
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2019

SplitSecond: Flexible privilege separation of Android apps SplitSecond: Flexible privilege separation of Android apps

Jehyun LEE
Singapore Management University, jehyunlee@smu.edu.sg

Akshaya Venkateswara VENKATESWARA RAJA
Singapore Management University, akshayavr@smu.edu.sg

Debin GAO
Singapore Management University, dbgao@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
LEE, Jehyun; VENKATESWARA RAJA, Akshaya Venkateswara; and GAO, Debin. SplitSecond: Flexible
privilege separation of Android apps. (2019). 2019 17th International Conference on Privacy, Security and
Trust (PST): August 26-28, Fredericton, Canada, Proceedings. 1-10.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4686

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4686&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4686&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

SplitSecond: Flexible Privilege Separation of
Android Apps

Jehyun Lee
National University of Singapore

leejh@comp.nus.edu.sg

Akshaya Venkateswara Raja
Funding Societies, Singapore

Debin Gao
Singapore Management University

dbgao@smu.edu.sg

Abstract—Android applications have been attractive targets to
attackers due to the large number of users and the sensitive
information they possess. After the success of the first step of
an attack exploiting a software vulnerability, the consequential
damage is primarily determined by the criticality and the amount
of Android permissions that a victim application has. As a coun-
termeasure, process separation techniques that isolate potentially
vulnerable components — usually native libraries — from the
critical data and permissions, have been proposed. However,
existing techniques offer little flexibility in the separation, e.g.,
with all native code being placed into one process without
considering its dependency with other (Java) components and the
non-empty set of permissions needed. In this paper, we propose
a flexible privilege separation system, named SplitSecond, that
enables selective permission separation at the granularity of Java
components and native methods. SplitSecond provides safety
against the attacks by restricting permissions on a user selectable
isolation unit. According to our case study and experimental eval-
uation on a real handset with SplitSecond adopted Android OS
and 100 top-ranked Android applications, 59.59% of activities,
66.8% of native methods, and 47.49% of permissions on average
are flexibly splittable by SplitSecond with moderate overhead.

Index Terms—Android security, privilege separation, process
isolation

I. INTRODUCTION

While Android becomes more popular as an operating
system for mobile devices taking more than 80% of the market
share [1], higher demands are placed on the privacy and
security of its applications. This is partially due to the per-
mission model used in Android in which once an application
is compromised, the attacker takes over the control of not
only the program codebase (to run an arbitrary sequence of
instructions) but also the permissions assigned to the applica-
tion (to perform sensitive operations or obtain sensitive data).
Privilege separation and code isolation have been proposed
as effective techniques to confine the damage created by a
successful exploit to Android applications, typically by sep-
arating and isolating native code (widely considered as more
vulnerable) [2]–[5] or advertising libraries (usually considered
as untrusted) [6]–[10] into an unprivileged process.

However, existing solutions lack the flexibility in two
dimensions, undermining their security and usability. First,
existing solutions perform the separation and isolation at a
coarse granularity, moving only the entire set of native or
untrusted libraries to the isolated process. However, in reality,
such potentially vulnerable and untrusted libraries might have

tight data dependency with other parts of the application (e.g.,
an Activity and a Service), separating which would result
in excessive inter-process communications or even loss of
functionality. For example, in a simple Android application
that we will use as a running example in this paper (more
details are presented in Section II), the native libraries could
not be isolated from its dependent Java component without
substantial modification to the app. This data dependency
problem on native code isolation had limited discussion in
existing work, and the proposed solutions like binary rewriting
to change the data flow require a thorough understanding of
the target library [5], which could be unrealistic.

Moreover, untrusted Java code holding critical permissions
could also pose a significant threat to privacy. Previous ef-
forts in solving this problem propose fine-grained permission
management with the component [11], the package [12],
and the component transition context [13]; but they lack the
attractive security property process separation provides in, e.g.,
completely blocking untrusted code from certain permissions.

Second, the set of permissions and privileges to be assigned
to the isolated process is not necessarily empty. Afonso et
al. experimented with a million applications and found that
many native methods require permissions for Java method
calls through JNI and system calls [14]. Coupling this with
untrusted code, which is not necessarily limited to third-
party advertising libraries but, e.g., methods or classes de-
veloped by a programmer from another development team
in the same company, that may need certain permissions for
its proper execution demands more flexible assignment of
permissions to the isolated process. In the running example
we are going to use in this paper, the Java code and the native
libraries on the isolated process require READ_STORAGE and
NETWORK_STATE permissions for connectivity check and
accessing media files, without which these components simply
do not work.

