
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2017

Assertion generation through active learning Assertion generation through active learning

Long H. PHAM

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Jun SUN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
PHAM, Long H.; SUN, Jun; and SUN, Jun. Assertion generation through active learning. (2017). ICSE '17:
Proceedings of the 39th IEEE/ACM International Conference on Software Engineering: Buenos Aires,
Argentina, May 20-28. 155-157.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4706

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4706&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4706&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Assertion Generation through Active Learning

Long H. Pham, Ly Ly Tran Thi and Jun Sun

Singapore University of Technology and Design

Email: honglong pham@mymail.sutd.edu.sg, {lyly tranthi, sunjun}@sutd.edu.sg

Abstract—Program assertions are useful for many program
analysis tasks. They are however often missing in practice. In
this work, we develop a novel approach for generating likely
assertions automatically based on active learning. Our target is
complex Java programs which cannot be symbolically executed
(yet). Our key idea is to generate candidate assertions based on
test cases and then apply active learning techniques to iteratively
improve them. The experiments show that active learning really
helps to improve the generated assertions.

I. INTRODUCTION

Assertions in programs are useful for many program anal-

ysis tasks [12]. For instance, they can be used as oracles for

program testing, or correctness specification for static program

verification or run-time checking. They are however often

insufficiently written in practice [12], [5]. It is thus desirable

to generate them automatically.

We broadly divide existing approaches for assertion gen-

eration into three categories. The approaches in the first

category rely on summarizing and generalizing a set of (user-

provided or generated) test cases, e.g., [7], [8], [10], [18], [11].

Typically, they are scalable and can be applied to complex

programs. However, if only a limited number of test cases are

available, the generated assertions are often not ‘correct’ [18].

The second category contains approaches which rely on some

forms of symbolic execution or constraint solving, e.g., [6],

[3], [2]. They often provide some guarantee on the quality

of the generated assertions. However, since programs must

be encoded as symbolic constraints and be solved, these ap-

proaches are often limited to relatively simple programs. The

third category combines the techniques of the two categories,

e.g., the guess-and-check approaches documented in [16],

[15], [9] or the work in [19]. Similar to those approaches

in the second category, these approaches are often limited to

relatively simple programs as symbolic execution is applied.

In this work, we propose a new approach for assertion

generation. Our target are complex Java programs (which often

rely heavily on libraries) and thus we would like to avoid

heavy-weight techniques like symbolic execution. At the same

time, we would like to overcome the issue of not having

sufficiently many test cases in practice and be able to generate

‘correct’ assertions. To do that, we use a process called active

learning. Our approach has three steps as below.

II. OUR APPROACH

Step 1: Data Collection

At each location where we want to generate assertion, we

instruct the program to output the program states during the

execution of the test cases. In our work, there can be two

sources of test cases. The first group contains the user-provided

test cases. The second group contains random test cases we

generate using the Randoop approach [13].

Besides program states from executing test cases, we gen-

erate artificial program states at the location, by substituting

values of variables in the current state with values generated

by active learning. These states may not be reachable by any

test case running from the beginning. They nonetheless may

be helpful for learning assertions.

After executing the test cases with the instrumented pro-

gram, we obtain a set of program states, in the form of

an ordered sequence of features (a.k.a. feature vectors). We

categorize the feature vectors into two sets based on the testing

results, one denoted as S+ containing those which do not lead

to failure and the other denoted as S− containing the rest.

Step 2: Classification

Intuitively, we should learn an assertion that perfectly clas-

sify S+ from S−. We thus borrow ideas from the machine

learning community to learn the assertions through classifica-

tion. We support two classification algorithms in this work.

One applies the learning algorithm in [4] to learn Boolean

combination of propositions generated by a set of predefined

templates. The other applies Support Vector Machine (SVM)

to learn assertions in the form of conjunctions of linear in-

equalities. Both algorithms are coupled with an active learning

strategy as we discuss later.

Template based PAC Learning We adopt most of the prim-

itive templates from DAIKON [8]. A template may contain

zero or more unknown coefficients which can be precisely

determined with a finite set of program states. To generate

candidate assertion in the form of a primitive template, we

randomly select a sufficient number of feature vectors from

S+ and/or S− and compute the coefficients. Then we check

whether the resultant predicate is valid, which means it eval-

uates to true for all feature vectors in S+ and evaluates to

false for all feature vectors in S−.

