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Learning Likely Invariants to Explain Why a Program Fails

Long H. Pham∗, Jun Sun∗, Ly Ly Tran Thi∗, Jingyi Wang∗, Xin Peng†
∗ISTD Pillar, Singapore University of Technology and Design, Singapore

†School of Computer Science and Shanghai Key Laboratory of Data Science, Fudan University, China

Abstract—Debugging is difficult. Recent studies show that automatic
bug localization techniques have limited usefulness. One of the reasons
is that programmers typically have to understand why the program fails
before fixing it. In this work, we aim to help programmers understand
a bug by automatically generating likely invariants which are violated
in the failed tests. Given a program with an initial assertion and at
least one test case failing the assertion, we first generate random test
cases, identify potential bug locations through bug localization, and then
generate program state mutation based on active learning techniques to
identify a predicate “explaining” the cause of the bug. The predicate
is a classifier for the passed test cases and failed test cases. Our main
contribution is the application of invariant learning for bug explanation,
as well as a novel approach to overcome the problem of lack of test
cases in practice. We apply our method to real-world bugs and show the
generated invariants are often correlated to the actual bug fixes.

I. INTRODUCTION

Debugging is an important part of software engineering and often

considered to be difficult. Software engineering is the process of

constructing a program based on a specification. The specifications,

which assert what is considered correct or otherwise buggy, may be

missing in practice and may only exist in the programmer’s mind.

Ideally, if a specification that documents what is to be achieved for

each statement is available, we can define a “bug” to be the first

statement in the program where it fails to refine the specification.

Debugging then can be done by contrasting the program against

its specification to identify the first location where they differ.

Without the specification, we are left with observations associated

with the bug, e.g., which statements are executed in a failed test case;

which statements are frequently executed in failed test cases; which

conditions in the conditional statements are essential for reproducing

the bug, etc. Based on these observations, extensive studies on bug

localization have been conducted. Interested readers are referred

to [73] for a survey of work prior to 2009 and [54], [65] for some

recent attempts. However the recent studies in [59], [75] suggest

that bug localization may not be sufficient as programmers have to
understand the bug before fixing it.

Inspired by their work, we propose a method to complement

existing bug localization techniques in this work. We develop a

software toolkit called ZIYUAN to automatically generate likely

invariants which are violated in the failed program execution. The

goal is to help the programmers develop a high-level understanding

of a bug. Given a program (e.g., a Java method) with an assertion and

at least one test case failing the assertion, ZIYUAN first generates a

set of test cases (by randomly instantiating the method parameters).

Next, applying bug localization techniques [17], ZIYUAN identifies

a list of ranked likely bug locations. ZIYUAN then attempts to learn

likely invariants for explaining the bug at these locations one-by-one.

In particular, ZIYUAN categorizes the program states at the location

of all test cases into two sets, one containing the program states of

those passed test cases and the other containing those of the failed test

cases. Afterwards, ZIYUAN employs machine learning techniques to

learn a classifier between the two sets. Intuitively, the classifier is a

likely invariant which explains the difference between the the passing

test cases and the failing ones.

One essential problem of this approach is the lack of test cases,

i.e., we might have only a very limited set of program states at a

program location. In particular, if the likely bug location is in the

middle of the program, it is in general hard to generate test cases

to reach the location. As a result, the learned classifier is biased and

may not be useful. To solve this problem, ZIYUAN applies selective

sampling [57], to iteratively generate “artificial program states” at

the learning program location so as to learn a better classifier. That

is, given a program location and a classifier for the program states

(of the passed and failed test cases), we apply selective sampling

to automatically compute the most informative program state for

improving the classifier. ZIYUAN then automatically mutates the

program according to the computed program states, and re-runs the

test cases. Based on the testing results, ZIYUAN labels the program

state accordingly (as either causing assertion failure or not) and

refines the classifier. In this way, the classifier converges. We remark

that these program states are artificial as they may not be reachable

from the beginning of the program. Nonetheless, we show that the

learned predicate correctly classifies program states at the program

location and is useful in helping programmers understand the bug,

as we show in the empirical studies. If we fail to find a classifier

at a program location, ZIYUAN takes another potential bug location

and starts the same process from there. ZIYUAN terminates when a

predicate (i.e., a likely invariant) is identified or after exhausting the

bug locations. The identified likely invariant is then presented to the

user as a bug explanation.

To evaluate the effectiveness of ZIYUAN, we apply ZIYUAN to

real-world bugs from open source projects and evaluate the generated

bug explanations. Firstly, we show that the generated predicates

are often correlated with the actual bug fixes. Then, we manually

check whether the predicates always hold after the bug fixes or

whether specific code is introduced in the fixed programs to handle

the case when the predicate is not satisfied. We present detailed

findings which suggest the usefulness of the generated predicates

in bug comprehension. Secondly, as ZIYUAN works by learning

likely invariants, we compare ZIYUAN with established invariant

inference tools like Daikon [30] as well as FailureDoc [79] to

show the difference. We further show, with examples, that ZIYUAN

complements existing bug localization techniques [73]. Lastly, we

conduct a user study by asking programmers to fix buggy programs

with or without the help of ZIYUAN. The result shows that the

predicates generated by ZIYUAN help bug understanding and fixing.

The rest of the paper is organized as follows. Section II presents the

details of our approach using a running example. Section III presents

the implementation of ZIYUAN and the results of the empirical

studies. Section IV concludes with a review of related work.

II. OUR APPROACH

In this section, we present details of our approach. We assume

that the given program is deterministic, i.e., it is sequential and does

not contain random number generation and there is no test harness

problem. This assumption is necessary as our approach learns based
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TABLE I
TEST CASES

test Test Input Description Pass/Fail Ranked Features
1 3 student objects with IDs 1,2,3 and scores 94, 60 and 100 Fail [94,94,60,100,1,0,2,0,3,0]

2 3 student objects with IDs 3,2,1 and scores 75, 90 and 80 Pass [90,75,90,80,3,0,2,0,1,0]

3 3 null student objects Irrelevant -

4 3 student objects with IDs 99,-10,0 and scores -33, 12 and 0 Pass [12,-33,12,0,99,0,-10,0,0,0]

Fig. 1. Overall workflow

on testing results. The workflow of ZIYUAN is shown in Figure 1.

There are 6 steps, which are explained in sequence in the following.

The program shown in Figure 2 is a toy example we designed

to convey how ZIYUAN works. The program contains a method

program which takes multiple objects of type Stu (i.e., representing

a student) as input and invokes method standardize so as to

standardize the students’ scores through a crafted formula at line 9.

