
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2017

Classification-based parameter synthesis for parametric timed Classification-based parameter synthesis for parametric timed

automata automata

Jiaying LI
Singapore University of Technology and Design

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Bo GAO
Singapore University of Technology and Design

Étienne ANDRE
University Paris

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
LI, Jiaying; SUN, Jun; GAO, Bo; and ANDRE, Étienne. Classification-based parameter synthesis for
parametric timed automata. (2017). Formal methods and software engineering: 19th International
Conference on Formal Engineering Methods, ICFEM 2017, Xi'an, China, November 13-17: Proceedings.
10610, 243-261.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4707

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4707&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Classification-based Parameter Synthesis
for Parametric Timed Automata

Jiaying Li1, Jun Sun1, Bo Gao1 and Étienne André2

1 Singapore University of Technology and Design
2 LIPN, University Paris 13

jiaying li@mymail.sutd.edu.sg, {sunjun,bo gao}@sutd.edu.sg,
Etienne.Andre@univ-paris13.fr

Abstract. Parametric timed automata are designed to model timed systems with
unknown parameters, often representing design uncertainties of external environ-
ments. In order to design a robust system, it is crucial to synthesize constraints on
the parameters, which guarantee the system behaves according to certain proper-
ties. Existing approaches suffer from scalability issues. In this work, we propose
to enhance existing approaches through classification-based learning. We sam-
ple multiple concrete values for parameters and model check the corresponding
non-parametric models. Based on the checking results, we form conjectures on
the constraint through classification techniques, which can be subsequently con-
firmed by existing model checkers for parametric timed automata. In order to
limit the number of model checker invocations, we actively identify informative
parameter values so as to help the classification converge quickly. We have im-
plemented a prototype and evaluated our idea on 24 benchmark systems. The
result shows our approach can synthesize parameter constraints effectively and
thus improve parametric verification.

1 Introduction

Timed-automata [2] are finite-state automata extended with real-valued clock variables
which capture the passage of time. As a modeling language, timed-automata are used to
model embedded software, timed protocols, cyber-physical systems, etc. To verify such
systems, a number of verifiers on timed automata have been developed [10,21,38,40],
including the well-known UPPAAL [10] model checker, which has been applied to sev-
eral industrial applications [39].

In timed automata, clock variables are compared with concrete constants within
clocks guards. However, these constants may be unknown at the design time. If an em-
bedded software interacts with an external environment, the constants may depend on
the environment. Furthermore, the use of parameters is fundamental in the early phases
of the development, giving the possibility to explore different design choices [13]. For
example, “given a real-time system M with unknown constants d and r, representing
the deadline and the delay in receiving an acknowledgment, one may wish to verify a
property F of the system.” [24]. To design such a system robustly, it may be useful to
have a timed automaton model where r and d are kept as unknown parameters, since
concrete values for them make sence only in a given concrete environment.

Therefore, parametric timed automata (PTA [3]) which extend timed automata with
parametric clock guards have been proposed. The concrete behavior of a PTA depends
on the valuation of its parameters, and therefore a given property can be verified for
some valuations only in general. A main goal of system verification will be to synthesize
a set of valuations (often in the form of a convex or non-convex constraint) for which
a PTA satisfies a property; this is also a way to explore various design choices at once.
However, manual estimation is time-consuming and does not always generate optimal
solutions for specific design problems. In contrast, parametric model checking (i.e.,
model checking of parametric models [23,25,26,7]) aims to automatically synthesize
the region of property-satisfying parameter values, in the form of a constraint.

Existing work on the PTA verification problem relies on exploring PTA models
and synthesizing constraints based on “bad states” or “good states”. Given a set of
property-violating states (hence “bad”) or property-satisfying states (hence “good”), we
can synthesize a sound constraint by either covering all the “good states” or avoiding
all the “bad states”. For instance, [16] proposes a method based on the counterexample-
guided abstraction refinement (CEGAR). Firstly, the PTA is explored through model
checking where parameters are kept as a part of the symbolic state space. After finding
a counterexample, a constraint which makes the counterexample infeasible is identified.
Afterwards, a different counterexample is identified and subsequently a different con-
straint. Once all the counterexamples are eliminated, the disjunction of these identified
constraints captures all the property-satisfying parameter values.

Note that these approaches often suffer from scalability problem, which limits their
power in practice. For example, IMITATOR [5] times out when applied to check a
parametric Fischer protocol with 5 processes. In comparison, UPPAAL can verify the
non-paremtric Fischer protocol with dozens of processes [9]. Furthermore, existing ap-
proaches provide no information if they fail to handle a given model.

In this work, we propose an approach to enhance the scalability of existing model
checkers for PTA by adopting machine learning techniques. The idea is to form conjec-
tures on the constraint based on sampling and classification techniques. Our approach
takes a PTA as input and works as follows. Firstly, we generate random parameter val-
ues and construct the corresponding non-parametric timed automata. Next, we verify
the timed automata using existing model checker (i.e., UPPAAL). Based on the checking
results, we form conjectures on the constraint through machine learning, which can be
subsequently checked using existing model checkers for PTA (i.e., IMITATOR). More-
over, we actively seek out informative parameter values and check the corresponding
timed automata so that we converge to an accurate conjecture quickly. We implement
our approach as a tool called PTA-LEARN and evaluate it on benchmark systems. We
also compare it with state-of-the-art tools such as IMITATOR [5]. The results show our
approach can synthesize parameter constraints effectively and thus improve paramet-
ric verification. Since machine learning algorithms used in our approach are agnostic
with the underlying system and learn only based on the verification results of the non-
parametric timed automata, our approach is more scalable than the existing approaches.