Creating a new process, moving fine-grained Java and native
code, and assigning certain privileges to the isolated process
may not sound overly complicated, but doing so in a reliable
(without breaking the original semantics of the application)
and automatic (without manual analysis) manner involves two
main challenges. The first challenge is on recognizing data de-
pendency among methods and classes in both Java and native
code, which could make certain code pieces “non-splittable”.
For example, a static network port could not be trivially shared

mailto:leejh@comp.nus.edu.sg
mailto:dbgao@smu.edu.sg

between two processes with different UID, otherwise it could
lead to access violation errors. Data dependency arises not
only because of the accessibility and ownership of data but
the validity of the identifier. Resource identifiers like file
descriptors also introduce dependency through the file that
is shared. In our running example to be discussed in more
details in Section II, a Java Activity passes a file descriptor
instead of a file path to native methods, and the identifier is
only valid in the process where the file is opened. The second
challenge arises specifically for proper execution of Java code
on the newly created process, since specific runtime context
(e.g., background tasks, global variables, and activities that
had executed earlier) is needed for its proper execution.

In this paper, we present our design and implementation
of a novel application execution system called SplitSecond,
which provides a split and monitored execution environment
that separates an application into two distinct processes.
SplitSecond defines and recognizes Split Execution Units in
an application with dependency analysis at the granularity
of Android components and native methods, systematically
organizes app permissions for flexible configuration of the
split processes, and provides Android runtime components for
the split execution. We apply SplitSecond to provide reliable
splitting for the top 100 ranked applications on Google Play.

Besides showing that SplitSecond is capable of splitting
Java and native code with the required permissions, we also
evaluate the extent to which such flexible separation could
be reliably performed without breaking application semantics.
Through empirical case studies of the top 100 ranked appli-
cations running on a real handset with a modified Android
OS adopting SplitSecond, we show that SplitSecond gains the
flexibility of freely assigning, on average, 59.59% of activities,
66.8% of native methods, and 47.49% of permissions to
either the main or the split process. According to our user-
level overhead measurement with six sample applications, the
separated execution raises 8 to 20% of overhead in time and
less than 50% overhead in memory consumption.

II. MOTIVATION AND CHALLENGES

SplitSecond provides separated process execution of An-
droid apps by creating a distinct process for split execution
and managing native libraries, Android activities, and commu-
nications between a main and a split process. In the rest of the
paper, we use the term split application and process to denote
the additionally created app and the newly created process,
while the original application and its process are referred to
as the main application and process.

A. Motivating example

We use the example of a media player application, GOM
Player1, available on Google Play to motivate our system
and to explain our design and implementation. This media
player supports playback of local video files as well as those
downloaded from the web, and requires sensitive permissions

1https://play.google.com/store/apps/details?id=com.gretech.gomplayerko&
hl=en

including INTERNET, CONTACTS to access Google Drive2,
and READ and WRITE_EXTERNAL_STORAGE for media file
management. It consists of 60 Android components including
45 activities and 6 native libraries.

a) Potential threat: The focus of most existing Android
privilege separation studies [2]–[5] is the set of native libraries,
which are usually coded with unsafe languages and are poten-
tially vulnerable. Any successful exploitation into these native
libraries could utilize all permissions given to the app to, e.g.,
leak sensitive information. In our example of the GOM player,
these include six native libraries written in C/C++. The same
argument goes to untrusted code which could intentionally
compromise security and privacy of the application. Such
untrusted code could be exploiting the permissions which are
not really needed by itself but are nevertheless granted due
to coarse-grained sharing of permissions with other legitimate
pieces of code. The over-permitted and shared permissions
could easily harm the users’ privacy unintentionally due to the
lack of privacy consideration in development and taking op-
eration/development convenience by sacrificing user’s privacy.
This coarse-grained permission sharing problem of Android
has been a common argument by previous studies [11]–[13]
as one of the design level weaknesses.

b) Complexity in separation: Although GOM Player is
a simple application with clear understanding of the potential
threats, separating the native libraries into another process
involves two main complexities. First, five out of the six
native libraries performing video decoding and Digital Right
Management (DRM) have tight data dependency with a Java
component, PlayerActivity. PlayerActivity uses
the five native libraries to provide video playback, and there-
fore is the best and only option to be moved to the split
process together with the five native libraries because of the
data dependency. Otherwise, de-coupled PlayerActivity
and the dependent native libraries makes a fault when it tries
to access the memory address of a shared object on the other
process. However, existing solutions (e.g., NativeGuard [5]) do
not support placing Java components onto the split process.