Method standardize takes an array of student objects and finds out

the maximum score among the students and sets a new standardized

score for each student in the array. We can manually infer that the

new score is always no more than 100.

A test case of a given program is a concretization of the parameters.

Let us assume that a failed test case (test 1 in Table I) is given for

the above program, with the input being three student objects with

scores of 94, 60 and 100 respectively. The tester notices that the third

student’s new score is more than 100, which signals a bug in the code.

Intuitively, this is because the last student object is missed when the

maximum score max is calculated, i.e., the bug manifests if the last

student is the top scorer. The program can be fixed in different ways,

e.g., at line 5 by changing the loop condition to i < stus.length, or

at line 4 by setting max to be the last student’s score.

In order to use ZIYUAN, first the user is asked to provide an initial

assertion in the program based on the failed test case. For instance, we

assume that the assertion at line 3 in Figure 2 is added, which asserts

that the third student’s new score should not be more than 100. With

this assertion, the failed test case results in assertion violation. We

acknowledge the difficulty in writing assertions in general [31] and

remark that writing an assertion to capture the failure of a particular

test case is often easier.

A. Step 1: Test Case Generation

ZIYUAN works better with a comprehensive set of test cases. In

practice, the set of user-provided test cases are often limited. Thus,

in order to provide more initial data for bug localization as well as

classification (as explained later), ZIYUAN embeds an implementation

of the Randoop algorithm [58] for random test case generation. Given

a Java program, which is a method with multiple parameters, ZIYUAN

generates arguments automatically for the method call. We refer the

readers to the work in [58] for details. We choose Randoop over

other testing techniques because it is relatively (computationally)

cheap. A systematic or more sophisticated testing method (e.g.,

dynamic symbolic execution [37], [25] or genetic algorithm guided

public static void program (Stu s1, Stu s2, Stu s3) {
1. Stu[] list = new Stu[]{s1,s2,s3};
2. standardize(list);
3. assert(s3.newscore <= 100);
}
private static void standardize(Stu[] stus) {
4. int max = Integer.MIN_VALUE;
5. for (int i = 0; i < stus.length-1; i++) {
6. if (max < stus[i].score) {
7. max = stus[i].score;}

}
//version 1: max = 94;
//version 2: max = 90;
//version 3: max = 12;

8. for (Stu stu: stus)
9. stu.newscore = Math.sqrt((100-max)+stu.score)*10;
}
class Stu {

int score; int ID; double newscore;
public Stu (int s, int id) {score = s; ID = id;}

}
Fig. 2. An illustrative Java program

testing [33]) would possibly generate better test cases and improve

ZIYUAN’s performance.

For the running example, let us assume three test cases are

generated randomly, as shown in Table I (test 2, 3, and 4). In

particular, test 2 does not trigger assertion violations. In test case

3, we assume that all three student objects are null. This could be

the case since test cases are generated randomly. Executing test case

3 leads to an exception but not the assertion failure and we categorize

it as irrelevant (i.e., it does not reach the assertion and we have no

idea whether it would have satisfied it or not). Test case 4 has three

student objects with unusual IDs and scores. This is possible as we

do not have a specification on the range of scores and IDs.

B. Step 2: Bug Localization

The user-provided assertion can be considered as the very first

bug explanation. However, it may not be intuitively associated to

the cause of the bug if it is far away from the bug, i.e., whatever

misbehavior the bug has caused may have been transformed out

of shape through the subsequent statements. Therefore, in this step,

we identify potential bug locations in the program so that we may

generate bug explanations close to where the bug is in the code.

ZIYUAN first applies a program slicer [8] to identify the state-

ments upon which the assertion has dependencies (including both

control dependency and data dependency). In our running example,

this includes all numbered statements. Next, we adopt existing

bug localization techniques [73] to offer clues on where the bug

might be among those statements. In this work, we adopt Ochiai’s

approach [17], which is a spectrum based fault localization (SBFL)

method. SBFL techniques are designed based on the intuitive idea: the

more a statement is executed by the passed test cases, the less likely it

is a bug; and the more it is executed by the failed test cases, the more

likely it is. Given a set of passed test cases and failed test cases, SBFL

computes a suspiciousness score for each statement in the program

(based on how often it is executed by the passed/failed test cases).

Different SBFL techniques use different functions to compute the
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suspiciousness. Applying Ochiai’s approach to our example with the

four test cases, line 1,2,4 and 5 have the same suspiciousness 0.5,

and line 3,6,7,8 and 9 have the same suspiciousness 0.57.

Recent empirical studies [59], [75] suggest that existing bug local-

ization techniques are not very accurate and have limited usefulness

in practice. In our work, we do not assume that bug localization is

precise. Rather, ZIYUAN takes the suspicious program locations as

input and attempts to generate a likely invariant at those locations

one-by-one, and present the bug explanation to the users.

Furthermore, recall that we view a bug explanation as an in-

consistency between the program behavior and its specification;

we thus favor program locations where the program behavior can

be naturally specified. For instance, if a statement in a loop has

a high suspiciousness, ZIYUAN would set out to look for a bug

explanation after the loop because it is easier to specify the program’s

behavior there than in the middle of the loop1. Furthermore, a block

of sequential statements (without branching) often has the same

suspiciousness, thus ZIYUAN groups them and tries to generate only

one bug explanation after the block.

In our running example, among the likely bug location (i.e., all

numbered lines), ZIYUAN attempts to identify likely invariants at

three program locations, i.e., right before line 8, or right after line 1,

or right before line 5. Note that since line 3 is the assertion, ZIYUAN

ignores it since the initial assertion is already a good bug explanation

there; line 5 is a part of the first loop and thus ZIYUAN attempts to

generate a bug explanation after the first loop (i.e., right before line

8); line 8 and 9 are a part of the second loop, which is followed the

assertion and thus ZIYUAN ignores them.

C. Step 3: Feature Selection

After step 2, we identify a list of program locations, which are

ranked based on their suspiciousness scores. Starting with the top

program location in the list, we instrument the program and execute

test cases so as to collect the program states (i.e., valuation of all

variables) at the location in all test cases. The number of variables

accessible at a program location could be huge. ZIYUAN uses the

same program slicer to identify relevant ones (i.e., the variables which

the assertion has a dependency on) and prunes the rest.

Next, ZIYUAN categorizes the program states into two sets: O−

containing those program states in the failed test cases and O+

containing those in the passed test cases. Intuitively, there must be

some differences between O− and O+ which determines whether

a test case fails or not. In this work, we view a program state as a

vector of features (in the form of float-type numbers) and a difference

between the program states takes the form of a predicate on the

features. We then apply classification techniques from the machine

learning community to identify such predicates.

