ≤ lε.

Proof. It is straightforward to see that ‖Pa − P̂a‖ < ε. Now Let δk = ‖P ka − P̂ ka ‖ for
k ≥ 0. Then we have

δk = ‖P ka − P̂ ka ‖ = ‖P ka − P k−1a P̂a + P k−1a P̂a − P̂ ka ‖

≤ ‖P k−1a (Pa − P̂a)‖+ ‖P̂a(P k−1a − P̂ k−1a)‖

≤ ‖P k−1a ‖‖Pa − P̂a‖+ ‖P̂a‖‖P k−1a − P̂ k−1a ‖

≤ ‖P k−1a ‖‖P − P̂‖+ ‖P̂a‖‖P k−1a − P̂ k−1a ‖
≤ 1 · ε+ 1 · δk−1 = ε+ δk−1,

and δ0 = 0. By induction, we know ‖P la − P̂ la‖ = δl < lε. ut

Proposition 3 in fact tells us that the estimation error ε accumulates linearly when
propagating. And that immediately leads us to the next proposition.

Proposition 4 |P̂(Reachl(s)) − P(Reachl(s))| ≤ lε for any state s and a bounded
step l.

Proof. By Equation 3.3 and Proposition 3. ut

Theorem 3. P
(
|P̂(Reachl(s))−P(Reachl(s))| ≤ lε

)
→ 1 for any state s and a

bounded step l, asN = mini#si →∞ and P
(
|P̂(Reachl(s))−P(Reachl(s))| ≤ lε

)
>

1− δ(ε,N), where for any ε > 0, δ(ε,N) is non-increasing as N increases.

Proof. By Definition 3, Lemma 2 and Proposition 4. ut

4 Evaluation

We have developed a prototype implementation of our approach called IDO in 4k lines
of Java code. To evaluate the effectiveness of IDO, we compare it with the passive
approach (i.e., random sampling, referred to as PA) using the following metrics.

– Firstly, we count the minimum number that a state is visited among all the reachable
states (referred to as MV). Note that this is precisely our optimization objective. By
measuring MV, we aim to check whether the optimization technique we adopt has
worked as expected. The larger the MV value is, the better.

– Secondly, we compare the estimated probability of reaching a state of interest. We
use the relative difference from the estimated reachability probability to the actual
reachability probability (RRD) as a measure, which is defined as follows.

|PM̂(Reachk(s))−PM(Reachk(s))|
PM(Reachk(s))

A smaller RRD indicates a more precise estimation of reachability probability. If
there are more than one state of interest, we calculate the average RRD.

– Thirdly, we compare the estimated transition matrix P̂ using standard notions like
MSE. Similarly, a smaller MSE indicates a more precise estimation.

For a fair comparison, the experiments are designed such that the number of samples
used are the same for IDO and PA.

4.1 Test Subjects

In order to answer the above research questions, three groups of systems are used for
our evaluation. The first set contains three benchmark system, i.e., the small example
shown in Figure 1 and two systems from the literature [6]. One is the queuing model. In
a queuing model, customers arrive at a station for service. States represent the number
of persons in the queue. We consider a scenario where the only possible transitions are
the arrival or departure of someone. The number of transitions between two consecutive
observations are assumed to be i.i.d.. For convenience, we assume a maximum number
of persons in the queue to be 10. Thus, the Markov chain has 11 possible states and a
transition matrix as follows:

M =



0 1 0 0 0 0 0 0 0 0 0
0.53 0 0.47 0 0 0 0 0 0 0 0
0 0.65 0 0.35 0 0 0 0 0 0 0
0 0 0.45 0 0.55 0 0 0 0 0 0
0 0 0 0.30 0 0.70 0 0 0 0 0
0 0 0 0 0.62 0 0.38 0 0 0 0
0 0 0 0 0 0.68 0 0.32 0 0 0
0 0 0 0 0 0 0.64 0 0.36 0 0
0 0 0 0 0 0 0 0.52 0 0.48 0
0 0 0 0 0 0 0 0 0.61 0 0.39
0 0 0 0 0 0 0 0 0 1 0


(4.1)

We set the first 6 states as initial states and assume an initial uniform distribution over
the 6 states. The reachability probability of interest is the probability of reaching the
last 3 states in 11 (which is the number of states) steps. Based on the above model,
the precise reachability probability can be calculated as: 0.0444, 0.0194 and 0.0075
respectively. The other model is the hollow matrix. This case study deals with Markov
chains that changes state at each transition. The transition matrix is as follows.

