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ABSTRACT
Police patrols are used ubiquitously to deter crimes in urban areas.
A distinctive feature of urban crimes is that criminals react oppor-
tunistically to patrol officers’ assignments. Compared to strategic
attackers (such as terrorists) with a well-laid out plan, opportunis-
tic criminals are less strategic in planning attacks and more flexible
in executing them. In this paper, our goal is to recommend opti-
mal police patrolling strategy against such opportunistic criminals.
We first build a game-theoretic model that captures the interaction
between officers and opportunistic criminals. However, while dif-
ferent models of adversary behavior have been proposed, their ex-
act form remains uncertain. Rather than simply hypothesizing a
model as done in previous work, one key contribution of this pa-
per is to learn the model from real-world criminal activity data.
To that end, we represent the criminal behavior and the interaction
with the patrol officers as parameters of a Dynamic Bayesian Net-
work (DBN), enabling application of standard algorithms such as
EM to learn the parameters. Our second contribution is a sequence
of modifications to the DBN representation, that allows for a com-
pact representation of the model resulting in better learning accu-
racy and increased speed of learning of the EM algorithm when
used for the modified DBN. These modifications use marginaliza-
tion approaches and exploit the structure of this problem. Finally,
our third contribution is an iterative learning and planning mech-
anism that keeps updating the adversary model periodically. We
demonstrate the efficiency of our learning algorithm by applying
it to a real data set of criminal activity obtained from the police
department of University of Southern California (USC) situated in
Los Angeles, USA. We project a significant reduction in crime rate
using our planning strategy as opposed to the actual strategy de-
ployed by the police department. We also demonstrate the improve-
ment in crime prevention in simulations when we use our iterative
planning and learning mechanism compared to just learning once
and planing. This work was done in collaboration with the police
department of USC.
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1. INTRODUCTION
Crime in urban areas plagues every city in all countries. A no-

table characteristic of urban crime, distinct from organized terrorist
attacks, is that most urban crimes are opportunistic in nature, i.e.,
criminals do not plan their attacks in detail, rather they seek op-
portunities for committing crime and are agile in their execution of
the crime [17, 20]. In order to deter such crimes, police officers
conduct patrols with the aim of preventing crime. However, by ob-
serving on the spot the actual presence of patrol units, the criminals
can adapt their strategy by seeking crime opportunity in less effec-
tively patrolled location. The problem of where and how much to
patrol is therefore important.

There are two approaches to solve this problem. The first ap-
proach is to determine patrol schedules manually by human plan-
ners, which is followed in various police departments including
police in University of Southern California (USC). However, it
has been demonstrated that manual planning of patrols is not only
time-consuming but it is also highly ineffective in many related sce-
narios of protecting airport terminals [12] and ships in ports [16].
The second approach is to use automated planners to plan patrols
against urban crime. This approach has either focused on modeling
the criminal explicitly [20, 17] (rational, bounded rational, limited
surveillance, etc.) in a game model or to learn the adversary behav-
ior using machine learning [8]. However, the proposed mathemat-
ical models of criminal behavior have not been validated with real
data. Also, prior machine learning approaches have only focused
on the adversary actions ignoring their adaptation to the defenders’
actions [8].

Hence, in this paper we tackle the problem of generating patrol
strategies against opportunistic criminals. Our main novelty is in
learning the criminal behavior from real data. We do so by mod-
eling the interaction between the criminal and patrol officers as a
Dynamic Bayesian Network (DBN). This DBN model is our first
contribution. As far as we know, we are the first to use a DBN
model that considers the temporal interaction between defender and
adversary in the learning phase.

Given a DBN model, we can use the well-known Expectation
Maximization (EM) algorithm to learn unknown parameters in the
DBN from given learning data. However, using EM with the basic
DBN model has two drawbacks: (1) the number of unknown pa-
rameters scales exponentially with the number of patrol areas and
in our case is much larger than the available data itself; this results
in over-fitting (2) EM cannot scale up due to the exponential growth
of runtime in the number of patrol areas. We demonstrate these two
drawbacks both theoretically and empirically.



Our second contribution is a sequence of modifications of the
initial DBN model resulting in a compact representation of the
model, that leads to better learning accuracy and increased speed
of learning of the EM algorithm when used for the compact model.
This sequence of modifications involve marginalizing states in the
DBN using approximation technique from the Boyen-Koller algo-
rithm [7] and exploiting structure of this problem. In the compact
model, the parameters scale polynomially with the number of patrol
areas, and EM applied to this compact model runs in polynomial
time.

Our third contribution are two planning algorithms that enable
computing the optimal officers’ strategy. First, we present a dy-
namic programming based algorithm that computes the optimal
plan in our planning and updating process. While the dynamic
programming approach is optimal, it may be slow, hence we also
present a fast but sub-optimal greedy algorithm to solve the plan-
ning problem. Further, the criminal behavior would change as he
observes and reacts to the deployment of a new strategy. Hence,
the optimal strategy with respect to the learnt behavior may not
be effective for a long time, as the adversary behavior would have
changed. Thus, we propose to frequently update our adversary
model as we obtain new training data from a new deployment of
defender strategy. By repeating the planning and updating process,
we recommend officers’ strategy that are more effective than learn-
ing just once.

Finally, as part of our collaboration with the police department
of USC, we obtained criminal activity and patrol data for three
years. This collaboration helped us validate our learning approach
and also provided insights about the sequence of modifications that
could be made for the basic DBN model. In fact, we project a sig-
nificant reduction in crime rate using our approach as opposed to
the current patrolling approach (see Figure 10). Given these re-
sults, we expect our algorithm to be tested and eventually deployed
in USC. More broadly, by introducing a novel framework to rea-
son about urban crimes along with efficient learning and planning
algorithms, we open the door to a new set of research challenges.