In the following, we first show how to obtain features from a

program state. In general, there are both numerical-type (e.g., int,
boolean) and categorical-type (e.g., Stu) variables in Java programs.

We cast the value of a numerical-type variable into a feature value. To

map a categorical-type object state to numerical values, we generate

a numerical value graph from each object type [74].

Figure 3 shows a part of the numerical value graph for object stus
in our running example. A rounded rectangle represents a categorical

type, whereas a circle associated with the type denotes a numerical

value which can be extracted from the type. For readability, each edge

is labeled with an abbreviated variable name and each node is labeled

with the type. Notice that a categorical type is always associated with

1This avoids the loop invariant generation problem [18], [41].

stus B

stus[1]B B ...stus[0]I

I II ID DI

isNull

length

isNull

score ID
newscore

isNull

score ID
newscore

Fig. 3. The numerical value graph for object stus

a boolean type value which is true iff the object is null. In addition,

each categorical type object is associated with a set of features which

are the results of the inspector methods in the respective class, e.g.,

the returned value of isEmpty() or length() for a String object.

Given a program state, we can build the numerical value graph

of each variable and obtain a vector of features (i.e., the numerical

values in the graph) systematically. In order to apply classification

techniques, each feature vector must have the same number of fea-

tures. Different program states however may have different structures

(e.g., two String objects with different length) and therefore there

are different numbers of features. In this work, we only use features

which are common to program states in O− and O+, e.g., for arrays

with different sizes, we use features like its size, the value of the

first/last element, etc. The assumption is that these common features

are sufficient to capture their difference. By focusing on the common

features, we make sure the feature vectors are of the same size.

Another challenge is that there may be a large number of features

and identifying the relevant features for generating the predicate

is essential in our approach. In this work, we solve the problem

heuristically by prioritizing the features based on the following two

assumptions. First, we assume the recently accessed (read or written)

features are more likely to be relevant. Intuitively, this is because

since the bug is likely at a previous location, the features accessed

recently are likely useful in explaining the bug. Thus, we sort all the

features according to when they are accessed (i.e., the more recent,

the higher priority). Second, we assume that the features at the top of

the numerical value graphs are more likely to be relevant. Intuitively,

this is because those values are easier to access and thus are more

likely to be relevant to the program behavior. Thus, we further sort

the features so that if two features are both not accessed recently, the

one near the top of the numerical value graph has the higher priority.

Furthermore, because we prefer simple bug explanations, ZIYUAN

always attempts to generate a bug explanation using fewer features,

i.e., starting with one feature with top priority for classification

and gradually increasing the number if necessary. That is, ZIYUAN

starts by finding a classifier with the top feature; and then with the

second top feature; etc., before trying to find a classifier with two

or more features. For instance, in our running example, ZIYUAN

tries to identify a classifier based on max’s value only first; then a

combination of max’s value and a feature of stus; and so on.

We acknowledge that the features obtained this way may not

always be the best to explain the bug. For instance, in our running

example, a useful feature for explaining the bug would be the

maximum score of all students, with which we can explain the bug

as: the program is buggy because max is not equal to the actual

maximum at line 8. Nonetheless, our empirical study shows that

features obtained using the above heuristics are often be useful in

explaining the bug. We plan in future work to explore alternative

ways of identifying relevant features.

In our running example, given the program location right after the
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first loop, there are two relevant variables: max and stus. Since max
is accessed last, it has the top priority, followed by the features of

stus. Of all the features of stus, feature score has higher priority

since it is accessed recently in the loop. Afterwards, the top level

feature on whether it is null has the higher priority than the level 1

features, and then level 2 ones. Table I column 4 shows the level 2

features of stus, with the value for max, for each test case.

D. Step 4: Artificial Data Synthesis

After the last step, we have transformed O+ and O− into two sets

of feature vectors, denoted as F+ and F− hereafter. We then apply

Support Vector Machines (SVM) to identify a predicate capturing

the difference between F+ and F−. In order to learn an accurate

classifier, a large number of samples (i.e., F+ and F− in our setting),

are required. A limited set of samples might result in a meaningless

classifier. For instance, given the data in Table I, if we use max’s

value to identify a classifier right before line 8, the result is: −1 ∗
max ≥ −92. It translates: if max < 92 is satisfied, there is no

assertion failure. It is obviously incorrect and the reason is the lack of

sufficient test cases, which is quite common in practice. In this work,

we develop an approach to overcome the problem. Our approach

contains two parts. One is artificial data synthesis (this step) and the

other is selective sampling (step 6). In the following, we explain how

artificial data synthesis works. For simplicity, we focus on learning

a classifier right before line 8 in our running example.

Given F+ and F−, we collect all possible values of each selected

feature from F+ and F−. Next, for each value combination of the

selected features, we mutate the program by adding a statement at the

program location to set the respective variables to those values. For

instance, if the selected feature is max’s value, based on the test cases

shown in Table I, the possible values of max are 94, 90 and 12. We

mutate the given program into three different versions, one by adding

a line before line 8 to set max to 94; one by setting max to 90;

one by setting max to 12. This is illustrated in Figure 2. Afterwards,

we re-run the three test cases, for each mutated program and obtain

the testing results. For instance, the additional testing results for our

running example are shown in Table II, where the first row reads:

setting max to 90 right before line 8 and then running test 1 results

in assertion failure. Lastly, we update F+ and F− based on the

testing results, e.g., the feature at the first row of Table II is added

into F− since the testing result is failure.

The benefit of the data synthesis is that we would have addi-

tional samples. For instance, with the additional data in Table II,

−1 ∗ max ≥ −92 is no longer a classifier since there are both

passed and failed test cases with max = 90. We remark that
some of the feature vectors obtained this way at the given program
location are not feasible in actual execution. For instance, there is

no test case which would reach the program point with the feature

vector [12, 100, 60, 94, 1, 0, 2, 0, 3, 0] where max = 12 since 12 is

not a score of any student. As a result, we would learn an over-

approximation of the actual invariant (since it includes program states

which are infeasible in the actual program). The additional samples

are however helpful in pruning meaningless classifiers.