The remainders of the paper are organized as follows. Section 2 introduces a sim-
ple protocol and then illustrates how our approach works step-by-step. Then, Sec-
tion 3 shows how candidate constraints are generated through classification and refined

2

through active learning. Next, Section 4 evaluates our approach using a set of bench-
mark models. Section 5 reviews related work and Section 6 concludes in the end.

2 The Overall Approach

In this section, we first define the parametric model checking problem of timed au-
tomata and then illustrate how our approach works on an example system. We start
with defining our model, i.e., timed automata and parametric timed automata.

2.1 Problem Definition

Let R≥0 be the set of non-negative real numbers. Given a set of clocks X , we define
Φ(C) as the set of clock constraints. Each clock constraint is inductively defined by:
δ := true | x ∼ n | δ1 ∧ δ2 | ¬δ1 where ∼ ∈ {=,≤,≥, <,>}; x is a clock in X and
n ∈ N≥0 is a constant. The set of downward constraints obtained with ∼ ∈ {≤, <}
is denoted as Φ≤,<(X). A clock valuation v for a set of clocks X is a function which
assigns a real value to each clock. A clock constraint can be viewed as the set of clock
valuations which satisfy the constraint. A clock valuation v satisfies a clock constraint
δ, written as v ∈ δ, iff δ evaluates to be true using the clock values given by v.

Definition 1. A timed automaton is a tuple A = (S, Init,Σ,X,L, T) where S is a
finite set of locations; Init ⊆ S is a set of initial locations; Σ is an alphabet; X is
a finite set of clocks; L : S → Φ≤,<(X) labels each state with an invariant; T ⊆
S ×Σ × Φ(X)× 2|X| × S is a labelled transition relation.

Intuitively, a transition (s, e, δ, χ, s′) ∈ T can be fired if δ is satisfied. After event e
occurs, clocks in χ are set to zero. The concrete semantics of A is an infinite-state
labelled transition system (LTS), denoted as C(A) = (Sx, Initx,R≥0 × Σ,Tx) such
that Sx is a set of concrete states of A, each of which is a pair (s, v) where s ∈ S is
a state and v is a clock valuation; Initx = {(s,X = 0) | s ∈ Init} is a set of initial
concrete states; and Tx is a set of concrete transitions of the form ((s, v), (d, e), (s′, v′))
such that there exists a transition (s, e, δ, χ, s′) ∈ T ; v + d ∈ δ; v + d ∈ L(s); [χ 7→
0](v + d) = v′; and v′ ∈ L(s′). Intuitively, the system idles for d time units at state s
and then take the transition (generating event e) to reach state s′.

Given a property, the model checking problem of timed automata is to model check
whether the given timed automaton satisfies the property. We skip the details on how to
model check timed automata and refer the readers to [43] for details.

By generalizing the timed automata theory [2], Alur et al. first defined parametric
timed automata in [3], where guards and state invariants are allowed to be parametric.
Let P = {p1, · · · , pM} be a set of parameters. Throughout this paper, we assume
parameters are integer-valued. Let Φ(X,P) be the set of parametric clock constraints
which are inductively defined by: γ := δ | x ∼ α | γ1 ∧ γ2 | ¬γ1 where δ ∈ Φ(C) is
a non-parametric constraint; ∼ ∈ {=,≤,≥, <,>}; and α is a parametric linear term in
the form ofΣiai∗pi+dwhere both ai and d are integer constants. The set of downward
parametric constraints obtained with ∼ ∈ {≤, <} is denoted as Φ≤,<(X,P).

3

Fig. 1: Fischer protocol with 2 processes

Definition 2. A PTA A(P) with parameters P is a 7-tuple (S, Init,Σ,X, φ, L, T)
where S, Init, Σ, and X are the same in the timed automata definition; and

– φ ∈ Φ(X,P) is a constraint on the parameters P ;
– L is the invariant assigning to every q ∈ S a constraint L(q) ∈ Φ≤,<(X,P) on

the clocks and the parameters;
– and T ⊆ S ×Σ × Φ(X,P)× 2|X| × S is a labelled transition relation.

Both timed automata and PTA can be composed in parallel. The parallel composition of
two timed automata or PTA is defined in the standard way (refer to [2]). Figure 1 shows
two example PTA, and the overall system is defined as their parallel composition. In this
example, we use discrete integer-valued shared variables (e.g., nb), supported by most
model checkers (such as UPPAAL and IMITATOR). When bounded, these variables do
not add expressiveness, but act as syntactic sugar for extra locations.

Given a PTAA(P) and a parameter valuation v, we can construct the corresponding
timed automata, written as A(v), by substituting the parameter values in the parameter
constraints with v. Given a PTAA(P) and a property ρ, the parametric model checking
problem is to synthesize a constraint π such that for any parameter valuation v, A(v)
satisfies ρ if and only if v satisfies π. In particular, we say that π is sound with respect
to ρ if A(v) satisfies ρ for all v ∈ π; we say that π is complete with respect to ρ
if v ∈ π as long as A(v) satisfies ρ; and we say π is perfect if it is both sound and
complete. We remark existing approaches often focus on identifying sound constraints,
since identifying perfect constraints are often infeasible.

2.2 Overall Approach with an Illustrative Example

In the following, we illustrate how our approach works through a simple example. We
fix a PTA A(P) = (S, Init,Σ,X, φ, L, T) in the following.