P =


0 0.992 0.0003 0.0005

0.98 0 0.01 0.01
0.40 0.13 0 0.47
0.42 0.20 0.38 0

 (4.2)

We set the first 2 states as initial states and assume a distribution (0.99, 0.01) over them.
The reachability probabilities of interests are reaching the last 2 states in 4 (number of
states) steps, which are 0.0147 and 0.0159 respectively.

The second group is a set of randomly generated models (referred to as rmc). These
models are generated with different numbers of states and transition densities using an
approach similar to the approach in [17]. For reachability analysis, we choose first half
of the states to be the initial states and assume a uniform initial distribution over them.
We select those states with reachability probability less than 0.05 as states of interest,
since we are interested in improving reachability probability of low probability states.

The last group contains the SWaT testbed [1]. SWaT is a real world complex system
which involves a series of water treatments process from raw water like ultra-filtration,
chemical dosing, dechlorination through an ultraviolet system, etc. The system is safety
critical and ideally we want to accurately estimate the probability of reaching some bad
states, like tank overflow or underflow, abnormal water pH level, etc. Modeling SWaT
is challenging and thus we would like to have a way of estimating the transition proba-
bility as well as some reachability probability. SWaT has many configurable parameters
which can be set before the system starts and it can be restarted if necessary. However,
restarting SWaT is non-trivial as we have to follow a predefined shutdown sequence
and thus we would like to obtain some precise estimation with as few restarts as possi-
ble. In our experiment, we focus on tank overflow or underflow. We select states with
normal tank levels as initial states and assume a uniform initial distribution over them.
Furthermore, we select states with abnormal tank level as states of interest.

4.2 Experiment Results

We first show the experiment results on the benchmark systems. Figure 2 presents the
comparison of IDO and PA in terms of MV, RRD, and MSE respectively for the three
benchmark systems. The first row shows the results of the first example. It can be
observed that MV of IDO improves linearly as we increase the number of samples,
whereas MV of PA remains almost zero due to the low probability of reaching some
states according to the original initial distribution. IDO has significantly better estima-
tion of both the reachability probability (in terms of RRD) as well as the transition
probability (in terms of MSE). The second row shows the results of the hollow matrix.
It can be observed that the improvement of MV and the probability estimation are not

0.5 1 1.5 2

Sample size 10
5

0

2000

4000

6000

8000

10000

M
V

Example

IDO

PA

0.5 1 1.5 2

Sample size 10
5

2

4

6

8

10

R
R

D

10
-3 Example

IDO

PA

0.5 1 1.5 2

Sample size 10
5

2

4

6

8

M
S

E

10
-4 Example

IDO

PA

0.5 1 1.5 2

Sample size 10
5

500

1000

1500

2000

2500

3000

3500

M
V

Hollow Matrix

IDO

PA

0.5 1 1.5 2

Sample size 10
5

0.005

0.01

0.015

0.02

0.025

0.03

R
R

D

Hollow Matrix

IDO

PA

0.5 1 1.5 2

Sample size 10
5

2

3

4

5

M
S

E

10
-3 Hollow Matrix

IDO

PA

0.5 1 1.5 2

Sample size 10
5

0

1000

2000

3000

4000

M
V

Queue Model

IDO

PA

0.5 1 1.5 2

Sample size 10
5

0.01

0.015

0.02

0.025

0.03

0.035

R
R

D

Queue Model

IDO

PA

0.5 1 1.5 2

Sample size 10
5

2

3

4

5

M
S

E

10
-4 Queue Model

IDO

PA

Fig. 2: Experiment results of benchmark systems.

as significant as for the first example. A closer investigation shows that the reason is
that its two initial states have very high probability of transitioning to each other. As a
result, adjusting the initial distribution does not effectively change how the other states
are visited. The third row shows the results of the queuing model. We observe a no-
ticeable improvement in terms of MV, RRD ad MSE. This is because that a state of the
queuing model can only be reached from its previous and next states. IDO successfully
identifies an initial distribution which favors the latter part of the initial states (e.g. state
5, 6), which subsequently leads to more visits of states of interest.