Figure 4 illustrates the categorization of the program states that

we are getting through testing and data synthesis. It also shows the

relation between the classifier that we are learning and the actual

“invariant” at the program location. The circles represent the program

states we obtain from the test cases (as in the running example) and

the triangles represent the synthesized ones. The dashed line is to

be ignored for now. There are four categories of program states: on

the upper-right, we have those that lead to no assertion failure and

NPNN

PPPN

invariant

assertion failure assertion satisfaction

program states from an actual test 

infeasible program states

classifier

Fig. 4. Classifier vs. Invariant

TABLE II
TESTING RESULTS ON MUTATED PROGRAMS

test mutation Pass/Fail ranked features
1 max = 90 Fail [90,100,60,94,1,0,2,0,3,0]

1 max = 12 Fail [12,100,60,94,1,0,2,0,3,0]

2 max = 94 Pass [94,75,90,80,3,0,2,0,1,0]

2 max = 12 Fail [12,75,90,80,3,0,2,0,1,0]

4 max = 94 Pass [94,-33,12,0,99,0,-10,0,0,0]

4 max = 90 Pass [90,-33,12,0,99,0,-10,0,0,0]

can be obtained from an actual test (labeled PP ); in the bottom-left,

we have those that lead to assertion failure and cannot be obtained

from any actual test (labeled NN ); and the other two (labeled PN
and NP respectively). Ideally, we should rely only on program states

which can be obtained from actual test cases, i.e., the upper half of

the space, and we would learn classifer∧ invariant. The problem

is we have a limited set of test cases, in particular, we often have

very few failed test cases, and as a result, the classifier would be in-

accurate. By using those program states obtained from testing results

on the mutated programs, we would obtain program states not only in

the upper half but also the bottom half, and therefore likely a more

accurate classifier, as we have witnessed in our running example.

This way, the classifier we obtain would be classifier, which is an

over-approximation of classifer ∧ invariant. From another point

of view, the program from the program point we are investigating to

the assertion is never mutated. If we take that part of the program as

a function, we are feeding arbitrary inputs to that function and the

classifier is a predicate on the inputs which tells whether the function

would output assertion failure or not.

E. Step 5: Classification

In the following, we present how we obtain a classifier auto-

matically based on SVM. Given two sets of feature vectors F+

and F−, we apply an SVM-based approach to identify a classifier

between them systematically. SVM is a supervised machine learning

algorithm for classification and regression analysis. We use its binary

classification functionality. Mathematically, the binary classification

functionality of SVM works as follows. Given F+ and F−, it tries

to find a half space Σn
i=1ci ∗ xi ≥ c (where ci and c are constant

coefficients and xi are variables) such that (1) for every feature vector

[p1, p2, · · · , pn] ∈ F+ such that Σn
i=1ci ∗ pi ≥ c and (2) for every

feature vector [m1,m2, · · · ,mn] ∈ F− such that Σn
i=1ci∗mi < c. If

F+ and F− are linearly separable, SVM is guaranteed to find a half

space. Furthermore, there are usually multiple half spaces that can

separate F+ from F−. In this work, we always choose the optimal
margin classifier (see the definition in [68]) if possible. This half

space could be seen as the strongest witness why F+ and F− are
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different. If, however, F+ and F− cannot be perfectly classified by

one half space only, we need to identify multiple half spaces, which

together classifies F+ and F−. We adopt the algorithm in [68] to

find those multiple half spaces. We remark that ZIYUAN is extensible

so that different classification algorithms can be adopted.

In our running example, if we select max and whether stus is

null or not as the relevant features, with the data in Table I and II,

the adopted algorithm finds no classifier, since [90, 0] is both in F+

and F−. Similarly, we would find no classifier if we use only stus’

level-1 features or only one feature from all those level-2 features,

e.g., only stus[0].ID, or only stus[0].score, etc. However, if we use

two features: max and stus[0].ID, we obtain the classifier: 0.026 ∗
max+0.980 ∗ stus[0].ID ≥ 4.305 where the numbers are rounded

off to three decimal places for simplicity. The classifier is consistent

with respect to all the data we have in Table I and II. It is however

not meaningful. In the following, we discuss how to fix this problem.

F. Step 6: Selective Sampling

The above example shows that, even with artificial data synthesis,

the classifier might still be incorrect, due to the lack of samples. In

fact, without feature vectors right by the ‘actual’ classifier, it is very

unlikely that we would find the actual classifier. This is illustrated at

a high level in Figure 4. There could be many classifiers separating

those samples in PP and NP from those in PN and NN . The

dashed line is one example of them. To get the ‘actual’ classifier,

we need samples which would distinguish the actual one from any

nearby one. This problem has been addressed in the machine learning

community through active learning and selective sampling [67]. The

idea is to repeatedly generate samples nearby the current classifier

and then re-classify to identify an improved classifier. In particular,

SVM selective sampling techniques have been shown to identify

accurate classifiers in many applications [71], [72]. In the following,

we present how selective sampling is applied in our work. The idea

is a simplified version of [61].

Algorithm 1 presents details on how selective sampling is adopted

in ZIYUAN. At line 1, we obtain a classifier by calling the adopted

algorithm svm, which is in the form of a conjunction of multiple half

spaces. We then apply selective sampling to compute feature vectors

which are close to the classification boundary. In particular, at line

4, we apply standard techniques [67] to identify two points on the

boundary of each half space. For each computed point (i.e., a feature

vector), right before the program location, we mutate the program

state according to the feature vector. Next, we execute the test cases

and update F− and F+ accordingly at line 8 and 10, based on the

testing results. We then call svm again to get a new classifier at

line 11. If the newly identified classifier differs from the old one, we

repeat the process; otherwise we return the newly identified classifier.

As presented above, in our running example, due to the very limited

set of test cases, the first classifier using max’s value and stus[0].ID
is 0.026 ∗max + 0.980 ∗ stus[0].ID ≥ 4.305. We then obtain the

samples: [90, 2] and [128, 1] by taking existing feature values and

solve for the other based on the current classifier. That is, we take

max to be 90 and solve 0.026∗max+0.980∗ stus[0].ID = 4.305
and get stus[0].ID = 2. Similarly, we get the other pair by taking

stus[0].ID to be 1. Next, we mutate the program by inserting max =
90 and stus[0].ID = 2 right before line 8 in the program. We re-run

the three test cases and we obtain the additional samples in Table III.

Next, invoking svm returns null since [90, 2] is both labeled in F+

and F− (i.e., the same feature vectors are both positive and negative).

The algorithm then returns null at line 3 in the next iteration.