Example 1. The Fischer’s protocol is a mutual exclusion protocol proposed by Fis-
cher [6]. Instead of using atomic test-and-set instructions or semaphores, it only as-
sumes atomic reads and writes to a shared variable and achieves mutual exclusion be-
tween multiple processes by carefully placing bounds on the execution times of the

4

Not
Converge

Valuations with Labels

Constraint Candidate

Parametric Timed
Automata

Concrete
Verification

Selective
Sampling

Random Sampling

Proposed Constraint

Data
Collection

Classifier
Learning

Classification
Algorithm

Classifier
Refinement

Converge

Fig. 2: Approach overview

instructions. For simplicity, we focus on the Fischer protocol with only two processes,
which are modeled as the PTA in Figure 1. Each child PTA models a process with a set
of four locations, with one initial location at the top and contains one clock (i.e., x1 for
process 1 and x2 for process 2). The parallel composition of the two processes forms the
system model. Variable nb is a shared global variable which intuitively records the num-
ber of processes in the critical session. The protocol is designed for mutual exclusion,
i.e., �(nb ≤ 1) which means no more than one process should be in the critical session
at any time. There are two parameters: delta and Delta , which are used as bounds for
the clocks. We remark in the original protocol [6], the property has been proved under
the occasion that delta is set to be 4 andDelta is set to be 3. The goal of paramet-
ric model checking for this example is to find out a constraint which contains all the
property-satisfying properties. For instance, one possible constraint is delta > Delta .
In the following, we show how we can synthesize such a constraint automatically.

The overall work flow of our approach is shown in Figure 2. Given a PTA A(P), we
start with generating a set of random valuations for P , denoted as S, which satisfy φ.
Hereafter, we refer to the valuations in S random samples and the process of generating
them “random sampling”. Random sampling provides us an initial set of samples to
learn the very first candidate constraint. In this work, we generate random values for
each parameter in P based on its domain, assuming a uniform probabilistic distribution
over all values in its domain. With each parameter valuation v ∈ S, we can generate
a timed automaton model A(v). Next, we employ the UPPAAL to check whether A(v)
satisfies the property. Depending on the verification results, we partition S into two sets
PS and NS , where PS contains all those valuations v ∈ S such that A(v) satisfies the
property and NS contains all those valuations v ∈ S such that A(v) fails the property.

Example 2. Continuing Example 1, assume that we generate four parameter valuations:
(6, 7), (8, 2), (5, 3) and (0, 4) where each pair (d1, d2) denotes a valuation {delta 7→
d1,Delta 7→ d2}. Based on UPPAAL’s verification results, these valuations are divided
into two sets: PS containing {(8, 2), (5, 3)} and NS containing {(6, 7), (0, 4)}.

5

Recall that the goal of parametric model checking is to synthesize a constraint which all
parameter valuations in PS should satisfy and all parameter valuations inNS should not
satisfy. We thus employ classification techniques, which have been extensively studied
in machine learning community, to generate classifiers which can be treated as con-
straint candidates. Among the classification algorithms, e.g., [29,31,11]. we focus on
two particular classification algorithms: Support Vector Machine (SVM [11]) and Ker-
nel Query By Committee (KQBC [18]), which are introduced in Section 3.

Example 3. Continuing Example 2, assume that we apply SVM to generate a classifier
to divide sets PS and NS . By tuning parameters in SVM, we can obtain a model as the
classifier which make zero prediction error on the training set PS and NS . Converting
the model into an explicit hyperplane, we learn the classifier as delta − 2 ∗Delta ≥ −4 .

Compared with the desired constraint mentioned in Example 1, this classifier is quite
different. Although this desired constraint remains unknown in practice, the problem
of classification on limited random samples is real. One way to solve this problem is
to generate more random samples. In general, it is likely that a better constraint can be
learned if more samples are provided. In our setting, it is expensive since we need to
model check A(c) for each valuation c in order to categorize it. So it would be good if
we are able to learn accurate constraints with a small number of samples.

Our remedy is to apply active learning techniques to select the most informative pa-
rameter valuations so that we converge fast. Which samples are considered most infor-
mative can be defined in different ways, depending the classification algorithms, which
are detailed in Section 3. With these new samples and their corresponding labels, a new
classifier can be learned. We iteratively adopt this learning and refining procedures until
the generated constraint stays the same, in other words, converges. Then we can stop
and report this constraint as a candidate for the constraint.

Example 4. Continuing with Example 3, given the classifier delta − 2 ∗Delta ≥ −4 ,
we pick four more valuations (3, 3), (1, 2), (4, 4), (6, 5) which locate right by the clas-
sification boundary geometrically. After verifying the corresponding timed automata
using UPPAAL, the valuations (3, 3),(4, 4),(6, 5) are added into set PS and (1, 2) is
added into set NS . Then a new classifier: delta −Delta ≥ 0 can be obtained by clas-
sification algorithms. With the observation that the constraint converges after multiple
iterations of learn-and-refine, we report this classifier as the candidate constraint.

Once having a candidate constraint C, we employ a parametric model checker (i.e., the
state-of-the-art IMITATOR [5]) for checking the correctness of ρ. That is, we construct
a new PTA A′(P) = (S, Init,Σ,X, C, L, T) where φ is replaced by C and solve the
parametric checking problem of A′(P). We remark that parametric checking A′(P)
is often easier than A(P), as we show empirically in Section 4. Intuitively, this is be-
cause C is more restrictive than φ and thus IMITATOR needs to explore, symbolically,
a smaller state space. However, even with the learned constraint C, soundness and com-
pleteness may not be checked from time to time still due to the complexity in parametric
model checking of timed automata. Compared to directly applying a parametric model
checker to A(P), which provides no information at all if the model checker times out,
our approach provides a conjecture C, which could be useful for system design.

6

Algorithm 1: Algorithm generate(PS , NS)

1 while not time out do
2 let C be a constraint generated by classify(PS , NS);
3 if C is the same as the one obtained in the last iteration then
4 return C;

5 V = select(C);
6 for v ∈ V do
7 add v into PS if A(v) satisfies the property;
8 add v into NS if A(v) fails the property;

Example 5. Continuing Example 4, we apply IMITATOR to check the soundness and
completeness of the learned constraint. For this example, IMITATOR confirms that it is
both sound and complete. In fact, IMITATOR can generate the same constraint for this
example if no constraint provided. However, if we increase the number of processes
to 5, IMITATOR is unable to synthesize any sound constraint. On the contrary, with
the learned constrraint delta −Delta ≥ 0 , IMITATOR can prove the soundness and
completeness of such a system, as shown in Section 4.