Second, the native libraries require certain privileges
for their proper functioning. Specifically, video decoding
needs READ_STORAGE permission, while the sixth library
libsqlcipher needs INTERNET access. Existing solu-
tions, however, assign zero permission to the split process.

c) Targeted privilege separation: Figure 1 shows an
example of a targeted privilege separation. In this configura-
tion, the split process executes PlayerActivity together
with its closely coupled decoding and DRM native libraries,
and is assigned a minimum set of privileges for its proper
execution. The sixth native library, which requires INTERNET
permission, runs in the main process.

Such a separation meets our security and privacy needs
because the potential vulnerabilities in the five decoding and
DRM libraries do not have INTERNET permission, greatly

2CONTACTS permission is the permission group to which
GET ACCOUNT permission (what the app actually needs) belongs.

https://play.google.com/store/apps/details?id=com.gretech.gomplayerko&hl=en
https://play.google.com/store/apps/details?id=com.gretech.gomplayerko&hl=en

Fig. 1. Example of split execution of a media player. Split App and JNI-on-
IPC are extensions by SplitSecond.

reducing the attacking surface and restricting private infor-
mation from leaking to the Internet. At the same time, it
helps solving the constraints in data dependency since the
dependable components are in the same process.

We stress that our objective is not to achieve one specific
configuration of privilege separation of Android application
execution, but to support flexible ways of splitting. We want
to analyze the data dependency in Android apps automatically,
provide to end users viable separation with the notion of Split
Execution Unit (SEU) (definition of which is introduced in
Section III-A), and support runtime execution of the app in
any specific configuration that the users deem suitable.

An example of such flexibility can be seen from the
AdCacheProvider component. This component is special
in that it is a local content provider used by activities in both
the main and the split processes. SplitSecond supports the
placement of such shared components on either process.

B. Users of SplitSecond and assumptions

SplitSecond targets Android users who have a higher de-
mand of system and application security. One practical usage
model of SplitSecond is to provide a pool of pre-defined
configurations to users to simplify the selection process. We
assume that users do not understand code-level details of the
target application because they are not the app developers, and
therefore consider binary rewriting the application or changes
to its implementation of data flow impractical.

C. Challenges and our solutions

1) Data and resource dependency: Data and resource de-
pendency arises due to the access control of Android and
SELinux system which restricts accessibility to a resource in
other processes with different UID/GID. Note that the read-
only assets, such as media files and property tables carried by
an app package (APK) are out of our concern because they are

statically provided to both processes. Figure 2 summaries four
cases in which the dependency of data and resources could
make split execution of Android apps complicated.

Fig. 2. Four types of data dependency

• Direct data access with a process dependent identifier:
When the identifier of data is for direct access without
any interface or a converter like a private memory address
or a file descriptor, the identifier is invalid in any other
processes. SplitSecond does not place components or
native methods that share a process dependent identifier
into two processes.

• Direct data access with a process independent identifier:
This occurs in cases of a relative file path, a local resource
path, and a relative URI. Because the identifiers are valid
in each process, it does not immediately harm usability
but could potentially result in data inconsistency.

• Indirect data access: When some native code attempts
to read/write a Java object, the access occurs indirectly
through JNI. Because the actual access to the data hap-
pens in the Java side of a JNI request, the customized JNI
implementation could enables sharing of consistent data
between two processes by converting an invalid identifier
to a valid one in the process.

• Universally accessible data: In the example of GOM
Player, media files in external or shared storage are
globally accessible by both processes. SplitSecond, there-
fore, freely assigns corresponding components and native
methods to the main or the split process.

2) Execution environment for Java code: A split process
must have the required framework, libraries, and interfaces to
other system layers similar to the original environment for
its normal usability and necessary runtime context, includ-
ing background tasks and initialization of global variables.
SplitSecond obtains this runtime context by automatically
executing the mandatory initialization code of an app when
a split process is created.

III. DESIGN AND IMPLEMENTATION OF SPLITSECOND

Intuitively, SplitSecond achieves privilege separation by
creating a new process from a distinct application with unique
UID, memory area, permissions, cache directory, and files,
which are protected by the Linux access control system. To
further provide flexibility in its separation, SplitSecond is
designed with the following two high-level principles.