TABLE III
TESTING RESULTS ON SELECTIVE SAMPLES

test mutation Pass/Fail L2 features
1 [90, 2] Fail [90,2,100,0,2,60,0,3,94,0]

1 [128, 1] Pass [128,1,100,0,2,60,0,3,94,0]

2 [90, 2] Pass [90,2,75,0,2,90,0,1,80,0]

2 [128, 1] Pass [128,1,75,0,2,90,0,1,80,0]

3 [90, 2] Pass [90,2,-33,0,-10,12,0,0,0,0]

3 [128, 1] Pass [128,1,-33,0,-10,12,0,0,0,0]

Algorithm 1: Algorithm classify(F+, F−)

Input: F+ and F−

Output: a classifier for F+ and F−

1 let clf = svm(F+, F−);
2 while true do
3 return null if clf is null;
4 compute the next sample sam using selective sampling;

5 mutate the program according to sam;

6 for each test case going through the location do
7 if test fails the assertion then
8 extract f− and add f− into F−;

9 else
10 extract f+ and add f+ into F+;

11 newclf = svm(F+, F−);
12 if newclf differs from clf then
13 clf = newclf ;

14 else
15 return newclf ;

Next, ZIYUAN tries to learn classifier with other features. For the

same reason, ZIYUAN finds that there is no classifier using features

like max and stus[0].score (or stus[1].score). However, if we use

max and stus[2].score as the relevant features, with only the data in

Table I, II and III, we obtain: 0.053∗max−0.125∗stus[2].score >=
−6.058. Next, we apply selective sampling and keep computing new

samples. For instance, one new sample is [74,80]. After testing, it is

added into F−. With new labeled samples, we obtain a better divider.

After multiple iterations, the algorithm terminates and reports the

classifier: 2 ∗max − 2 ∗ stus[2].score ≥ −1. Since both variables

are integers, it is simplified as max ≥ stus[2].score.

Intuitively, what we learned is: assertion failure occurs if max ≥
stus[2].score is not satisfied. To make sure the assertion is al-

ways satisfied, the programmer should examine the predicate and

decide whether it should be an invariant at the location. If it is,

the program before the program location should be modified such

that the predicate is always satisfied. For our running example,

max ≥ stus[2].score should be an invariant and in this case it

correctly suggests that max is computed wrongly and therefore the

program before line 8 must be modified. If the programmer decides

that the predicate is not supposed to be an invariant, the program

after the program location needs to be modified such that when the

predicate is not satisfied, the assertion could still be satisfied. That

is, the (negation of the) predicate captures a generalized case which

is either not handled at all or not handled correctly in the program.

G. The Overall Algorithm

We present the overall approach of ZIYUAN in Algorithm 2.

ZIYUAN has four configurable parameters. M is the number of ran-
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Algorithm 2: The Overall Algorithm: explain(Prog, F, P )

Input: program Prog; failed test set F and passed test set P
Output: a likely invariant

1 generate M random test cases;

2 execute them and add them to F and P accordingly;

3 identify a list of X potential bug locations;

4 for each bug location b in the list do
5 extract a set of N -dimension feature vectors F+ from P ;

6 extract a set of N -dimension feature vectors F− from F ;

7 while there is a new combination do
8 select a combination of K or less out of N features;

9 apply artificial data synthesis and update F− and F+;

10 let exp = classify(F+, F−);
11 if exp is not null and contains 3 clauses or less then
12 return the classifier;

13 output “no explanation is identified”;

dom test cases to be generated; X is a threshold on the suspiciousness

score, i.e., only those program locations with a suspiciousness more

than X are examined; N is the maximum size of the feature vectors;

and K is the maximum number of features used in a classifier. We

start with generating M random test cases and categorize them into

failed ones and passed ones. Next, we apply bug localization to

identify a list of program locations to generate likely invariants. For

each program location with suspiciousness more than X , we identity

two set of ordered feature vectors. For each combination of K or less

features out of a total of N features, we apply artificial data synthesis

and classification and selective sampling, to search for a classifier.

Anytime a classifier is identified, we terminate and report it as the bug

explanation. Note that it may find a classifier composed of many half

spaces, which could be complicated for user comprehension. Thus,

we throw away the classifier if it contains more than a threshold

number of (3 by default) half spaces. The algorithm terminates when

we exhaust the program locations and features.

The classifier identified by the algorithm is always correct with

respects to the feature vectors (which are either obtained through the

test cases or synthesized in the process). Since there are only finitely

many combinations of program locations and features, Algorithm 2

is always terminating. We roughly measure the complexity of the

algorithm in term of the number of calls of the SVM classification

algorithm. It is bounded by #X∗CK
N+K−1 where #X is the number

of program locations with suspiciousness more than X and CK
N+K−1

is an upper bound for C1
N + C2

N + · · · + CK
N . In practice, #X is

often limited to be a small number like 10 (i.e., we examine the top

10 bug locations (after grouping consecutive ones) and K is 3 by

default and N is 10 by default. As a result, the above complexity is

often manageable in our experiments.

III. IMPLEMENTATION AND EVALUATION

Our approach has been implemented as a toolkit named ZIYUAN

(available at [3]). ZIYUAN is built upon a number of open source

software projects, including Randoop [2], Javaslicer [8], JaCoCo [16],

LIBSVM [15], and Java ILP [1]. In the following, we evaluate

ZIYUAN in order to answer three research questions (RQ).

Our test subjects include 21 real-world bugs from open source

projects including the JavaParser1.5 project (JP), the Java-diff-utils

project (JDU), the Joda-Time project (JT) and Apache Commons

Math library (ACM)), from the bug collection in [46] (D4J) and

the bugs discovered in [79]. These bugs are selected based on the

following criteria. First, we select bugs which are relatively easy to

understand. This is because we aim to manually specify the initial

assertion as well as to check whether the generated predicate is

relevant. Second, we select those buggy programs with at least one

passed test case. Lastly, we are limited to buggy programs which

do not rely on Java features which are not yet supported in ZIYUAN

(e.g., abstract methods). The bugs are summarized in Table IV, where

the first column shows the project name, the second column shows

the issue number and the third column is the link to the bug report.

Note that a ‘-’ in the table means the information is skipped as it is

irrelevant or not available.

For each bug, we manually created an initial assertion according

to the bug report. This is often straightforward if the bug results in

an exception, i.e., we find the line where the exception is thrown and

add an assertion to turn the exception into assertion failure. For the

sake of repeatable experiments, we disable random test generation

for all the experiments (i.e., set M to be 0) and use only existing

test cases in the projects with an additional failed test case created

according to the bug report. Notice that we manually remove the

assertions in the test cases so that a test case fails if and only if the

assertion in the program is violated. Furthermore, we set ZIYUAN to

focus on program locations with a suspicious score of 0.5 or above.

ZIYUAN is set to search for a classifier constituted by at most 3

features from the top 10 features. Lastly, SVM often takes a long

time if there is no linear classifier and therefore we set a 5 second

time out for each invocation of SVM. Details of the projects and the

bugs, along with our analysis logs can be found at [3].