3 Classification

We have discussed the overall approach in Section 2. While most of the steps are self-
explanatory, details on how candidate constraints are generated and refined are centric in
our approach and thus will be explained in this section. The overall algorithm for gener-
ating candidate constraints is shown in Algorithm 1. Given two sets of labelled samples
PS and NS , we first learn a candidate constraint using function classify(PS , NS) at
line 2. If the constraint is the same as the one obtained in the last iteration, we consider
that the constraint has converged and return it. Otherwise, we selectively generate a set
of new parameter valuations using function select(C) at line 5. The loop from line 6 to
8 then checks whether each parameter valuation is property-satisfying or not and adds
it into either PS or NS depending on the verification result. The outer loop from line 1
to 8 iterates until a constraint is returned at line 4 or a timeout has occurred. In the
following, we present details of function classify(PS , NS) and select(C).

3.1 Classification

Function classify(PS , NS) generates a candidate constraint based on classification
techniques. Assume that π is the perfect constraint for which the PTA satisfies the
property. Intuitively, since parameter valuations in PS must satisfy π (since PS con-
tains valuations that have been checked to satisfy π) and valuations in NS must not
satisfy π, a constraint C separating the two sets (a.k.a. a classifier) thus can be regarded
as a candidate for π. In the extreme case, if we can enumerate all the possible parameter
valuations, a classifier which perfectly separates the sets is equivalent to π.

7

To automatically generate classifiers separating PS and NS , we apply existing clas-
sification techniques. In the machine learning setting, the assumption is that there is a
training set containing samples X and the associated labels Y , and the goal of classifi-
cation is to learn a function f : X → Y which accurately predicts the labels of samples
arising in the future. There are many existing classification algorithms. For instance, k-
nearest neighbors algorithm [14] clusters samples into groups based on their distances
to others, while decision tree algorithm [31] splits set of samples step by step accord-
ing to the maximal information gain of the unused features. Moreover, perceptron [29],
Supported Vector Machine (SVM [11]) and Kernel Query By Committee (KQBC [18])
have been proposed to construct classifiers which can separate the samples with dif-
ferent labels apart. In general, due to the noises in the training set, these classification
algorithms prefer a function with small prediction error (rather than zero) on the train-
ing set to avoid the overfitting problem. However, in our setting, any prediction error
is intolerable and thus the classification algorithms must be tuned to generate perfect
classifiers. Formally, a perfect classifier π for PS and NS is a predicate such that s ∈ π
for all s ∈ PS and s 6∈ π for all s ∈ NS . Furthermore, in order to help system designer
utilize the learned constraint, it is preferred to be human-interpretable. Considering all
these mentioned above, we briefly introduce one of the classification algorithms, SVM,
which we adopt in our work.

SVM is a commonly applied supervised machine learning algorithm for classifica-
tion and regression analysis [11]. In the binary classification case, the functionality of
SVM works as follows. Given PS andNS , SVM can generate a perfect classifier to sep-
arate them if there is any. We refer the readers to [30] for details on how the classifier
is computed. In this work, we always choose the optimal margin classifier if possible.
Intuitively, the optimal margin classifier could be seen as the strongest witness why PS
and NS are different. SVM by default learns classifiers in the form of a linear inequal-
ity, i.e., a half space in the form of c1x1 + c2x2 + · · · ≥ k where xi are variables while
ci and k are constant coefficients.

As linear inequalities may not be sufficiently expressive for some parametric mod-
els, we discuss how SVM can be extended to learn more expressive constraints. A poly-
nomial classifier can be obtained by systematically mapping the samples to a high di-
mensional space and then applying SVM in the high dimensional space. For instance,
assume that the maximum degree of the polynomial is set to be 2, the sample valuation
{x 7→ 2, y 7→ 1} in PS is mapped to {x 7→ 2, y 7→ 1, x2 7→ 4, xy 7→ 2, y2 7→ 1}. Let
P ′S and N ′S be the set of samples in the high dimensional space. SVM is then applied to
learn a perfect linear classifier for P ′S and N ′S . Mathematically, a linear classifier in the
high dimensional space is the same as a polynomial classifier in the original space [22].

To generate conjunctive classifiers, we adopt the algorithm proposed in [37]. The
idea is to pick one sample s from NS each time and identify a classifier Ci to separate
PS and {s}, remove all samples from NS which can be correctly classified by Ci, and
then repeat the process until NS becomes empty. The conjunction of all the classifiers
Ci is then a perfect classifier separating PS and NS . We refer the readers to [37] for
details of the algorithm. We remark that if we switch PS and NS , the negation of the
learned classifier using this algorithm is a classifier which is in the form of a disjunction.

8

Classifier
Classifier

Fig. 3: Selective sampling for SVM

3.2 Candidate Refinement

Stone’s celebrated theorem proves that even naive algorithms can get the optimal solu-
tion if given a large enough training sequence [18]. However, we always have obstacles
in collecting such a large data set. In particular, labeling more samples is expensive
in our setting because we are required to model check the system for each parameter
valuation. One fundamental problem in applying classification techniques to learn the
constraint is that with the limited samples in PS and NS , it is unlikely that we can
obtain an “accurate” classifier. In the machine learning community, researchers have
studied extensively on the problem “how can we learn an accurate classifier from a
small number of labelled samples?”. One of the remedies is active learning [34].