Next, we present the experiment results on the random models. The results are
shown in Figure 3. We consider random models with 8 states or 16 states. We ran-
domly generate a set of 20 models of 8 states and 20 models of 16 states and present
the average results, to avoid the influence of randomness. It can be observed that IDO
improves MV, RRD and MSE in almost all the cases. On one hand, we observe from the
results that as the state number increases, IDO’s improvement over PA in terms of MSE
goes down. The reason is that IDO targets to improve the worst estimated transitions,
while MSE is computed in terms of all transitions. Consequently, the improvement is

0.5 1 1.5 2

Sample size 10
5

1000

2000

3000

4000

5000

M
V

8 states RMC

IDO

PA

0.5 1 1.5 2

Sample size 10
5

0.01

0.02

0.03

0.04

R
R

D

8 states RMC

IDO

PA

0.5 1 1.5 2

Sample size 10
5

1.5

2

2.5

M
S

E

10
-3 8 states RMC

IDO

PA

0.5 1 1.5 2

Sample size 10
5

1000

2000

3000

4000

M
V

16 states RMC

IDO

PA

0.5 1 1.5 2

Sample size 10
5

0.01

0.015

0.02

0.025

0.03

0.035

R
R

D

16 states RMC

IDO

PA

0.5 1 1.5 2

Sample size 10
5

0.6

0.8

1

1.2

1.4

M
S

E

10
-3 16 states RMC

IDO

PA

Fig. 3: Experiment results of rmc.

flattened with a large number of transitions. On the other hand, we observe a more and
more significant improvement in terms of reachability estimation when the number of
states increases. This is due to the fact that IDO actively selects an initial distribution
which is likely to visit the target state most often, which effectively improves the esti-
mation. In comparison, random sampling using a uniform initial distribution may visit
the target states much less. We remark this is an important advantage of IDO since for
complex systems, there are often many states and we are often interested in estimating
the probability of certain unlikely states (e.g., unsafe states). Considering the extreme
case when only one initial state s0 would lead to visit of some target state st. If the
number of initial states is large, there is a very low probability to sample s0 through
uniform random sampling. As a result, st is rarely visited. In comparison, IDO opti-
mizes the initial distribution and samples from s0 with probability 1.

Lastly, we report the results on the SWaT testbed. One difficulty we face in evaluat-
ing the effectiveness of our approach for SWaT is that we do not have the actual DTMC
model. To overcome this problem, we run a large number of simulations (120k traces,
each trace is a simulation of half an hour with uniform initial distribution), and then
apply empirical frequency to estimate the transition probability, which we regard as an
approximation of the actual transition matrix. We remark that all the traces of SWaT
are generated using a simulator which fully mimics the testbed, and for each trace the
running time of the simulator is scaled less than the running time of the actual system.
Note that we define a state of SWaT as a combination of sensor values. Since the target
states that we are looking into are overflow and underflow of water tanks, we collect
those sensors that indicate water levels to encode states. In other words, we abstract
away the internal states for simplicity. We further abstract the sensor values (which

#state
MV RRD MSE Time cost(s)

IDO PA IDO PA IDO PA IDO PA

64 19 8 6.31 7.13 4.58E-4 3.93E-4 12553 12601

216 3 1 43 59.7 5.49E-4 4.86E-4 13700 12785

Table 1: Experiment results of SWaT.

are continuous float variables) into discrete states. Two different abstraction are experi-
mented, one with 64 states and the other with 216 states. In our experiment, we generate
the first estimation P̂ based on 5000 traces (randomly selected from the 120K traces).
Afterwards, we iteratively refine the estimation using IDO by adding and learning from
additional 5000 traces each time. The total number of traces used by IDO and PA are
the same. Similarly, we compare the MV, MSE and RRD of a set of target states, whose
reachability probabilities are less than 0.01, for IDO and PA respectively. The results
are shown in Table 1. It can be observed that the MSE is expectedly not improving as
we have many states to take average on. However, we can see from the results of RRD
that IDO effectively improves our estimation of probability of water tank overflow or
underflow which interest us. Furthermore, we observe almost negligible overhead of
IDO over PA in terms of running time.