2. RELATED WORK
We categorize the related work into five main areas. First, recent

research has made inroads in applying machine learning and data
mining in criminology domain to analyze crime patterns and sup-
port police in making decisions. A general framework for crime
data mining is introduced in [8]. In [14], data mining is used to
model crime detection problems and cluster crime patterns; in [9],
data mining approaches are applied in criminal career analysis; in
[15], the authors apply machine learning techniques to soft forensic
evidence and build decision support systems for police. However,
this area of research considers only crime data and does not model
the interaction between patrol officers and criminals.

The second line of work we compare with is Pursuit-Evasion
Games (PEG). PEG models a pursuer(s) attempting to capture an
evader, often where their movement is based on a graph[11]. How-
ever, in common settings of Pursuit Evasion Games, evader’s goal
is to avoid capture and not to seek opportunities to commit crimes
and a pursuer’s goal is to capture the evader and not to deter the
criminal; thus common PEG settings are different from the setting
in this work.

The third area of work we compare with is Stackelberg Secu-
rity Games (SSG) [18], which models the interaction between de-
fender and attacker as a game and recommends patrol strategies
for defenders against attackers. SSG has been successfully ap-
plied in security domains to generate randomized patrol strategies,
e.g., to protect flights [18], for counter-terrorism and fare evasion

checks on trains [13]. While the early work on SSG assumed a per-
fectly rational attacker, recent work has focused on attackers with
bounded rationality and learning the parameters of the bounded ra-
tionality model using machine learning methods such as maximum-
likelihood estimation. An example of this approach is the PAWS
model [19]. PAWS addresses the problem of learning poacher be-
havior within a game-theoretic interaction between defenders and
poachers.. Recent research has also made progress in designing
patrol strategies against adversaries in graph settings [2]. In [3],
patrol strategies against various types of adversaries are designed.

However, including various extensions, security games include
an explicit model of the adversary such as bounded rationality mod-
els and limited observations models. In general, in security games,
lack of sufficient data makes learning models of defender adversary
interactions challenging. Distinct from these approaches, we do not
model the adversary’s decision-making explicitly, rather we learn
the adversary interaction with defender using real world data. In
our case these are how the adversary moves from one patrol area to
another, and the his probability of committing a crime given some
patrol officers presence.

A fourth thread of recent research combines machine learning
with game theory. In [5], the defender’s optimal strategy is gener-
ated in a SSG by learning the payoffs of potential attackers from
their best responses to defender’s deployments. An inherent prob-
lem with such an approach is that the defender strategy is geared
towards learning the adversary payoff, and not exploiting the im-
proved knowledge of the adversary payoff as the game progresses.

The last area of work we compare with is on modeling oppor-
tunistic criminals. In [17] burglars’ movement is modeled as a
random walk, and in [20], a more general model of opportunis-
tic criminals was proposed with algorithms for optimal strategy
against such criminals. Again, these papers include explicit models
of the criminals and lack real world data to learn the interactions.

3. MOTIVATING EXAMPLE

B

A

C

E

D

Figure 1: Campus map Figure 2: DBN for games

Domain Description: The motivating example for this study
is the problem of controlling crime on a university campus. Our
case study is about USC in USA. USC has a Department of Public
Safety (DPS) that conducts regular patrols, similar to police patrols
in urban settings. As part of our collaboration with USC DPS, we
have access to the crime report as well as patrol schedule on cam-
pus for the last three years (2011-2013). USC is a large enough
university that allows us to claim that our methods are applicable
to other large campuses, including large mall areas.



Figure 3: Sample Crime Report

Shift A B C D E
1 1 1 2 2 2
2 1 1 1 2 1
3 2 1 1 3 1

Table 1: Crime data for 3 shifts.

In USC, the campus
map is divided into five
patrol areas, which is
shown in Fig 1. DPS pa-
trols in three shifts per
day. In the crime data
all crimes are local, i.e.,
no crime happens across two patrol areas or patrol shifts. At
the beginning of each patrol shift, DPS assigns each available
patrol officer to a patrol area and the officer patrols this area
in this shift. At the same time, the criminal is seeking for
crime opportunities by deciding which target they want to visit.
Discussions with DPS reveal that criminals act opportunistically,
i.e., crime is not planned in detail, but occurs when oppor-
tunity arise and there is insufficient presence of DPS officers.

Figure 4: Patrol Schedule for 1 shift

There are two re-
ports that DPS shared
with us. The first
is about criminal ac-
tivity that includes
details of each re-
ported crime during
the last three years,
including the type of
crime and the lo-
cation and time in-
formation about the
crime. We show a

snapshot of this data in Figure 3. In this paper, we do not dis-
tinguish between the different types of crime and hence we con-
sider only the number of crimes in each patrol area during each
shift. Therefore, we summarize the three year crime report into
365× 3× 3 = 3285 crime data points, one for each of the 8-hour
patrol shift. Each crime data point contains five crime numbers,
one for each patrol area.

The second data-set contains the DPS patrol allocation schedule.
Every officer is allocated to patrolling within one patrol area. We
show a snapshot of this data in Fig. 4. We assume that all patrol
officers are homogeneous, i.e., each officer has the same effect on
criminals’ behavior. As a result, when generating a summary of
officer patrol allocation data, we record only the number of officers
allocated to each patrol area in each shift.

Table 2 shows a sample of the summarized officer patrol alloca-
tion data, where the row corresponds to a shift, the columns cor-
respond to a patrol area and the numbers in each cell is the num-
ber of patrol officers. Table 1 shows a sample of the summarized
crime data, where the row corresponds to a shift, the columns cor-
respond to a patrol area and the numbers in each cell is the number
of crimes. For example, from Table 2, we know that in shift 1, the
number of officers in area A is 2 while the number of officers in
area B, C, D and E is 1, while from Table 1 we know that in shift

1, there was 1 crime each in area A and B, and 2 crimes each in
C, D and E. However, we do not know the number of criminals in
any patrol area in any patrol shift. We call the patrol area as targets,
and each patrol shift a time-step.