First, SplitSecond uses a centralized native trampo-
line implemented in Android runtime to provide method-

level split execution for native methods, and an extended
ActivityManagerService (AMS) to support split exe-
cution of Java components and control Inter-Component Com-
munications (ICC) between the main and split processes. In
other words, SplitSecond supports splitting at the granularity
of native methods and Java components. Second, SplitSecond
establishes and monitors JNI on IPC channels between the
main and split processes to enforce specific privilege assign-
ment to the Java and native methods.

In the rest of this section, we first discuss our static
analysis for identifying dependency among native methods
and Java components, and then briefly outline our strategy
in privilege separation without violating data dependency. We
then describe our design of the runtime system to support split
execution and its implementation.

A. Static analysis and Split Execution Units

Before presenting flexible privilege separation configura-
tions to an end user, SplitSecond performs static analysis
on the Android application to find permissions required by
each native method and Java component as well as the data
dependency among them. As discussed in Section II-C1,
SplitSecond deals with four types of data dependency and
performs potential splitting in different ways.

a) Dependency among native methods: Dependency on
a native method and its caller components comes from the
passing of a directly accessible resource reference from Java
to native methods and between native method calls. When a
Java method passes a resource reference which is accessible
without JNI to a native method, the native method should be
on the same process as the caller. To detect the dependent
methods, we locate native method calls which have a byte
buffer pointer, native resource pointers, or a file descriptor
as an argument or return data type and mark them as “non-
splittable” from their callers. In the example of GOM Player,
three native libraries with JNI-exported native methods can
not work in a distinct process from their caller component
PlayerActivity because their argument includes a file
descriptor which is a process dependent resource identifier.
SplitSecond therefore considers them “non-splittable”.

b) Dependency among Android components: In contrast
to native depending on a single object (which is its caller), an
Android component has dependency with multiple components
even including its callee native methods. As a logical unit
of the dependent components, we introduce the concept of
Split Execution Unit (SEU). An SEU is a closed set of one or
more Android component classes among which there is data
dependency and execution has to happen in the same process.
Note that once defined, an SEU has its implication at the code
level (that to be executed in the same process) and permission
level (that be given some specific permissions). If a component
requires prior existence of another component, we group both
into the same SEU and denote the one with prior existence
as an anchor component. The anchor components of an SEU
are either 1) activities and services that can be started without
prior components; or 2) parents of sub- or child-activities.

Intuitively, an SEU consists of anchor components and com-
ponents connected with data or runtime context dependency.
SplitSecond performs the following four steps of processing
on the disassembled SMALI [15] code in order to identify
SEUs and their minimum set of permissions required.

1) Processing the manifest: We locate activities and ser-
vices declared in AndroidManifest.xml and group
those with parent-child and sequential relationship into
the same SEU.

2) Tracking control flow: We find all possible control-
flow paths in the method-level granularity. While the
variables accessed on the control-flow paths are used for
finding dependent classes and components, the methods
on the control-flow paths indicate permissions poten-
tially required.

3) Finding dependencies: We group components with run-
time context and/or data dependency into the same SEU.
In a conservative manner, we detect components that
access the same member variables in a class.

4) Tracking permissions: When any control-flow paths of
an SEU reach an API call that requires an Android
permission, we consider the corresponding permission
required by the SEU.

Eventually, a set of SEUs are identified for the target
application, from which an end user can formulate a specific
assignment of SEUs to the main and split processes. Note that
the number of SEUs obtained and their corresponding sizes are
good indicators on the amount of dependencies in the app as
well as the amount of code-level flexibility the end users have
in configuring SplitSecond. We further evaluate this flexibility
on the top 100-ranked Android applications; see Section IV-A.

B. Flexibility in permissions assignment

Besides selecting the SEUs to be executed on the main
and split processes, another important configuration for Split-
Second is the corresponding permissions to be assigned. This
might sound trivial since our identification of SEU discussed
above also outputs the set of permissions required by each
SEU, and intuitively, one could simply assign the union of the
corresponding permissions to the main and split process.