RQ1: Is ZIYUAN sufficiently efficient? We first evaluate whether

ZIYUAN is sufficiently efficient for practical usage. The fifth column

of Table IV shows the average execution time of ZIYUAN over

10 executions for each bug. The experiments were conducted in

Windows 7 on a machine with an Intel(R) Core(TM) i5-2430m,

running with one 2.40GHz CPU, 4M cache and 8 GB RAM. The data

shows that ZIYUAN takes a few minutes to generate the predicates,

which we believe is reasonably efficient, since it usually takes hours

to fix a bug [49]. To show that these bugs are not trivial (e.g., it is

hard to trace the failed test case step-by-step to locate the bug), the

4th column shows the number of statements executed in the failed

test case (excluding external library calls).

We remark that sound optimization have been implemented in

ZIYUAN to improve its efficiency. For instance, Algorithm 1 may

take many iterations to converge. In order to reduce the number

of iterations, each time a classifier is identified, we make use of

the type information for better selective sampling. For instance,

after calculating a new sample [x, y] with two integer-type features

at line 4 of Algorithm 1, we additionally check and label nearby

samples, for instance [x + 1, y], [x, y + 1], [x − 1, y], [x, y − 1], so

that Algorithm 1 converges fast.

RQ2: Does ZIYUAN generate useful bug explanations? We

acknowledge that it is subjective on whether a predicate learned

by ZIYUAN is useful in explaining the bug. In the following, we

attempt to answer this question in three ways. First, we check

whether the predicate is relevant by manually examining the

corresponding bug fixes. Second, we present specific findings for

some of the bugs and the reason why we believe the bug explanation

is useful, so that the readers can judge by themselves. Third,

we conduct a user study to see whether the bug explanations are

useful for bug understanding and fixing. We present the details below.
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TABLE IV
EFFICIENCY EVALUATION

Project Issue # URL LOCfail Time Relevance Daikon Ochiai vs. ZIYUAN

JP 46 [6] 707 3m Missing Case to 29/3
JP 57 [7] 1154 15m Invariant to 48/39

JDU 10 [5] 85 73s Invariant × 81/6
JT 227 [10] 1109 4m Incorrectly Handled Case error 3/55
JT 21 [9] 1113 24s Incorrectly Handled Case error 43/2
JT 77 [11] 1210 61s Missing Case error 54/15

ACM 835 [14] 18 7m Invariant × 2/3
ACM 1196 [13] 152 42s Incorrectly Handled Case error 152/1
ACM 1005 [12] 19 4m Invariant error 4/1

D4J Time 8 [46] 5 69s Incorrectly Handled Case error 2/1
D4J Math 1,4,38,40,58,61,70,79,84 [46] - 13m(total) Inconclusive - -

FailureDoc 1 - [4] 576 33s Incorrectly Handled Case + -
FailureDoc 2 - [4] 64 75s Missing Case + -

Relevance Recall that a predicate generated by ZIYUAN could be

either an actual invariant (which is violated due to a bug) or a

predicate that captures a generalized case which is not handled at all

(i.e., a missing case) or handled incorrectly. Thus, if the generated

predicate is ‘correct’, either the bug should be fixed such that the

predicate becomes an invariant or specific code is introduced to

handle the case when the predicate is not satisfied. We manually

examine the bug fixes to check whether it is the case for each bug. If

the answer is yes, we consider that the predicate is relevant. Notice

that some of the bugs were open and thus we proposed the fixes

based on our analysis and confirmed them with the authors.

The results are summarized in Table IV column “Relevance”. For

all bugs, the predicate generated by ZIYUAN is satisfied in all the

passed test cases and is not satisfied in the failed test case. Note

that for 9 bugs in ACM, due to our limited understanding of ACM’s

implementation, we are not yet to be able to confirm whether the

generated predicate is related to the actual cause of the bug. For the

rest, in 4 cases, the fixes precisely make the learned predicate an

invariant at the program location. In 3 cases, the program is fixed by

introducing code to handle the case when the learned predicate is

not satisfied. In 5 cases, the program is modified so that it handles

the case when the learned predicate is not satisfied differently. We

conclude that the predicates are relevant in these 12 cases.

Specific Findings Next, we present sample findings of the bugs and

the generated predicates.

The JP project aims to build a Java 1.5 parser with AST generation

and visitor support. The AST records the source code structure,

javadoc and comments; and supports changing the AST nodes or

creating new ones. ZIYUAN is applied to analyze an open bug (issue

46) and a closed bug (issue 57) for this project.

The bug report for issue 46 contains the following information.

After parsing the Java program shown below, the output of the method

CompilationUnit.toString() in JavaParser1.5 prints only comment 3,

whereas it should print all three comments.

/** Comment 1*/
/** Comment 2*/
/** Comment 3*/
package net.perfectbug.test;
public class Test {}

With the information, we first manually created a test case ac-

cording to the report. Next, we added an assertion in JavaParser1.5

to assert that after parsing the above program, invoking Compila-
tionUnit.getComments().size() would return more than 1 (i.e., there

should be more than 1 line of comments). We then fed the program,

57. private void CommonTokenAction(Token token) {
58. lastjavadoc = null;
59. if (token.specialToken != null) {
60. if (comments == null) {
61. comments = new LinkedList<Comment>();
62. }
63. Token special = token.specialToken;
64. if (special.kind = JAVA_DOC_COMMENT) {
65. lastJavaDoc = ...;
66. comments.add(lastJavaDoc);
67. } else if (special.kind==SINGLE_LINE_COMMENT) {
68. LineComment comment = ...;
69. comments.add(comment);
70. } else if (special.kind==MULTI_LINE_COMMENT) {
71. BlockComment comment = ...;
72. comments.add(comment);
73. }
74. }
75. }

Fig. 5. Sample code from JavaParser1.5

the failed test case, along with existing passed test cases to ZIYUAN.

After program slicing, testing and learning, tracking through 7

classes, ZIYUAN outputs a message which says that the assertion is

satisfied if special.specialToken.isNull is true at line 67 of class

japa.parser.ASTParserTokenManager; otherwise, it fails.

Without knowing how JavaParser1.5 is implemented, we examine

the code around line 67, as shown in Figure 5. By checking the value

of special.specialToken.isNull in the test cases, we realize it is

not true only if there are multiple consecutive comments before a

token (which could be a class or statement). Furthermore, variable

comments contains only the last comment (not all comments)

when special.specialToken.isNull is not true, which according to

ZIYUAN, is when a test fails. Since special.specialToken.isNull
being true is not likely an invariant at this program location, we

conclude that it signals a missing case, i.e., the authors forgot to

handle the case when there are multiple consecutive comments. We

then fixed the bug by introducing a while loop to add the multiple

comments one-by-one if special.specialToken.isNull is not true,

replacing the block from line 59 to 74 in Figure 5. The bug is then

confirmed fixed (by the authors).