Shift A B C D E
1 2 1 1 1 1
2 1 1 2 2 2
3 2 1 1 3 1

Table 2: Patrol data for 3 shifts.

Problem Statement:
Given data such as the
real world data from
USC, our goal is to build
a general learning and
planning framework that
can be used to design op-
timal defender patrol al-
locations in any comparable urban crime setting.

We model the learning problem as a DBN, and we describe the
basic model and the EM algorithm in the next section. Then, we
present a compact form of our model that leads to improved learn-
ing performance. After that, we present methods to find the optimal
defender plan for the learnt model with frequent update of the crim-
inal model.

4. LEARNING MODEL
We propose to learn the criminals’ behavior, i.e, how the crim-

inals pick targets and how likely are they to commit crime at that
target. This behavior is in part affected by the defenders’ patrol al-
location. In this paper we assume that criminals are homogeneous,
i.e., all criminals behave in the same manner. Further, as stated
earlier, the patrol officers are also homogeneous. Thus, crime is af-
fected only by the number of criminals and patrol officers, and not
by which criminal or patrol officer is involved.

We propose a DBN model for learning the criminals’ behavior.
In every time-step of the DBN we capture the following actions:
the defender assigns patrol officers to protect N patrol areas and
criminals react to the defenders’ allocation strategy by committing
crimes opportunistically. Across time-steps the criminal can move
from any target to any other, since a time-step is long enough to
allow such a move. From a game-theoretic perspective, the crim-
inals’ payoff is influenced by the attractiveness of targets and the
number of officers that are present. These payoffs drive the behav-
ior of the criminals. However, rather than model the payoffs and
potential bounded rationality of the criminals, we directly learn the
criminal behavior as modeled in the DBN.

The DBN is shown in Fig 2: squares are observed states, where
N white squares represent input states (number of defenders at
each target) and N black squares represent output states (number
of crime at each target) while N circles (number of criminals at
each target) are hidden states. For ease of exposition, we use C to
denote the largest value that any state can take. Next, we introduce
the various parameters of this DBN.

4.1 DBN Parameters
First, we introduce parameters that measure size of the problem

• N : Total number of targets in the graph.

• T : Total time steps of the training data.

Next, we introduce random variables for the observed state (in-
put defender distribution and output crime distribution in our case)
and the hidden state. We use three random variables to represent
the global state for defenders, criminals and crimes at all targets.

• dt: Defender’s allocation strategy at step t: number of de-
fenders at each target in step t with CN possible values.

• xt: Criminals’ distribution at step t with CN possible values



• yt: Crime distribution at step t with CN possible values.

Next, we introduce the unknown parameters that we wish to learn.

• π: Initial criminal distribution: probability distribution of x1.

• A (movement matrix): The matrix that decides how xt evolves
over time. Formally, A(dt, xt, xt+1) = P (xt+1|dt, xt).
Given the CN values for each argument of A, representing
A requires CN × CN × CN parameters.

• B (crime matrix): The matrix that decides how criminals
commit crime. Formally,B(dt, xt, yt) = P (yt|dt, xt). Given
the CN values for each argument of B, representing B re-
quires CN × CN × CN parameters.

Next, we introduce variables that are used in the EM algorithm
itself. These variables stand for specific probabilities as illustrated
below. We use dji (yji ) as shorthand for di, . . . , dj (yi, . . . , yj):
Forward prob.: α(k, t) = P (yt1, xt = k|dt1),
Backward prob.: β(k, t) = P (yTt+1|xt = k, dTt+1),
Total prob.: γ: γ(k, t) = P (xt = k|yT1 , dT1 ),
2-step prob.: ξ(k, l, t) = P (xt = k, xt+1 = l|yT1 , dT1 ).

We can apply the EM algorithm to learn the unknown initial
criminal distribution π, movement matrix A and output matrix B.
However, EM applied to the basic DBN model above results in
practical problems that we discuss in the next section.

4.2 Expectation Maximization
We start with a brief overview of EM. EM is a class of algorithms

for finding maximum likelihood estimation for unknown parame-
ters in DBN [10]. The EM algorithm has an initialization step,
expectation (E) step and maximization (M) step. The initialization
step chooses initial estimates for unknown parameters (π, A, B).
The E step computes α, β, γ, ξ using these estimates. The M step
updates the estimates of π, A, B using values of α, β, γ, ξ from
E step. By iteratively performing E and M step, the EM algorithm
converges to a local maxima of the likelihood function for param-
eters in the DBN. The particular mathematical equations used in E
and M depends on the underlying model [4].

In EM algorithm, the size of movement matrixA is CN ×CN ×
CN and the size of crime matrix B is also CN × CN × CN . The
number of unknown variables isO(C3N ). The exponentially many
parameters make the model complex, and hence results in over-
fitting given limited data. In addition, the time complexity as well
as the space complexity of EM depends on the number of param-
eters, hence the problem scales exponentially with N . In practice,
we can reduce C by categorizing the number of defenders, crimi-
nals and crimes. For example, we can partition the number of de-
fenders, criminals and crimes into two categories each: the number
of officers at each station is 1 (meaning ≤ 1) or 2 (meaning ≥ 2);
the number of criminals/crimes is 0 (no criminal/ crime) or 1 (≥ 1
criminal/crime). However, the number of unknown parameters is
still exponential in N . As a concrete example, in USC, N = 5
and the number of unknown parameters are more than 32768, even
when we setC = 2. As we have daily data for three years, which is
365×3×3 = 3285 data points, the number of parameters is much
more than the number of data points. Therefore, we aim to reduce
the number of parameters to avoid over-fitting and accelerate the
computing process.

5. EM ON COMPACT MODEL (EMC2)
In this section, we introduce our second contribution, which is to

modify the basic DBN model to reduce the number of parameters.
In the resultant compact model, the EM learning process runs faster

and avoids over-fitting to the given data. The improvement may
be attributed to the well-established learning principle of Occam’s
Razor [6], and our experimental results support our claims.