Active learning is proposed in contrast to passive learning. A passive learner learns
from a given set of samples that it has no control over, whereas an active learner is
able to adaptively select its samples. Intuitively, by selecting the right samples, active
learning is able to learn much faster. In general, an active learner could choose the most
informative samples to label based on the intermediate learning results. Specifically, a
number of different active learning strategies on how to select the samples have been
proposed. For instance, version space partitioning [32] tries to select samples on which
there is maximal disagreement between classifiers in the current version space (e.g.,
the space of all classifiers which are consistent with the given samples); uncertainty
sampling [27] maintains an explicit model of uncertainty and selects the sample that
it is least confident about. The effectiveness of these strategies can be measured in
terms of the labeling cost, i.e., the number of labelled samples needed in order to learn
a classifier which has a classification error bounded by some threshold ε. An active
learner can sometimes achieve good performance using far fewer samples than would
otherwise be required by a passive learner [41,42]. Thus, in this work, we adopt two
active learning strategies designed for different classification algorithms so that we can
generate the constraint by invoking a model checker only a small number of times.

Selective Sampling for SVM We adopt the active learning strategy proposed in [33],
called selective sampling, to improve the constraints generated by SVM. This strategy
has been shown to be effective in different applications [41,42]. The idea is to generate
multiple samples on the current classification boundary C.

The exact details of function select(C) in Algorithm 1 depends on the type of classi-
fiers. For classifiers in the form of linear inequalities or polynomial inequalities, identi-
fying samples on the classification boundary is straightforward, i.e., we turn the inequal-
ity into an equation and solve the equation. For the classifier delta− 2 ∗Delta ≥ −4 in

9

Algorithm 2: Algorithm kqbc classify(C, PS , NS)
1 i← 0;
2 while i < ITERATION do
3 let Ca, Cb be two random hypotheses selected over C;
4 get a parameter valuation v by solving Ca(v) ∗ Cb(v) < 0;
5 model check C(v);
6 add v into PS or NS based on whether C(v) satisfies the property;
7 update C;
8 i← i+ 1;

the above example, we solve the equation delta−2∗Delta = −4 in the integer domain
and obtain new valuations like (4, 4), (6, 5). Note that if there is no integer solution,
we solve the equation in the real-number domain and select the nearest integer samples
with unknown labels. In the case that the constraint is conjunctive or disjunctive, we ap-
ply the above selective sampling approach to each clause in the constraint to obtain new
samples. For instance, if C is in the form of C1 ∧ C2 where Ci is a linear or polynomial
inequality, we turn each Ci into an equation and solve it to obtain new samples.

Figure 3 visualizes how selective sampling works in a 2-D plane. In the left figure,
the squares represent the samples in PS , while the triangles represent the samples in
NS . Based on these samples, a classifier is learned to separate these samples, as shown
in the left figure. Selective sampling allows us to identify those samples (i.e., those
triangles and squares on the line) on the classification boundary based on the learned
classifier. The classifier is then improved using the new samples generated by selective
sampling, as shown in the right figure.

KQBC Although SVM is a widely used classification technique and its selective sam-
pling strategy works often in practice [41,42], it has been shown that SVM-based active
learning in the worse case has the same labeling cost as random sampling, i.e., Ω(1ε)
where ε is the target classification error rate. A number of active learning algorithms
with better worse case labeling cost have been proposed. One example is the Kernel
Query By Committee (KQBC) algorithm [18]. It has been shown that KQBC has the
optimal labeling cost: O(d lg 1

ε) where d is the dimension of the samples [19,15]. That
is, if passive learning requires a million samples, KQBC may require just lg 1000000
(≈ 20) to achieve the same accuracy. Thus, in this work, we additionally adopt KQBC
and develop a particular sampling strategy for KQBC to solve our problem.

Compared to SVM, instead of learning one hyperplane for separating PS and NS ,
KQBC maintains a “committee”, i.e., a cluster of models C = 〈C1, C2, C3, · · · , Cm〉,
based on the currently labelled samples. These models compose a version space, where
each member is allowed to vote on the labels of a new sample (i.e., whether a parameter
valuation would make the PTA satisfy the property). KQBC shrinks the version space
whenever a newly labelled sample is provided. The essence of KQBC is to constrain
the size of version space as much as possible with as few labelled samples and the
classification task is to search for the best model within the version space.

10

Version Space Version Space

Fig. 4: Sampling in KQBC

In the original algorithm [18], KQBC takes a stream of unclassified samples and
decides whether to ask for the label of a newly arrived sample. In our setting, we modify
the algorithm in order to actively seek out samples which are effective in reducing
the version space, and as a result we can potentially converge to the actual classifier.
Algorithm 2 shows how KQBC is adopted in our setting, where the input parameter C
represents the version space, PS andNS are the positive and negative samples. At line 3,
we randomly pick two hypotheses (i.e., hyperplanes) Ca and Cb in the current version
space C. At line 4, we employ a constraint solver to solve the constraint Ca(v)∗Cb(v) <
0 where Ca(v) is the label prediction of sample v, which is either 1 or −1. That is, by
solving the constraint, we identify a controversial sample, i.e., one which is disagreed
upon by two members of the committee. At line 5, we model check the timed automaton
C(v) and we add v into PS or NS accordingly at line 6. At line 7, we update the version
space. We skip the details on how the version space is updated and maintained and refer
the readers to [18] for the technical details. The loop from line 2 from line 8 iterates
until a pre-defined number of iterations has been reached.

Figure 4 illustrates how classfiers are obtained by KQBC in a binary classification
task. In the left figure, the squares represent samples in PS while the triangles represent
samples in NS . All the lines compose the committee for the current samples. Note that
any member of the committee classifies the current samples perfectly. In order to reduce
the committee, we select two lines by hit-and-run algorithm [28] and identify a sample
which they disagree upon, represented as the bigger square in between the lines. After
obtaining the label of this sample, two members of the committee represented by the
dotted lines are ruled out. As a result, the version space is reduced.