To generate Boolean combinations of primitive templates,

we start with identifying a set of predicates (in a form defined

by a template) which correctly classify some feature vectors

in S+ or S−. Then, we apply the algorithm in [4] to identify

a Boolean combination of them which perfectly classifies all

feature vectors in S+ and S−. Informally, we consider each

feature vector in S+ and S− as data points in certain space.

The algorithm works by greedily finding a set of predicates

that can partition the space into regions which only contains

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.87

155

TABLE I
EXPERIMENT RESULTS ON GITHUB PROJECTS AND JAVA STANDARD LIBRARY

ALEARNER with active learning ALEARNER without active learning

Project #method #assertion corr necc suff irre #assertion corr necc suff irre

pedrovgs/Algorithms 96 85 69 10 2 4 88 64 15 3 6

JodaOrg/joda-time 236 133 83 43 0 7 153 25 31 37 60

JodaOrg/joda-money 93 25 16 9 0 0 30 16 9 0 5

JDK library 50 48 43 2 0 3 50 43 2 0 5

data points in S+ or S− but not both. Each region can be

defined by a conjunction of the predicates. The disjunction of

all regions containing S+ is a perfect classifier.

SVM-based Learning In addition to template-based learn-

ing, we support learning assertions in the general form of

c1x1 + c2x2 + ... ≥ k (a.k.a. a half space). To generate

such an assertion, we need to find coefficients c1, c2, ... such

that c1x1 + c2x2 + ... ≥ k for all feature vectors in S+ and

c1x1+c2x2+... < k for all feature vectors in S−. In this work,

we apply SVM classification [14] to identify the coefficients.

We also can learn the conjunction of multiple half spaces

by adopting the algorithm proposed in [17]. Given the feature

vectors in S+ and S−, we first randomly select a vector s

from S− and learn a half space φ1 to separate s from all

vectors in S+. We then remove all vectors s′ in S− such

that φ1 evaluates to false given s′. Next, we select another

vector from S− and find another half space φ2. We repeat this

process until S− becomes empty. The conjunction of all the

half spaces φ1 ∧ φ2 ∧ ... perfectly classifies S+ from S−.

We remark that we prefer simple assertions rather than

complex ones. Thus, we first apply the primitive templates. We

then apply SVM-based learning if no valid assertion is gener-

ated based on the primitive templates. Boolean combinations

of templates are tried last. The order in which the templates are

tried has little effect on the outcome because invalid templates

are often filtered through active learning process.

Step 3: Active Learning

Once a candidate assertion is generated, we apply the

idea of active learning to selectively generate feature vectors,

which are then turned into program states to improve the

assertion. In general, we select new feature vectors on and

near the classification boundary of the candidate assertion.

After selecting the feature vectors, we automatically mutate

the program to set the program state at the location according

to the selected feature vectors. Next, we run the test cases

with the modified program to check whether the test cases

lead to failure or not. Based on the testing results, we add new

program states into S+ or S− and repeat the classification step

to identify new candidate assertion. The process repeats until

the assertion converges.

III. EXPERIMENTS

Our approach has been implemented in a tool named

ALEARNER. To evaluate the effectiveness and efficiency of

ALEARNER, we conduct three sets of experiments. First, we

apply ALEARNER to 425 methods from three popular Java

projects from GitHub. Secondly, we apply ALEARNER to

a set of 50 methods in the JDK library. Lastly, we apply

ALEARNER to 10 programs transformed from the software

verification competition (SVComp [1]). For each method, we

try to generate the assertion at the beginning of method (i.e.,

its precondition). The test cases for GitHub and JDK programs

are user-provided, while the test cases for SVComp programs

are generated randomly.

We define the correctness of an assertion in terms of

whether there is a correlation between the learned assertion

and whether failure occurs or not. Depending on what the

correlation is, the assertions are manually categorized into four

categories. An assertion is necessary if it is (only) a necessary

condition for avoiding failure; it is sufficient if it is (only)

a sufficient condition; and correct if it is both necessary and

sufficient. Ideally, we should learn correct assertions. Lastly,

an assertion is irrelevant if it is neither necessary nor sufficient.

Table 1 shows the results of ALEARNER with and without

active learning for 3 projects in GitHub and JDK library.