5.1 Compact model
We use three modifications to make our model compact. (1) We

infer from the available crime data that crimes are local, i.e., crime
at a particular target depends only on the criminals present at that
target. Using this inference, we constructed a factored crime ma-
trix B that eliminates parameters that capture non-local crimes. (2)
Next, we rely on intuition from the Boyen-Koller [7] (BK) algo-
rithm to decompose the joint distribution of criminals over all tar-
gets into a product of independent distributions for each target. (3)
Finally, our consultations with the DPS in USC and prior literature
on criminology [17] led us to conclude that opportunistic crimi-
nals by and large work independently. Using this independence of
behavior of each criminal (which is made precise in Lemma 1),
we reduce the size of the movement matrix. After these steps, the
number of parameters is only O(N · C3).

Before describing these modifications in details, we introduce
some notations that aid in describing the different quantities at each
target: Yt = [Y1,t, Y2,t, ..., YN,t] is a N by 1 random vector indi-
cating the number of crimes Yi,t at each target i at step t. Dt is a
N by 1 random vector indicating the number of defenders Di,t at
each target i at step t. Xt is a N by 1 random vector indicating the
number of criminals Xi,t at each target i at step t.

Factored crime matrix: The number of crime at one target at
one step is only dependent on the criminals and officers present at
that target at that step. Therefore, we factor the crime matrix B to
a matrix that has an additional dimension with N possible values,
to represent how the criminals and officers at one target decide the
crime at that target. Therefore, instead of the original crime matrix
B of sizeCN×CN×CN matrix, we have a factored crime matrix
of sizeN×C×C×C crime matrix. The first dimension of factored
crime matrix represents the target, the second dimension represents
the number of defenders at this target, the third dimension repre-
sents the number of criminals and the fourth dimension represents
the number of crimes. We still refer to this factored crime matrix
as B, where B(i,Di,t, Xi,t, Yi,t) = P (Yi,t|Di,t, Xi,t)

Marginalized hidden state: The BK algorithm presents an ap-
proximation method by keeping the marginals of the distribution
over hidden states, instead of the full joint distribution. Follow-
ing the BK intuition, we marginalize the hidden state, i.e., instead
of considering the full joint probability of criminals at all targets
(with CN possible values), we consider a factored joint probability
that is a product of marginal probability of the number of criminals
at each target.

In the unmodified DBN, the distribution over all the states at step
t, P (xt) is a CN by 1 vector. Additionally, the size of movement
matrix A, which is the transition matrix from all the input and hid-
den state combinations at current step to the state at next step, is
CN × CN × CN . After marginalization, the marginals for each
target i in the hidden state is P (Xi = k, t), is a vector of size C.
After we marginalize the hidden states, we only need to keep N
marginals at each step, i.e., consider only N parameters. At each
step, we can recover the distribution of full state by multiplying
the marginals at this step. Then, we get the marginals at next step
by evolving the recovered joint distribution of state at current step.
Therefore, A can be expressed as a CN × CN × N × C matrix,
where A(dt, xt, i,Xi,t+1) = P (Xi,t+1|dt, xt).

Pairwise movement matrix Am: Even with marginalized hid-
den state, we still need to recover the distribution of full state in
order to propagate to next step. Therefore, the movement matrix



size is still exponential with CN × CN ×N × C. In order to fur-
ther reduce the number of unknown parameters and accelerate the
computing process, we use properties of opportunistic criminals.
Based on the crime reports and our discussion with DPS in USC,
unlike organized terrorist attacks, the crimes on campus are com-
mitted by individual opportunistic criminals who only observe the
number of defenders at the target they are currently at and do not
communicate with each other. Therefore, at current step, the crim-
inals at each target independently decide the next target to go to,
based on their target-specific observation of number of defenders.

Based on the above observation, we can decompose the probabil-
ity P (Xi,t+1 = 0|Dt, Xt) into a product of probabilities per target
m. Denote by Xm→i

t+1 the random variable that counts the number
of criminals moving from target m to target i in the transition from
time t to t+1. Lemma 1 proves that we can represent P (Xi,t+1 =
0|Dt, Xt) as a product of probabilities P (Xm→i

t+1 = 0) for eachm.
P (Xm→i

t+1 = 0) is a function of Dm,t, Xm,t

LEMMA 1. (Independence of behavior) For a N target learn-
ing problem, given the number of defenders at each location Dt =
[D1,t, ..., DN,t] and the number of criminalsXt = [X1,t, ..., XN,t],
the probability P (Xi,t+1 = 0|Dt, Xt) of the number of criminal
being 0 at location i at step t+1 is given by

∏N
j=1 P (Xj→i

t+1 = 0).

PROOF 1. Note that we must have Xm→i
t+1 ≥ 0. We have the

total number of criminals at target i at time step t+1 as Xi,t+1 =∑
mXm→i

t+1 , i.e, the number of criminals at target i at step t +
1 is the sum of criminals that move from each target to target i.
Clearly Xi,t+1 = 0 iff XDm,t,Xm,t

i,t+1 = 0. Therefore, we have
P (Xi,t+1 = 0|Dt, Xt) = P (X1→i

t+1 = 0, . . . , XN→i
t+1 = 0). Since

the criminals’ decisions at each target are independent, we have
P (X1→i

t+1 = 0, ..., XN→i
t+1 = 0) =

∏N
m=1 P (Xm→i

t+1 = 0).