4 Evaluation
We have implemented our approach for model checking of PTA in a tool named PTA-
LEARN (available at [1]). PTA-LEARN is written using a combination of C++ and shell
codes. It makes use of GSL [20] to solve equation systems; and uses LibSVM [12] for
SVM-based classification. It relies on UPPAAL [10] for model checking timed automata
and IMITATOR for model checking PTA with learned constraints. Note that both UP-
PAAL and IMITATOR are regarded as the state-of-the-art in their respective fields. In the
following, we evaluate PTA-LEARN, to address the following three research questions.

– RQ1: Can PTA-LEARN improve scalability of IMITATOR?
– RQ2: Are the constraints generated by PTA-LEARN sound, or complete compared

to those generated by IMITATOR?

11

– RQ3: Is our candidate refinement strategy helpful?

To answer the aforementioned research questions, we identify 24 parametric timed au-
tomata models from the IMITATOR benchmarks library, which in terms are collected
from multiple sources. Since the models in [5] are written in a language different from
the language supported by UPPAAL, we develop a translator to convert those models.
The correctness of the translator is checked manually as well as through comparing ver-
ification results of UPPAAL and IMITATOR. All evaluated models are available at [1].

The parameters in our experiments are configured as follows. During the random
sampling stage, given a parametric model A(P) and a property ρ, we try to generate
random parameter valuations until there are at least one valuation v such that A(v)
satisfies ρ and one valuation v′ such that A(v′) fails ρ. If all random valuations satisfy
ρ after a threshold 64∗|P | of random values (where |P | is the number of parameters), we
stop the process and conjecture that the constraint is true (i.e., any parameter valuation
is valid). Similarly, if all random valuations fail ρ, we conjecture that the constraint is
false (i.e., no parameter valuation is valid).

During the learning stage, both SVM and KQBC are applied and we take the first
converged constraint as the learning result. In the case of SVM, the parameter C (which
controls the trade-off between avoiding misclassifying training samples and enlarging
the decision boundary) in LibSVM and the inner iteration are set to their maximum
values so that it generates only the perfect classifier, if there is. Selective sampling is
applied repeatedly until the learned constraint remained unchanged after 2 consecu-
tive iterations. We remark it is an open question on how to know that a classifier has
converged. In the case of KQBC, we conduct a set of preliminary experiments with ran-
domly generated predicate to test how many samples are necessary to learn the predi-
cate. The details of the preliminary results are available at [1]. During the verification
stage, if IMITATOR is applied, the timeout is set to be 300 seconds. If PTA-LEARN
learns a constraint true or does not learn (i.e., timeout), we apply IMITATOR on the
original model. Each experiment is repeated for 5 times and we report the median as
the experiment results. All of the experiments are conducted using x64 Ubuntu 16.04.2
(kernel 4.8.0-49-generic) with 3.60 GHz Intel Core i7 and 32G DDR3.

The experiment results are shown in Table 1. To answer RQ1, we apply PTA-LEARN
to each model and compare the performance with IMITATOR. The result verification
time of IMITATOR is shown in the second column of Table 1. The following two
columns show the time spent on learning and verifying the constraint by PTA-LEARN.
PTA-LEARN’s total time is the sum of numbers in these two columns. It can be ob-
served that IMITATOR times out in 9 cases. In comparison, PTA-LEARN succeeds in
learning constraints for 21 out of 24 benchmarks and fails to learn any constraint for
the 3 remaining case studies. A close look reveals that in the 3 cases, 2 models involve
many parameters (i.e., > 6) and thus our learning algorithms time out before converge.
Note that IMITATOR times out on these two cases as well. We fail to learn on the
other case because the actual constraint is a complicated constraint consisting of a mix-
ture of conjunctions and disjunctions. Recall that if we do not learn any constraint, the
original model is submitted to IMITATOR for parametric model checking. It can be ob-
served that (as shown in the column “verify” under PTA-LEARN) that with the learned
constraint, PTA-LEARN is able to verify 23 models and only times out on one model

12

PTA-LEARN PTA-LEARN-Active
Model IMITATOR learn verify sound complete learn verify sound
coffee 0.007 1.482 0.017 T T 1.851 0.017 T

coffeeDrinker 0.019 timeout 0.019 - - timeout 0.019 -
counterexACSD15 timeout 1.49 0.018 T T 1.128 timeout -

ex1pPTA timeout 3.134 0.030 T - 20.34 0.018 T
exUPTA-allp timeout 1.148 0.018 T - 0.375 timeout -

F3 0.184 0.171 0.014 T T 0.175 0.014 T
F4 28.777 0.763 4.151 T T 1.052 4.095 T
F5 timeout 0.851 227 T - 1.073 243 T

FischerAHV93 0.040 7.835 0.039 T T 12.56 0.405 F
fischerHRSV02-2 timeout 14.686 0∗ T - 10.88 timeout -
fischerHRSV02-3 timeout 7.670 0∗ T - 7.22 timeout -

fisherPAT.nocomment 0.05 2.886 0.036 T T 2.917 0.0367 T
IMPO 0.013 timeout 0.013 - - timeout 0.013 -

JLR13-3tasks-npfp 36.84 1.91 0∗ T F 0.8 timeout -
JLR-TACAS13 timeout 0.694 0.016 T - 0.688 0.015 T

LALSD14-FMS2p timeout 6.142 timeout - - 8.65 timeout -
NuclearPlant 0.023 4.47 0.017 T T 3.196 0.022 F