We can see that with active learning ALEARNER can learn

more correct assertions and less irrelevant assertions. For

SVComp programs, with active learning, ALEARNER can

usually learn correct assertions for 8 programs; while without

active learning, ALEARNER rarely learns a correct assertion.

On average ALEARNER takes about 40 seconds to learn

an assertion, which we consider is reasonably efficient for

practical usage. Without active learning, ALEARNER runs

faster but only by a factor of 2, which means active learning

converges relatively quickly. Given that the quality of the

generated assertions improve with ALEARNER and active

learning, we consider the overhead is acceptable.

There are several reasons why ALEARNER cannot learn

correct assertions in some cases. One reason is the correct

assertions require the templates that ALEARNER does not

support currently (e.g., templates about strings with specific

pattern or templates related to types of variables). Another

reason is the test cases are too biased to obtain the correct

assertions even with active learning. These problems can only

be solved when we extend the set of templates and used more

complicated techniques such as symbolic execution to generate

the initial test cases.

IV. CONCLUSION

In this work, we present an approach that can infer likely

assertions for complex Java programs. The novelty in our

approach is to apply active learning techniques to learn and

refine assertions. In the future, we would like to explore

the possibility of learning full program specification with the

additional help from techniques like symbolic execution.

156156156156156156156156156156

REFERENCES

[1] http://sv-comp.sosy-lab.org/2016/.
[2] R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of in-

terface specifications for java classes. In Proceedings of the 32nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2005, Long Beach, California, USA, January 12-14,

2005, pages 98–109, 2005.
[3] M. Boshernitsan, R. Doong, and A. Savoia. From daikon to agitator:

lessons and challenges in building a commercial tool for developer
testing. In Proceedings of the 2006 international symposium on Software

testing and analysis, pages 169–180. ACM, 2006.
[4] N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki.

Noise-tolerant distribution-free learning of general geometric concepts.
Journal of the ACM (JACM), 45(5):863–890, 1998.

[5] P. Chalin. Rigorous development of complex fault-tolerant systems.
chapter Are Practitioners Writing Contracts?, pages 100–113. Springer-
Verlag, Berlin, Heidelberg, 2006.

[6] C. Csallner, N. Tillmann, and Y. Smaragdakis. Dysy: Dynamic symbolic
execution for invariant inference. In Proceedings of the 30th interna-

tional conference on Software engineering, pages 281–290. ACM, 2008.
[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically

discovering likely program invariants to support program evolution.
Software Engineering, IEEE Transactions on, 27(2):99–123, 2001.

[8] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Science of Computer Programming, 69(1):35–45, 2007.

[9] P. Garg, C. Loding, P. Madhusudan, and D. Neider. Ice: a robust learning
framework for synthesizing invariants. 2013.

[10] S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the 24th international conference

on Software engineering, pages 291–301. ACM, 2002.
[11] J. Henkel and A. Diwan. Discovering algebraic specifications from java

classes. In ECOOP 2003–Object-Oriented Programming, pages 431–
456. Springer, 2003.

[12] C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of

the History of Computing, 25(2):14–25, 2003.
[13] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-Directed

Random Test Generation. In ICSE, pages 75–84, 2007.
[14] G. Schohn and D. Cohn. Less is more: Active learning with support

vector machines. In Proceedings of the Seventeenth International

Conference on Machine Learning (ICML 2000), Stanford University,

Stanford, CA, USA, June 29 - July 2, 2000, pages 839–846, 2000.
[15] R. Sharma and A. Aiken. From invariant checking to invariant inference

using randomized search. In International Conference on Computer

Aided Verification, pages 88–105. Springer, 2014.
[16] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V.

Nori. A data driven approach for algebraic loop invariants. In European

Symposium on Programming, pages 574–592. Springer, 2013.
[17] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In

Computer Aided Verification, pages 71–87. Springer, 2012.
[18] Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring better

contracts. In Proceedings of the 33rd International Conference on

Software Engineering, pages 191–200. ACM, 2011.
[19] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-

driven dynamic invariant discovery. In Proceedings of the 2014 Inter-

national Symposium on Software Testing and Analysis, pages 362–372.
ACM, 2014.

157157157157157157157157157157

	Assertion generation through active learning
	Citation

	Assertion Generation through Active Learning