When C = 2 and Xi,t ∈ {1, 2}, we can construct the whole
movement matrix A using P (Xm→i

t+1 = 0) (pairwise transition
probabilities) by utilizing the fact that P (Xi,t+1 = 1|Dt, Xt) =
1 − P (Xi,t+1 = 0|Dt, Xt). Therefore, instead of keeping A, we
keep a transition matrix Am where Am(i,Di,t, Xi,t, j,Xj,t+1) =
P (Xi→j

t+1 ). The number of parameters in Am is N × 2 × 2 ×
N = 4N2. We do not consider the range of Xj,t+1 because we
only need one parameter to store the two cases of Xj,t+1 = 1
and Xj,t+1 = 0 since Am(i,Di,t, Xi,t, j,Xj,t+1 = 1) = 1 −
Am(i,Di,t, Xi,t, j,Xj,t+1 = 0). When C > 2, the number of
variables in Am are C2(C − 1)N2; we can readily extend the
above construction of A from Am, which we show in the appendix
(https://dl.dropboxusercontent.com/u/98294554/Appendix.pdf).

5.2 EMC2 procedure
EM on CompaCt model (EMC2) procedure applies the EM algo-

rithm to the compact DBN model. To learn the initial distribution
πk,i = P (Xi,1 = k), matrix Am and matrix B, we first gener-
ate initial estimates of these parameters that satisfy the condition∑

k π̂(k, i) = 1,
∑

Xj,t+1
Âm(i,Di,t, Xi,t, j,Xj,t+1) = 1 and∑

Yi,t
B̂(i,Di,t, Xi,t, Yi,t) = 1.

Next, we define the intermediate variables used in the EM algo-
rithm. These differ from the earlier application of EM because of
our changed model. We use the shorthand Y j

i to denote Yi, ..., Yj

and Dj
i to denote Di, ..., Dj :

Forward prob.: α(i, k, t) = P (Y t
1 , Xi,t = k|Dt

1),
Backward prob.: β(i, k, t) = P (Y T

t+1|Xi,t = k,DT
t ),

Total prob.: γ(i, k, t) = P (Y,Xi,t = k|DT
1 ),

2-step prob.: ξ(i, k, j, l, t) = P (Xi,t = k,Xj,t+1 = l|Y T
1 , D

T
1 ).

Next, the E and M steps are used with random restarts to learn
the values of π, Am and B. While the equations used in the E and
M steps can be derived following standard EM techniques, we il-
lustrate a novel application of the distributive law for multiplication
in the E step that enables us to go from exponential time complexity
to polynomial (in N ) time complexity. Without going into details
of the algebra in the E step, we just focus on the part of the E step
that requires computing P (Y t−1

1 , Xi,t = 0|Dt
1).

The following can be written from total law of probability

P (Y t−1
1 , Xi,t = 0|Dt

1) =
∑
Xt−1

P (Y t−1
1 , Xi,t = 0, Xt−1|Dt

1)

=
∑
Xt−1

P (Y t−1
1 |Dt

1, Xi,t = 0, Xt−1)P (Xi,t = 0|Dt
1, Xt−1)

P (Xt−1|Dt
1)

The above can be simplified using the Markovian assumptions of
the DBN to the following∑
Xt−1

P (Y t−1
1 |Dt

1, Xt−1)P (Xi,t = 0|Dt−1, Xt−1)P (Xt−1|Dt
1)

The first and third term can be combined (Bayes theorem) to obtain∑
Xt−1

P (Y t−1
1 , Xt−1|Dt

1)P (Xi,t = 0|Dt−1, Xt−1)

Using the Boyen-Koller assumption in our compact model we get

P (Y t−1
1 , Xt−1|Dt

1) =
∏

j P (Y t−1
1 , Xj,t−1|Dt

1)

Also, using Lemma 1 we get

P (Xi,t = 0|Dt−1, Xt−1) =
∏

j P (Xj→i
t = 0)

Thus, using these we can claim that P (Y t−1
1 , Xi,t = 0|Dt) is∑

Xt−1

∏
j P (Y t−1

1 , Xj,t−1|Dt
1)P (Xj→i

t = 0)

Since the range of Xt−1 is CN , naively computing the above in-
volves summing CN terms, thus, implying a time complexity of
O(CN ). The main observation that enables polynomial time com-
plexity is that we can apply principles of the generalized distribu-
tive law [1] to reduce the computation above. As an example, the
three summations and four multiplication in ab+ac+bc+bd can be
reduced to two summations and one multiplication by expressing it
as (a+b)(c+d). Using distributive law we reduce the computation
for P (Y t−1

1 , Xi,t = 0|Dt
1) by switching sum and product∏

j

∑
Xj,t−1

P (Y t−1
1 , Xj,t−1|Dt

1)P (Xj→i
t = 0)

The complexity of computing the above is O(NC). Applying this
idea, we can calculate α, β, γ and ξ from the estimated value of π̂,
Âm and B̂ in the expectation step in time polynomial in N .

For the maximization step, we update the estimate of π, Am and
B using the probabilities we derive in the expectation step. The
procedure is the same as Equation (7) to (9), hence we provide the
details in the appendix.

Computational complexity analysis The complexity of EM on
the basic model is O(C2NT ), and for EMC2 it is O(NC+1T +
(C · N)2T ). The detailed derivation is not hard and delegated to
the appendix. Therefore, EMC2 procedure runs much faster than
EM in the basic model when C is small.

6. DYNAMIC PLANNING
The next step after learning the criminals’ behavior is to design

effective officer allocation strategies against such criminals. In this
section, we first introduce a simple online planning mechanism,



Algorithm 1 Online planning (Train_data, Tu, T )
1: A,B, π ← Learn(Train_data)
2: t = 0
3: while t < T do
4: [D1, ..., DTu ]← Plan(A,B, π)
5: [Y1, ..., YTu ]← Execute{D1, ..., DTu}
6: Train_data← Train_data ∪ {D1, Y1, ..., DTu , YTu}
7: A,B, π ← Update(Train_data,A,B, π)
8: t = t+ Tu

9: end while

in which we iteratively update criminals’ behavior model and plan
allocation strategies. Next, we present a slower optimal planning
algorithm and faster but sub-optimal greedy algorithm.