Pipeline-KP12-2-5 13.323 timeout 13.323 - - timeout 13.323 -
Sched2.100.0 1.11 3.84 0.318 T F 1.654 1.347 F
Sched2.50.0 0.933 2.782 0.302 T T 1.278 1.177 F

testBadWithoutDiscrete 0.019 1.212 0.018 T T 0.347 0.018 T
testIM-IMK-IMunion 0.008 0.305 0.016 T T 0.4 0.016 T

TestPattern1 0.018 2.95 0.031 F - 2.28 0.035 F
WFAS-BBLS15-det timeout 1.925 0.027 T - 1.216 0.221 F

Table 1: Evaluation results, where “-” means “not applicable”

named LALSD14-FMS2p. In terms of efficiency, we highlight the approach between
PTA-LEARN and IMITATOR which takes less time in parametric verification for each
model. PTA-LEARN takes seconds on learning and verifies the models more efficiently
with the learned constraint, than applying IMITATOR directly. Thus, we conclude that
PTA-LEARN can be used to improve IMITATOR.

To answer RQ2, we measure the soundness and completeness of the learned con-
straint. Soundness of a learned constraint is checked by IMITATOR, i.e., we apply IMI-
TATOR to check whether the PTA updated with the learned constraint always satisfies
the property. We recall that a sound constraint is useful as it provides a guideline for
choosing safe parameter values. Column sound under PTA-LEARN shows whether the
learned constraint can satisfy the properties. The results show that, among the 21 con-
straints learned by PTA-LEARN, 19 are proved sound; 1 is not sound; and 1 is unknown
as PTA-LEARN times out trying to prove its soundness.

A sound constraint may be too restrictive. In the extreme case, the constraint false
is trivially sound and obviously not useful. Out of the 24 cases, in three cases, we learn
the trivial constraint false, marked as “*” in Table 1. To checking the completeness of
the learned constraint, we compare the learned constraint with the constrained obtained
by applying IMITATOR directly. We consider the learned constraint is complete if and
only if it is weaker than or equivalent to that obtained by IMITATOR. The results are

13

shown in column complete. It is observed that out of the 12 constraints for which
we can evaluate the completeness, 10 of them are complete. For the remaining two
cases, IMITATOR finds constraints which are weaker than those found by PTA-LEARN.
This is possible as PTA-LEARN is based on black-box learning, whereas as a white-box
technique, IMITATOR explores the system paths systematically if it is able to finish.

To answer RQ3, we compare the performance of PTA-LEARN with and without ac-
tive learning. In our evaluation, when active learning is not applied, we simply learn
from randomly generated parameter valuations. That is, we keep generating random
valuations until the constraints get converged. The columns under PTA-LEARN-active
show the results obtained by applying PTA-LEARN without active learning. Note that
the number of sound constraints reduces from 19 to 9 when active learning is disabled.
One reason is that without active learning, often different runs of the same experiment
result in different constraints, which makes it hard for the constraints to converge. Com-
paring PTA-LEARN with and without active learning, we can see that the overhead of
active learning is negligible. We thus conclude that active learning is helpful.

5 Related Work

Basides our method, several white-box tools have been developed to verify parametric
systems by exploring system states with different strategies. For instance, LPMC [38]
employs a partition refinement technique to generate an unstructured set of constraints;
HYTECH [21] verifies linear hybrid automata by exploring the state space through ei-
ther forward reachability or partition refinement; [23] adopts a symbolic representation
of the state space to synthesize linear parameter constraints. IMITATOR [5] implements
the inverse method (or trace preservation synthesis), the behavioral cartography [4], bad
state reachability synthesis (used in this work), parametric deadlock-freeness checking
and non-Zeno parametric model checking. The idea of behavioral cartography is close
to our sampling that iterates on integer-valuations to generalize their discrete behavior;
however, a main difference (and advantage) of our work is that we use non-parametric
model checking on the sampled points, which is more efficient by an order magnitude,
and we only use parametric model checking to assess the validity of the constraint.

To the best of our knowledge, we are the first to introduce learning techniques in ver-
ifying parametic systems. But this is not a genius creation, as learning has been already
applied in many other areas successfully. For instance, there are many learning-based
approaches in program verification field. In particular, several papers [37,36,35,17] have
deployed learning techniques to help software verification, and compiler optimization.
In these works, program states are regarded as labelled samples and a variety of classi-
fication algorithms are applied to learn the relationship between a correct program with
the program states. We remark that although we focus on PTA throughout this paper,
our technique can be adapted to other models like parametric probabilistic models [8].

6 Conclusion
In this work, we propose an approach to automatically synthesize parameter constraints
through learning. In particular, we apply active learning techniques so as to learn ac-
curate candidate constraints prior to the checking phase. Furthermore, we adopt SVM

14

and KQBC as the classification algorithms to learn constraints in different forms. In
principle, our approach can be extended to learn arbitrary mathematical classifiers with
kernel methods. Nonetheless, we focus on constraints in form of polynomial inequal-
ities or conjunctions/disjunctions of polynomial inequalities in our evaluation. The re-
sults show that our approach effectively learns parameter constraints to guarantee the
correctness of a set of benchmarks and hence helps the system verification and design.

7 Acknowledgement

This work is supported by NRF project “RG101NR0114A”.

References

1. PTA-Learn repo. https://github.com/lijiaying/pta-Learn, 2017.
2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,

126(2):183–235, 1994.
3. R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In Proceedings

of the 25th annual ACM symposium on Theory of Computing, pages 592–601. ACM, 1993.
4. É. André and L. Fribourg. Behavioral cartography of timed automata. In A. Kučera and

I. Potapov, editors, RP, pages 76–90. Springer, aug 2010.
5. É. André, L. Fribourg, U. Kühne, and R. Soulat. IMITATOR 2.5: A tool for analyzing ro-

bustness in scheduling problems. In D. Giannakopoulou and D. Méry, editors, Proceedings
of the 18th International Symposium on Formal Methods (FM’12), volume 7436 of Lecture
Notes in Computer Science, pages 33–36. Springer, Aug. 2012.

6. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population protocols. In
International Conference On Principles Of Distributed Systems, pages 103–117, 2005.

7. L. Atefnoaei, S. Bensalem, M. Bozga, C. Cheng, and H. Ruess. Compositional parameter
synthesis. In J. S. Fitzgerald, C. L. Heitmeyer, S. Gnesi, and A. Philippou, editors, FM,
volume 9995 of Lecture Notes in Computer Science, pages 60–68, 2016.

8. C. Baudrit, D. Dubois, and N. Perrot. Representing parametric probabilistic models tainted
with imprecision. Fuzzy sets and systems, 159(15):1913–1928, 2008.

9. G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and W. Yi. Developing UPPAAL over
15 years. Softw., Pract. Exper., 41(2):133–142, 2011.

10. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaala tool suite for automatic
verification of real-time systems. Hybrid Systems III, pages 232–243, 1996.

11. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classi-
fiers. In workshop on Computational learning theory, pages 144–152. ACM, 1992.

12. C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

13. A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. Parameter synthesis with ic3. In Formal
Methods in Computer-Aided Design (FMCAD), 2013, pages 165–168. IEEE, 2013.

14. T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE transactions on informa-
tion theory, 13(1):21–27, 1967.

15. S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, pages 235–242,
2005.

16. G. Frehse, S. K. Jha, and B. H. Krogh. A counterexample-guided approach to parameter
synthesis for linear hybrid automata. In HSCC, pages 187–200. Springer, 2008.

17. P. Garg, C. Löding, P. Madhusudan, and D. Neider. Ice: A robust framework for learning
invariants. In Computer Aided Verification, pages 69–87. Springer, 2014.

15

https://github.com/lijiaying/pta-Learn

18. R. Gilad-Bachrach, A. Navot, and N. Tishby. Kernel query by committee (kqbc). Technical
report, Technical Report 2003-88, Leibniz Center, the Hebrew University, 2003.

19. R. Gilad-Bachrach, A. Navot, and N. Tishby. Query by committee made real. In NIPS, pages
443–450, 2005.

20. B. Gough. GNU scientific library reference manual. Network Theory Ltd., 2009.
21. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid systems.

In International Conference on Computer Aided Verification, pages 460–463. Springer, 1997.
22. T.-M. Huang, V. Kecman, and I. Kopriva. Kernel based algorithms for mining huge data

sets, volume 1. Springer, 2006.
23. T. Hune, J. Romijn, M. Stoelinga, and F. W. Vaandrager. Linear parametric model checking

of timed automata. Journal of Logic and Algebraic Programming, 52-53:183–220, 2002.
24. F. Jahanian. Verifying properties of systems with variable timing constraints. In Real Time

Systems Symposium, 1989., Proceedings., pages 319–328. IEEE, 1989.
25. A. Jovanović, D. Lime, and O. H. Roux. Integer parameter synthesis for timed automata.

IEEE Transactions on Software Engineering, 41(5):445–461, 2015.
26. M. Knapik and W. Penczek. Bounded model checking for parametric timed automata. Trans-

actions on Petri Nets and Other Models of Concurrency, 5:141–159, 2012.
27. D. D. Lewis and W. A. Gale. A sequential algorithm for training text classifiers. In SIGIR

Forum, pages 3–12, 1994.
28. L. Lovász and S. Vempala. Hit-and-run is fast and fun. preprint, Microsoft Research, 2003.
29. M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry, 2nd

edition. The MIT Press, 1972.
30. J. Platt et al. Sequential minimal optimization: A fast algorithm for training support vector

machines. 1998.
31. J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
32. R. A. Ruff and T. G. Dietterich. What good are experiments? In Proceedings of the Sixth

International Workshop on Machine Learning (ML 1989), pages 109–112, 1989.
33. G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In

ICML, pages 839–846, 2000.
34. B. Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learn-

ing. Morgan & Claypool Publishers, 2012.
35. R. Sharma and A. Aiken. From invariant checking to invariant inference using randomized

search. In Computer Aided Verification, pages 88–105. Springer, 2014.
36. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori. Verification as learning geo-

metric concepts. In Static Analysis Symposium, pages 388–411, 2013.
37. R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In Computer Aided Verifi-

cation, pages 71–87. Springer, 2012.
38. R. Spelberg, H. Toetenel, and M. Ammerlaan. Partition refinement in real-time model

checking. In Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 143–157.
Springer, 1998.

39. M. Stoelinga. Fun with firewire: A comparative study of formal verification methods applied
to the ieee 1394 root contention protocol. Formal Aspects of Comp., 14(3):328–337, 2003.

40. J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards flexible verification under fairness. In
International Conference on Computer Aided Verification, pages 709–714. Springer, 2009.

41. S. Tong and E. Y. Chang. Support vector machine active learning for image retrieval. In
Proceedings of the 9th ACM International Conference on Multimedia, pages 107–118, 2001.

42. S. Tong and D. Koller. Support vector machine active learning with applications to text
classification. Journal of Machine Learning Research, 2:45–66, 2001.

43. S. Yovine. Model checking timed automata. Lectures on Embedded Systems, pages 114–152,
1998.

16

	Classification-based parameter synthesis for parametric timed automata
	Citation

	Classification-based Parameter Synthesis for Parametric Timed Automata
	 Jiaying Li, Jun Sun, Bo Gao and Étienne André
	Introduction
	The Overall Approach
	Problem Definition
	Overall Approach with an Illustrative Example

	Classification
	Classification
	Candidate Refinement

	Evaluation
	Related Work
	Conclusion
	Acknowledgement