However, SplitSecond provides further flexibility (and the
corresponding security property) by defining a third category
of permissions. When a native method in a split process
requests a Java method call through JNI, SplitSecond could
forward the JNI call to either the main or the split process,
provided that the corresponding permission is given to the
process chosen. We, therefore, have the following three sets
of permissions defined.
• PM: Permissions granted to the main process
• PS: Permissions granted to the split process
• PS→M: Permissions granted to Java methods in the main

process that serve JNI requests from the split process
A naive way of performing permission assignment is to let

PM be a superset of PS→M. However, SplitSecond provides
additional support on PS→M to provide more flexibility in

the permission assignment and as a result, enhanced security
properties. The reason is that by making PS→M an isolated
set of permissions (excluded from PM), SplitSecond can
selectively grant permissions to such JNI requests from the
split process (which is potentially vulnerable or untrusted) by
allowing only a subset of native caller methods and a subset
of Java callee methods.

C. User configuration and app installation
With the two sets of analysis results (code-level analysis

as discussed in Section III-A and permission-level analysis
as discussed in Section III-B), SplitSecond presents a set of
required permissions according to chosen activities or native
methods by the user, and a set of SEUs according to any per-
missions selected by the user. We call the former configuration
“code-driven” and the latter “permission-driven”.

In the code-driven configuration, a user has a set of anchor
components and the splittable native methods as a pool of se-
lection. Once a component or a method is chosen to execute on
the split process, the set of dependent components, methods,
and permissions (SEU) will follow to the split process, too. On
the other hand, if a user selects a permission, SEUs requiring
the permissions are sent to the split process, and the anchor
components and the splittable native methods belonging to the
SEUs are enlisted to the permission-driven split configuration.

A final configuration consists of permissions for PM and PS

which will be applied to the main and split processes respec-
tively, a list of split activities, a list of split native methods,
and lastly, the list of Java methods to be accepted or rejected
for PS→M. SplitSecond then loads this confirmation during
application installation and execution for proper settings.

The installer of SplitSecond automatically installs two dis-
tinct applications during the initial installation of an app so that
the split application has its unique UID for proper protection.

D. Runtime components
In this section, we introduce the detailed components of

SplitSecond runtime based on AOSP_7.1.0_r36 [16], see
Figure 3. The gray colored components in are newly intro-
duced by SplitSecond, while the dotted ones indicate extended
components. SplitSecond uses the main process to handle the
split configuration, and the split process acts as a server to
take split executions. The split process management service
aids split process and permission management whereas the
intent handler, native invocation handler, proxy JNI, and object
reference manager help communication between the main and
the split processes.

1) Split process management service: The split process
management service helps the native invocation handler to
find the binder interface of the corresponding split ap-
plication, and requests to start the split process to the
ActivityManagerService (AMS) when the split pro-
cess does not exist. The newly started split process automat-
ically loads the Proxy JNI library for working as a binder
server. Once the main process receives the binder interface
from the service, the main process communicates with the
split process directly without this service.

Fig. 3. Runtime components of SplitSecond and their communications

2) Intent handler: Intent handler is the main controller of
Java code splitting. The intent handler implements the Android
component separation by extending AMS that manages the
intent transactions between Android components. The intent
handler catches an intent transaction and modifies the package
name from that of the main process to that of the split process
(or vice versa) along with the split configuration.

3) Object reference manager: Because the main and the
split processes have their protected memory and address
spaces, the variables in a process are not accessible from the
other unless a user places them on shared memory area in the
kernel. Fortunately, primitive data type variables and arrays of
primitive data types are transferable through the binder in both
ways. However, all the other variable types require marshaling
to be sent through the binder interface. Even though several
object types could be marshalized, we cannot guarantee the
validity of the transferred object in the receiver processes.
SplitSecond solves this object synchronization problem by
transferring object identifiers and actions toward the objects
instead of object bodies. In Android, the object identifier trans-
ferred through JNI is an indirect object reference (identifiers
pointing at Java objects indirectly).

4) Native invocation handler: To invoke a native method
on the split process, SplitSecond sends the invocation request
to the split process through the binder. The native invocation
handler performs a transaction in three steps: native method
call catch, configuration check, and binder transfer for native
library loading and native method invocation. Figure 4 illus-
trates a general process flow of the native invocation handler
and proxy JNI server/client.

5) Proxy JNI server and client: Proxy JNI is the imple-
mentation of binder interfaces for JNI on IPC. The Proxy
JNI server and client have identical interface methods to JNI
implementation and send requests and returns to the paired
processes through binder interfaces. These proxy interfaces
support Java method calls and object access from a native
method between the main and the split processes. When a
native method is in the split process but the parameter objects
and required permissions are on the main process, the Proxy
client on the split process passes the JNI request to JNI server
on the main process. The server-side binder interface makes a
local JNI call and returns the result through the binder again.