Online Planning Mechanism. We first state our template for
iterative learning and planning before describing the planning al-
gorithms. The criminal behavior may change when the criminal
observes and figures out that the defender strategy has changed.
Thus, the optimal strategy planned using the learned parameters is
no longer optimal after some time of deployment of this strategy, as
the parameters itself change in response to the deployed strategy.

To address the problem above, we propose an online planning
mechanism. In this mechanism, we update criminal’s model based
on real-time crime/patrol data and dynamically plan our allocation
strategy. The first step is to use the initial training set to learn an ini-
tial model. Next, we use a planning algorithm to generate a strategy
for the next Tu steps. After executing this strategy, we can collect
more crime data and use them to update the model with the original
training data. By iteratively doing this, we generate strategies for
the whole horizon of T steps. Algorithm 1 presents the details of
this mechanism.

Compared to simply applying planning algorithm for T steps,
our online planning mechanism updates criminals’ behavior model
periodically based on his response to the currently deployed strat-
egy. In this online planning mechanism, three parts are needed:
learning algorithm, updating algorithm and planning algorithm. For
learning and updating algorithm, we apply the EMC2 learning al-
gorithm from Section 5. In addition, we also need a planning algo-
rithm, which we discuss next.

6.1 Planning Algorithms
The planning problem. In the planning problem, the criminals’

behavior is known, or more specifically, we already know the crim-
inals’ initial distribution π, movement matrix A and crime matrix
B in the DBN model. Given a pure defender patrol allocation strat-
egy for Tu steps, we can plug those values for the input state in
the DBN and get the expected number of crimes in Tu steps. The
goal of planning is to find the defenders’ pure strategy that opti-
mizes the defenders’ utility, which in our case is to minimize the
total expected number of crimes. (In our way our framing, any
randomized strategy, which is the combination of pure strategies,
results in more number of crimes than the optimal pure strategy).
Thus, planning against opportunistic criminals is a search problem
in defender’s pure strategy space. First, we present the practical
impossibility of a brute force search.

Brute Force search: A naive way to solve this problem is to try
all possible allocation strategies and pick the one that leads to least
crimes in Tu steps. However, since at each step, the number of
possible allocation strategies is CN and there are Tu steps in total,
the strategy space is CNTu . For example, for our specific problem
of patrolling in USC with five targets, two categories and the goal
of planning for Tu = 300 steps, we need to search 21500 ≈ 10451

different strategies, which is impractical to solve.

Algorithm 2 DOGS (A,B, π)

1: for each officer allocation Di
1 do

2: Pa[i, 1]← 0; Pi,1 ← fY (A, π,Di
1); Xi,1 ← π

3: end for
4: for t← 2, 3, ..., Tu do
5: for each officer allocation Dj

t do
6: F (i) = fY (fX(A,Xi,t−1, D

i
t−1), D

j
t , B) + Pi,t−1

7: Pa[Dj
t , t]← argmini[F (i)]; Pj,t ← mini[F (i)]

8: Xj,t ← fX(A,X
Pa[D

j
t ,t],t−1

, D
Pa[D

j
t ,t]

t−1 )

9: end for
10: end for
11: index[T ]← argmini Pi,T ; D̂[T ]← D

index[T ]
T

12: for t← T − 1, ..., 1 do
13: index[t]← Pa[D

index[t+1]
t , t+ 1]

14: D̂[t]← D
index[t]
t

15: end for
16: return D̂

Dynamic Opportunistic Game Search (DOGS): First, we list
some notation that will be used in the next two planning algorithms.

• Dj
t indicates the jth strategy for the defender from the CN

different defender strategies at time step t.

• Pj,t is the total number of crimes corresponding to the opti-
mal defender strategy for the first t time-steps that has j as
its final defender strategy.

• Xj,t is the criminals’ location distribution corresponding to
the optimal defender strategy for the first t time-steps that
has j as its final defender strategy.

• fY (Xt, D,B) is the expected number of crimes at all tar-
gets at t given the criminal location distribution Xt and de-
fender’s allocation strategy D at step t and output matrix B.

• fX(A,Xt, Dt) is the criminal location distribution at step
t + 1 given the criminal location distribution Xt and de-
fender’s allocation strategy Dt at t and transition matrix A.

DOGS is a dynamic programming algorithm, hence in order to
find the optimal strategy for t steps, we first find the optimal strat-
egy for the sub-problem with t− 1 steps and use it to build the op-
timal strategy for t steps. Given the values of π, A and B from our
learning step, the optimal defender allocation strategy D1, ..., DTu

is given by the recurrence relations:

Pj,1 = fY (π,Dj
1, B)

Pj,t = mini[fY (fX(A,Xi,t−1, D
i
t−1), D

j
t , B) + Pi,t−1]

Retrieving the optimal allocation strategy requires remembering
the allocation Di

t−1 that minimizes the second equation, which is
done by storing that information in the function Pa, as follows:

Pa[j, t] = argmin
i

[fY (fX(A,Xi,t−1, D
i
t−1), D

j
t , B) + Pi,t−1]

As Pj,Tu is the total number of crime for the optimal defender
strategies for Tu time-steps that has j as the final strategy, the opti-
mum strategy for time-step Tu is given by DTu = argminj Pj,Tu .
Then, recursively, given optimal Dt we find the optimal strategy in
the previous time-step using function Pa: Dt−1 = Pa[Dt, t]. The
complexity of DOGS algorithm (Algorithm 2) is O(C2NTu).