We also applied ZIYUAN to issue 57 which reports that a particular

method signature is parsed incorrectly. Without any knowledge on

how the parsing works, we added a trivial assertion (without any

generalization) to say that if the input is this particular method signa-

ture, the result should be certain particular string. ZIYUAN identified

a likely invariant: type.typeArgs.isNull == true, at line 1755 in

class ASTParser, which reads: if type.typeArgs.isNull is true,

the failure does not occur. The actual fix (by the project authors) is at

line 1810 (which is 4 statements before executing line 1755) and the
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fix is the insertion of the statement: type.typeArgs = null, which

makes the learned predicate an invariant.

The two examples so far resulted in predicates constituted by

boolean variables only. In the following, we show examples where

selective sampling helps us to generate the exact boundary conditions.

We applied ZIYUAN to three issues in ACM: 835, 1196 and 1005.

In particular, issue 1196 is a bug which is still open. It states

that if variable x is set to be 0x1.fffffffffffffp-2 (equivalent to value

0.49999999999999994), FastMath.round(x) returns 1 instead of

0 while clearly x < 0.5. We instrumented the program to assert

that if a number is less than 0.5, the rounding result should be less

than 1. ZIYUAN tracked to the statement x + 0.5 in the program

and started finding classifiers. In our first attempt, ZIYUAN failed to

identify any classifier after a while. Our investigation shows that after

a few iterations, the classifier becomes x ≤ 0.49991269898708784,

LIBSVM fails to classify the samples because the samples are too

close. We then implemented a simple classification algorithm (and

a simple solver for the same reason) to learn classifiers in the form

of x ≥ c and obtained a predicate x ≤ 0.49999999999999991. It

means that when x is smaller than the number, the rounding result

is correct. This result in fact generalizes an open bug in JDK 6

and 7 (bug number JDK-6430675) by giving a range of x which

could trigger the bug. For issue 835, ZIYUAN discovered that a likely

invariant fraction.numerator >= 0 is violated in the failed test

cases, which turned out to be the result of an integer overflow. A

similar discover has been made for issue 1005.

We applied ZIYUAN to analyze three issues of JT: 21, 27 and 227.

Issue 227 reports that adding 50 days from May 15 results in June

4, which is clearly wrong. We added an assertion before method

AddDays in class MonthDay and ZIYUAN generated the predicate

days+ iV alues[1] ≤ 62, which reads that if the number of days to

be added plus the original day is larger than 62, the bug occurs. It

points to a bug which is activated only if the resultant date is in the

next-next month or later. Due to the space limit, we skip the details

on ZIYUAN’s findings for other bugs in the JT project or the JDU

project. Interested readers are referred to [3] for the details. Though

limited in the number of test subjects, we confirm ZIYUAN to be

useful in helping users to understand these bugs.

User study Finally, we perform a user study to evaluate whether

independent programmers consider the generated predicates useful.

The user study is conducted with 12 programmers (including PhD

students, research assistants and research fellows). The programmers

have a various number of years of programming experience (from 2

to 9 with an average of 5.75). They were divided into two groups

randomly. The programmers in the first group were instructed to fix

JP issue 46 without ZIYUAN’s help and then to fix JDU issue 10 with

ZIYUAN’s help. The other group were instructed to fix the former

issue with ZIYUAN’s help and then the latter issue without ZIYUAN’s

help. This experiment is thus similar to a scenario where ZIYUAN is

used to help a programmer to fix a bug in the legacy code. These

two bugs are representative and not easy to fix.

Each programmer was given at most 30 minutes to study the bug

so as to figure out the reason of the bug and propose a fix. We then

evaluated whether their explanation and proposal were correct. For

the first bug, with ZIYUAN’s help, 3 out of 6 programmers figured

out the bug correctly in 10, 27, 30 minutes respectively. Without

Ziyuan’s help, 2 out of 6 did it in 14 and 30 minutes respectively.

For the second bug, with ZIYUAN’s help, 4 out of 6 programmers

did it in 15, 23, 24 and 30 minutes respectively. Without Ziyuan,

none of the programmers did it. Furthermore, all of the programmers

agree that the information provided by ZIYUAN was helpful. We

take this as a positive feedback on the usefulness of the generated

predicates. We acknowledge that the user study is limited in the

number of programmers and bugs. We refer the readers to [3] for

the details on the user study.

RQ3: Does ZIYUAN complement existing approaches? ZIYUAN

can be categorized as an invariant learning tool. Thus, we performed

experiments to compare ZIYUAN with the popular invariant generator

DAIKON as well as FailureDoc reported in [79]. To compare with

DAIKON, we use the same set of passed test cases used in ZIYUAN for

each project and check whether DAIKON can learn an invariant which

is relevant (as defined above). Note that DAIKON does not learn from

failed test cases. Furthermore, the ‘artificial’ program states generated

by ZIYUAN do not constitute actual test cases and thus cannot be used

by DAIKON or FailureDoc. The results are summarized in column

DAIKON of Table IV, where error means an exception; to means

timeout after one hour; × means none of the learned invariants are

relevant and + means some invariants are relevant. DAIKON failed

to learn useful invariants in most of the cases.

Similar to ZIYUAN, FailureDoc aims to explain a failed test case.

However, it focuses on the failed test case only (without analyzing

the source code) and generates a predicate constituted by variables

used in the failed test case only. In a way, it can be considered

as applying ZIYUAN with the following restrictions: (1) learning

based on the variables in the failed test case only, using DAIKON

to generate a likely invariant, and not applying selective sampling.

We tried FailureDoc on the list of bugs ZIYUAN analyzed and had

no useful results because FailureDoc does not support user-provided

assertions. As shown above, we managed to apply ZIYUAN to some

of the bugs analyzed by FailureDoc in [79] and generated useful

bug explanation in the program. We conclude that FailureDoc and

ZIYUAN are useful in different settings.

ZIYUAN has a different goal from SBFL. However, we show

that ZIYUAN could potentially be used to improved SBFL. The

last column of Table IV shows two numbers. The first one is

how many statements must the user examine before reaching the

statement containing the bug, assuming that the user examines the

program statement-by-statement based on the suspiciousness ranking

generated by Ochiai’s approach. The second one is the number of

statements the user has to examine, assuming the user starts with

where ZIYUAN generates the bug explanation and works towards

the bug following the statements executed in the failed test case. A

smaller number (highlighted in bold) is better since fewer statements

are to be examined. We do not have the fixes for the bugs presented

in the last three rows and thus we skip them for this comparison.