5 Conclusion and Related Work

This paper is our continuous work in applying learning probabilistic models for veri-
fying complex systems like cyber-physical systems [19, 18]. The proposed approach is
to “smartly” tune the system configurations so as to generate traces that can effectively
improve our current probability estimation. We prove that our algorithm will converge
under various existing popular estimators. The experiment results show that our ap-
proach effectively improves random sampling in terms of probability estimation and
reachability analysis (especially). In the future, we plan to conduct a complete case
study on SWaT combining active learning, abstraction, and refinement. The idea of this
work is also promising to be applied to ‘active’ program testing by tuning program input
to discover more interesting program states rather than random testing.

This work is mainly related to the following three lines of work. Firstly, it is a
further effort in the recent trend of learning probabilistic models for model checking
[14]. Instead of learning from fixed data, we propose to actively sample the system for
more informative traces to make learning more effective for reachability analysis [13].
Such an active learning idea is applied in [8] to learn Markov decision process actively
by choosing optimal actions in each step. Secondly, importance sampling [12] is another
approach of smart sampling, but it may require us to change the probability distribution
in the process of system operation, which is sometimes unrealistic for cyber-physical
systems. Our work differs in that we only require to tune the initial distribution by
adjusting the initial configuration of the system. Lastly, this work relies and works on a
variety of estimators [9, 10, 15], which are designed for different applications.

References

1. http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/.
2. Linear programming — Wikipedia, the free encyclopedia, 2016. [Online; accessed 24-

November-2016].
3. Mean squared error — Wikipedia, the free encyclopedia, 2016. [Online; accessed 7-

December-2016].
4. Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,

75(2):87–106, 1987.
5. Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume 26202649.

MIT press Cambridge, 2008.
6. Flavia Barsotti, Yohann De Castro, Thibault Espinasse, and Paul Rochet. Estimating the

transition matrix of a markov chain observed at random times. Statistics & Probability
Letters, 94:98–105, 2014.

7. Klaus Brinker. Incorporating diversity in active learning with support vector machines. In
Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003),
August 21-24, 2003, Washington, DC, USA, pages 59–66, 2003.

8. Yingke Chen and Thomas Dyhre Nielsen. Active learning of markov decision processes for
system verification. In Machine Learning and Applications (ICMLA), 2012 11th Interna-
tional Conference on, volume 2, pages 289–294. IEEE, 2012.

9. G Cochran. Laplace s ratio estimator. Contributions to survey sampling and applied statistics
(New York, 1978), pages 3–10, 1978.

10. William A Gale and Geoffrey Sampson. Good-turing frequency estimation without tears*.
Journal of Quantitative Linguistics, 2(3):217–237, 1995.

11. Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016.
12. Cyrille Jegourel, Axel Legay, and Sean Sedwards. Cross-entropy optimisation of impor-

tance sampling parameters for statistical model checking. In International Conference on
Computer Aided Verification, pages 327–342. Springer, 2012.

13. Kendra Lesser and Meeko Oishi. Reachability for partially observable discrete time stochas-
tic hybrid systems. Automatica, 50(8):1989–1998, 2014.

14. Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D Nielsen, Kim G Larsen, and Brian
Nielsen. Learning probabilistic automata for model checking. In Eighth International Con-
ference on Quantitative Evaluation of Systems (QEST), 2011, pages 111–120. IEEE, 2011.

15. David A McAllester and Robert E Schapire. On the convergence rate of good-turing estima-
tors. In COLT, pages 1–6, 2000.

16. Todd K Moon. The expectation-maximization algorithm. IEEE Signal processing magazine,
13(6):47–60, 1996.

17. Deian Tabakov and Moshe Y. Vardi. Experimental evaluation of classical automata construc-
tions. In Logic for Programming, Artificial Intelligence, and Reasoning, 12th International
Conference, LPAR 2005, Montego Bay, Jamaica, December 2-6, 2005, Proceedings, pages
396–411, 2005.

18. Jingyi Wang, Jun Sun, and Shengchao Qin. Verifying complex systems probabilistically
through learning, abstraction and refinement. arXiv preprint arXiv:1610.06371, 2016.

19. Jingyi Wang, Jun Sun, Qixia Yuan, and Jun Pang. Should we learn probabilistic models
for model checking? A new approach and an empirical study. In Fundamental Approaches
to Software Engineering - 20th International Conference, FASE 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, pages 3–21, 2017.

20. James A Whittaker and Michael G Thomason. A markov chain model for statistical software
testing. IEEE Transactions on Software engineering, 20(10):812–824, 1994.

	Improving probability estimation through active probabilistic model learning
	Citation

	tmp.1578553618.pdf.ZaZVD