Greedy search. The dynamic programming based algorithm
can generate the optimal strategy, but takes time O(C2NTu). We
present a greedy algorithm that runs in O(CNTu) time, but the
solution may be sub-optimal. In greedy search, we split the strat-
egy space into Tu slices. Each slice represents the strategy at each



Algorithm 3 GREEDY (A,B, π = X1)
1: for t← 1, . . . , Tu do
2: Dt ← argminD fY (Xt, D,B); Xt+1 ← fX(A,Xt, Dt)
3: end for
4: return D = [D1, ..., DTu ]

step. Then, instead of searching the optimal strategy for Tu steps,
we only look one step ahead to search the strategy that optimize
defender’s utility at current step (Algorithm 3). It finds the opti-
mal patrol allocationDt at current step by minimizing the expected
number of crime at all targets at step t. For the next step, we com-
pute the criminal’s distributionXt+1 and greedily search again. We
keep iterating this process until we reach Tu step. The complexity
of Greedy search is O(CNTu).

7. EXPERIMENTAL RESULTS
Experimental setup. All our experiments were performed on a

machine with 2.4GHz and 16GB RAM. MATLAB was our choice
of programming language. There are two threads of experiments,
one on learning and other on learning and planning. To avoid leak-
ing confidential information of USC Department of Public Safety,
all the crime numbers shown in the results are normalized.

Learning (Setting): Our first experiment is on evaluating per-
formance of EMC2 algorithm in learning criminals’ behavior. We
use the case study of USC in our experiments. We obtained three
years of crime report and corresponding patrol schedule followed in
USC. Since EMC2 algorithm and EM algorithm only reach locally
optimal solution, we run the algorithms for 30 different randomly
chosen start points and choose the best solution from among these
runs. These start points, i.e., values of A, B and π, are generated
by sampling values from a uniform random distribution over [0, 1]
for all the elements and then normalizing the probabilities so that
they satisfy the initial conditions. C is set to 2 by default while the
effect of varying C is compared in Figure 9.

Results: The results shown in Figure 5 compares the estimated
numbers of crimes using different learning algorithms with real
number of crimes in 30 days. Three different algorithms are com-
pared: (1) the Markov chain (MC) algorithm, in which the problem
is modeled as a Markov chain where the states represent the number
of defenders and crimes at all targets, (2) the exact EM algorithm
and (3) the EMC2 algorithm. We divide the three year data into
four equal parts of nine months each. For each part we train on the
first eight months data and test on the ninth month data. The x-axis
in this figure indicates the index of the part of data that we evaluate
on. y-axis is the total number of crimes in 30 days. The closer this
number is to the real number of crime, the better the prediction is.
As can be seen, the prediction of EMC2 is much closer compared
to those of EM and MC algorithm in all the training groups. This
indicates that the crime distribution is related to criminals’ loca-
tion and including number of criminals at each target as a hidden
state helps improving performance. In addition, EMC2 algorithm
achieves better performance than EM by reducing number of un-
known variables to avoid over-fitting.

For Figure 6, we measure learning performance for each indi-
vidual target using a metric that we call accuracy. To define this
metric, let nit be the actual number of crimes at target i for time
step t, let n′it be the predicted number of crimes at target i at time
step t. Then, accuracy at step t is the probability of the event∑N

i=1 |nit − n′it| ≤ 1. In other words, it is the probability that
we make less than one mistake in predicting crimes for all N tar-
gets. The reported accuracy is the average accuracy over all t. In
Figure 6, the y-axis represents the accuracy. The higher accuracy
is, the more accurate our prediction is. We compare four different

algorithm: MC, EM, EMC2 algorithm and the uniform random al-
gorithm, which sets equal probability for all possible numbers of
crimes at each target. As expected, EMC2 outperforms all other
algorithms in all training groups. In addition, even though the ac-
curacy of the algorithms varies in different training groups, which
we attribute to the noisy nature of the data in the field, the largest
difference is within 15%. This indicates accuracy of the algorithms
are data-independent.

We present additional results under this setting in Figure 7 and
8. We compare the four approaches for varying size of training
data, thus, the x-axis in both figures shows the number of training
data (in days of data) used in learning. Our test data is all of the
data points from a 30 day period, and the training data are the data
points just before (in order of time) the test data points. For Figure
7, EMC2 algorithm again outperforms all other algorithms for any
number of training data in accuracy. In addition, the more data
we have for training, the better accuracy we achieve. In Figure
8, the y-axis shows runtime in seconds on a log scale. The more
data we have, the longer it takes for each training method. Random
algorithm is pre-generated and takes almost no time, hence that data
is not shown in the figure; the runtime for MC is negligible because
the number of state is small (O(4N )) and we traverse all the data
points only once; the runtime for EMC2 algorithm is significantly
better than that for EM algorithm, as is expected by our complexity
analysis in Section 5.

In Figure 9, we compare the four approaches by varying C. The
x-axis shows the value of C. We use 1100 data points for training
while 30 data points, which is just after the training data points,
are used for testing. The accuracy decreases as C increases. This
is because when C increases, there are more possible values of
number of crimes. Thus, the possibility of predicting an accurate
number decreases. However, when C increases from 3 to 4, the
decrease in accuracy is small in EMC2 due to the fact that data with
value 4 rarely appears in both the crime and patrol data-set. This
indicates a small C is a good approximation. In addition, EMC2

algorithm again outperforms all other algorithms for any C.
Learning and Planning (Real world data): Figure 10 com-

pares DOGS with the actual deployed allocation strategy generated
by DPS experts in USC. Similar to the settings in Figure 5, we di-
vide the three year data into four equal parts of nine months. For
each part we train on the first eight months data using EMC2 al-
gorithm and test different allocation strategy on the first 10 days
of the ninth month data. When testing the strategy, we assume the
criminals’ behavior remain unchanged during these 10 days. Three
different scenarios are compared: (1) the real number of crimes,
shown as Real in Fig. 10; (2) the expected number of crimes
with DPS strategy and learned criminal behavior, shown as Real-E
and (3) the expected numbers of crime with DOGS allocation and
learned criminal behavior, shown as DOGS. As shown in Fig 10,
the expected number of crime with DPS strategy is close to the real
number of crimes, which indicates EMC2 captures the main fea-
tures of the criminal behavior and provides close estimate of the
number of crimes. In addition, DOGS algorithm outperforms the
strategy generated by domain experts significantly. This demon-
strates the effectiveness of DOGS algorithm as compared to current
patrol strategy. By using allocation strategy generated by DOGS,
the total crime number reduces by ∼50% as compared to the cur-
rently deployed strategy.