First, it can be observed from the data that SBFL may not always

be effective, which is consistent with the observations in [59], [73].

Second, though ZIYUAN relies on bug localization, we observed in

8 out of 10 cases that the predicate is not generated at the most

suspicious program location, but a program location closer to where

the bug is in the code. Intuitively, this could be explained as follows:

where the bug is easier to explain may also be where the fix is

easier to fix. In the case of JT issue 227, the bug explanation is

far from the bug because a large part of the relevant codes are a

recursive method (i.e., method add in class BaseDateT imeField)

and ZIYUAN currently tries to explain the bug only before or after

loops or recursive methods. Though the number of bugs we studied

is limited, the results suggest ZIYUAN may complement SBFL.

Limitations ZIYUAN has a number of limitations. First, though
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artificial data synthesis and selective sampling help to overcome the

lack of test cases, the quality of the generated predicate may still

depend on the test cases. For instance, in the extreme case, if no other

test cases other than a failed test case is provided, neither artificial

data synthesis nor selective sampling would help. To overcome this

limitation, we are currently working on integrating ZIYUAN with

sophisticated testing engines to boost its performance.

Second, the effectiveness of ZIYUAN relies on the user-provided

assertion. In general, the stronger the initial assertion is, the stronger

a bug explanation might be generated. In our running example, if

the assertion at line 3 is s1.newscore ≤ 100 ∧ s2.newscore ≤
100∧ s3.newscore ≤ 100, the learned predicate is stus[0].score ≤
max ∧ stus[1].score ≤ max ∧ stus[2].score ≤ max. We are

investigating how to automatically generate the initial assertion.

Third, in general we cannot guarantee that the learned predicate is

satisfied if and only if the given assertion is satisfied. This problem

can be solved by applying program verification techniques, i.e., to

verify that the learned predicate is the weakest precondition of the

program from the learning program location to the assertion, with

respect to the assertion. Nonetheless, existing program verification

techniques often have their own limitations and may not scale to

complicated programs that we would like to handle.

Fourth, the effectiveness of ZIYUAN depends on identifying the

right features. Although our heuristics for feature selection worked

in our empirical study, in general feature selection is challenging.

We are investigating whether we can use advanced program anal-

ysis or feature selection methods to identify the relevant features

automatically. Furthermore, ZIYUAN currently does not use inspector

method results other than those returning boolean values as features

for learning. This is because, unlike instance variables which we can

change their values during selective sampling, changing the returned

values of inspector methods are challenging in general.

Fifth, the classification algorithm used in ZIYUAN is limited to

predicates in certain form. They may not be sufficient sometimes,

e.g., the actual predicate could be non-linear or disjunctive. We

are currently investigating different classification algorithms (e.g.,

SVM with kernel methods and neutral network) to overcome this

problem. The challenge however is ensuring that the learned classifier

is comprehensible by programmers.

Lastly, our empirical study is limited in the number of studied

subjects and varieties. We are currently extending our collections of

programs and bugs for further study.

IV. CONCLUSION AND RELATED WORK

The main contribution of ZIYUAN is the application of invariant

learning for bug explanation, as well as a novel approach to overcome

the problem of lack of test cases in practice. In essence, what ZIYUAN

does is to propagate the initial user-provided assertion through the

program to a location that is close to where the bug is. We believe that

this is useful as programmers could then compare our bug explanation

with their understanding of the program specification.

This work is also inspired by the line of work by Zeller and his

collaborators, e.g., [76], [77], [26], [65], [35]. In particular, this work

is closely related to the work in [65]. In [65], the authors proposed

to isolate bug causes through directing test case generation (based

on [33]) towards certain factors which are potentially associated with

the bug cause. Two kinds of factors are considered: the executed

branches and state predicates. Similarly, ZIYUAN identifies the bug

causes in the form of state predicates. The state predicates used

in [65] (based on their previous work [34]) include comparison be-

tween accessible variable values at certain program locations, whereas

ZIYUAN relies on SVM to learn more complicated predicates. This

work is related to previous work on using likely invariants for

debugging [66], [40], [62]. Furthermore, this work is related to partial

specification generation using symbolic methods [63], [44], [45].

ZIYUAN complements the above work by using SVM to discover

relevant state predicates and, novelly, a way of “testing” and refining

the predicates (e.g., by selective sampling).

This work is inspired by the line of work on invariant learning by

Ernest and his collaborators [30], [56], [55], [60], [79]. In particular,

this work is closely related to the work documented in [79], which

shares the same goal of explaining failed tests by inferring likely

invariants. Their approach is to generate mutated tests based on the

failed test case, obtain a set of failure-correcting objects and use

DAIKON to summarize properties of the failure-correcting objects,

and lastly translate them into explanatory code comments. ZIYUAN

complements their work by analyzing not only the failed test case but

also the code, and in the way how mutated tests are generated (e.g.,

selective sampling) and how the properties of the failure-correcting

objects are generated.

This work is related to the work in [69], where the authors learn a

model in the form of finite state-automata to represent the scenarios

in which errors occur. Our work has a different goal and a different

learning approach. This work is related to work on explaining

counterexamples, e.g., [20] using the notion of causality and [38]

which is similar to delta debugging [76], and [51]. In contrast, we

focus on learning a local invariant which helps bug understanding.

This work benefited from ideas from existing work on specification

learning, including [74], [70], [36], [19], [22], [36], [42], [21],

[29], [43], [28]. ZIYUAN uses SVM-based learning to discover new

predicates, which is similar to previous work in [74], [70]. In [74],

random testing and SVM are used to learn a typestate for Java

classes. Later, the work in [70] extends [74] to provide correctness

and accuracy guarantee of the learned typestate. This work is different

as we have a different objective (i.e., bug explanation) and a different

learning approach, i.e., instead of L* [74], [70], we use active

learning and selective sampling for discovering invariants. This work

is related to work on inferring documentation from programs as

ZIYUAN also learns program invariants. Examples include [64] which

facilitates programmers to write documentations, [23] which infers

documentations from exceptions, [24] from software changes, etc.

Our work is different as it is motivated for bug explanation.

In addition, this work is related to research on bug/fault localiza-

tion, including but not limited to [73], [54], [65], [32], [53]. Our work

complements bug localization techniques by providing an explanation

of the bug. Not only ZIYUAN can benefit from better bug localization,

but also the bug explanation identified by ZIYUAN could potentially

help pinpoint where the bug is. This work is broadly related to

research on the art of debugging, e.g., [39], [78], [48], [27], as well

as recent studies on program repair, e.g., [50], [47], [52].
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