Learning and planning (Simulated data): Next, we evaluate
the performance of our online planning mechanism. We use sim-
ulations for this evaluation. In the simulation, the criminal model
is simulated using the model from an earlier work on opportunistic
criminals [20], in which the authors explicitly model an opportunis-



1 2 3 4

0.4

0.6

0.8

1

1.2

date of training data

N
u

m
b

e
r 

o
f 

c
ri
m

e

 

 

Real

EMC
2

EM

MC

Figure 5: Total number of crime

1 2 3 4
0.1

0.3

0.5

0.7

date of training data

A
c
c
u

ra
c
y

 

 

EMC
2

EM

MC

Random

Figure 6: Individual Accuracy

30 270 1100
0.1

0.2

0.3
0.4

0.5
0.6

0.7

number of training data

A
c
c
u

ra
c
y

 

 

EMC
2

EM

MC

Random

Figure 7: Varying data

30 270 1100
0

2

4

6

8

10

number of training data

lo
g

(R
u

n
ti
m

e
)(

s
)

 

 

EMC
2

EM

MC

Figure 8: Varying data(Runtime)

2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C

A
c
c
u

ra
c
y

 

 

EMC
2

EM

MC

Random

Figure 9: Vary C

1 2 3 4
0

0.2

0.4

0.6

0.8

1

date of training data

T
o

ta
l 
n

u
m

b
e

r 
o

f 
c
ri
m

e

 

 

DOGS

Real

Real−E

Figure 10: Compare with deployed

2 4 10

0.4
0.6
0.8

1

iterating time

T
o

ta
l 
n

u
m

b
e

r 
o

f 
c
ri
m

e

 

 

DOGS

Greedy

Plan

Random

Worst

Figure 11: Vary Tu

2 4 10
0

100

200

300

400

iterating time

R
u

n
ti
m

e
(s

)

 

 

DOGS

Greedy

Plan

Figure 12: Vary Tu(Runtime)

tic criminal’s behavior. However, the defender does not know the
type of criminals in our experiments. Instead, the defender starts by
executing a random patrol schedule for 300 steps and collects the
corresponding crime report using which they learn an initial crimi-
nal behavior model. The criminal responds to the defenders’ patrol
schedule as predicted by the behavior model in [20]. Since the
criminal behavior in [20] is probabilistic, we run the experiment 30
times and each data point we report in this part is an average over
these 30 instances. We fix the number of patrol officers to 2N − 2,
where N is the number of targets. This number is consistent with
our real data-set numbers (8 officers for 5 targets), where there were
enough officers to allocate one officer to each target, but not enough
to allocate two officers to each target. We use EMC2 algorithm as
the learning algorithm.
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Results: Figure 11 to 13
presents the results from
our experiments about the
online learning and plan-
ning mechanism. Four
planning mechanisms that
we consider are as fol-
lows: first, a random
planning mechanism that
randomly generates allo-
cation strategy with lim-
ited resources; second, a
pure planning mechanism,

where we learn the criminal behavior model once and apply this
model to plan for the entire horizon T using DOGS algorithm;
third, a online planning mechanism with greedy planning algorithm
that updates every Tu time-steps; and the last mechanism is online
planning mechanism with DOGS algorithm that also updates ev-
ery Tu time-steps. In Figure 11, the total planning horizon T is
set to 600. In addition to the four planning mechanisms, we also
consider the worst case where the defender always protect the least
valuable targets. The x-axis shows the update interval Tu, which is
the time interval after which we update criminals’ behavior model.
The y-axis is the expected number of crimes that happens under
the deployed allocation strategy within 600 steps. Expected num-
ber of crimes under pure planning mechanism stay the same with
different Tu because it does not update the criminals’ model at all.

For online mechanisms, the expected number of crimes increases
as the update interval Tu increases. This is because with infrequent
updates of the criminals’ behavior model, we cannot keep up with
the real criminals’ behavior. In addition, with any size of the up-
date interval, DOGS algorithm outperforms the greedy algorithm.
In Figure 12, we present the runtime of three mechanisms for the
same experiment. We do not show the runtime for the random plan-
ning mechanism as it is small and same for any planning horizon T .
The runtime decreases as the update interval Tu increases. There
is a runtime-quality trade-off in choosing Tu. Figure 13 shows the
performance of the four planning mechanisms, but with different
number of targets in the model. The x-axis is the number of targets
in the graph and the y-axis is the expected number of crimes under
the deployed strategy. We set T = 600, Tu = 2. The results here
are similar to the results of Fig. 11.

These results lead us to conclude that online mechanisms out-
perform the baseline planning mechanisms significantly in any set-
tings. For online mechanisms, DOGS achieves better performance
while greedy planning algorithm requires less runtime. Thus, based
on the specific problem being solved, the appropriate algorithm
must be chosen judiciously.

8. CONCLUSION
This paper introduces a novel framework to design patrol alloca-

tion against adaptive opportunistic criminals. First, we model the
interaction between officers and adaptive opportunistic criminals
as a DBN. Next, we propose a sequence of modifications to the ba-
sic DBN resulting in a compact model that enables better learning
accuracy and running time. Finally, we present an iterative learn-
ing and planning mechanism with two planning algorithm to keep
pace with adaptive opportunistic criminals. Experimental valida-
tion with real data supports our choice of model and assumptions.
Further, our modeling assumptions were informed by inputs from
our collaborators in the DPS at USC. These promising results have
opened up the possibility of deploying our method in USC. This
paper has further opened up the integration of opportunistic crime
security games [20] with machine learning.
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