Fig. 4. Native method invocation and privilege enforcing

Proxy JNI also manages the permissions in PS→M; see
Section III-B. When a native method in a split process
requests for a Java method call, the JNI server checks the
user configuration before allowing it or denying it. JNI client
passes the JNI call in local JNI environment when an error
is returned. If the split process does not have the necessary
permission either, the action is blocked and is handled as cases
of permission denial.

IV. EXPERIMENTAL EVALUATION

In this section, we present our evaluation results in using
SplitSecond for the top 100 ranked Android applications on
Google Play. Our evaluation focuses on the flexibility SplitSec-
ond provides in code-level and permission-level configurations
as well as the resulting overhead. Besides the running example
of GOM Player, our evaluation will also focus on five high-
profile applications with large codebases. Note that we do not
focus on the security analysis here since it is naturally provided
by Android when execution is within two different processes.
Table I shows some details of these six applications.

Runtime experiments were conducted on a Google Pixel
phone with a 64-bit ARM processor, 32 GB storage, 4 GB
RAM, and our modified OS based on AOSP 7.1.2 r36 [16].

A. Flexibility: how much code and permission can be moved
to the split process

SplitSecond is designed to provide flexibility in privilege
separation. As we discussed in Section III, such flexibility
can be measured at the code level and permission level: at
the code level, a user may prefer moving certain potentially
vulnerable or untrusted code to the split process, while at the
permission level, a user may prefer assigning a small subset of
the privileges to the split process. However, this is constrained
by the data dependency among Java components and native
methods, as well as the necessary execution environment to
be set up for Java execution. To evaluate the extent to which
SplitSecond provides flexibility to users, we apply SplitSecond
on the top 100-ranked Android applications on Google Play
and measure the percentage of activities, native methods, and
permissions that can be split into a separate process. Result
shows that overall, 59.59% of activities, 66.8% of native

methods, and 47.49% of the permissions can be removed from
the main process.

Although this initial result is encouraging in the sense that
SplitSecond provides flexibility in configuring about 60% of
code and 50% of permissions, code-level and permission-level
flexibilities are highly coupled in enforcing certain security
and privacy policies, and they have to be cross-analyzed
for more meaningful evaluation. For example, splitting more
vulnerable code without or with limited permissions give
higher security to a user. That said, if a permission is remov-
able from the main process by splitting a lot of (potentially
vulnerable and untrusted) code to a split process without
harming normal usage, the main process can be safer from
unwanted/unexpected permission exploitation.

For this purpose, we perform a more detailed analysis
on five high-profile applications together with our running
example GOM player, and present the results in Table II. We
discuss the detailed results in the rest of this subsection.

1) How much Java code can be split: Intuitively, the more
code that can be split into a separate process, the more
flexibility a user has in enforcing various security and privacy
policies. As we discussed in Section III-A, the smallest unit in
splitting Java code is a Split Execution Unit (SEU). Smaller
SEUs (and consequently larger number of SEUs) imply less
dependency among the Java code and more flexibility in
moving them around.

The first three rows of Table II show that there are 20
SEUs for simple apps (e.g., GOM Player) and as many as 110
SEUs for complex apps (e.g., Twitter). The average number
of activities per SEU is between 1.63 and 3.41. Not shown
in Table II, we calculated c = 1.77 on average for the top
100-ranked apps. This shows that SplitSecond achieves good
flexibility among Java code with large numbers of SEUs to
be moved between the main and split processes, and the
dependency among Java activities are small with, on average,
only one or two activities being tightly coupled. We believe
that this is a result of event-driven programming for Android.

The results also suggest that privilege separation in an
Android application could potentially go a long way with, say,
more than 10 isolated processes. It is not clear, though, if there
are actually practical security needs to go to that extent.

2) More Java code split =⇒ More permissions?: We
have shown that SplitSecond provides great flexibility in terms
of the number of (independent) SEUs to be executed on the
split process. Recall that SplitSecond provides flexibility at the
permission level, too, in that selected permissions could be
given to the split process. We now go deeper into the analysis
of the number of permissions to be assigned when more SEUs
are moved to the split process.

Our analysis here assumes that the user intends to assign
the largest amount of code to the split process with the
minimum number of permissions. Figure 5 shows the possible
configurations the user could choose from for the six Android
applications. When no permission is given to the split process
(first two bars), one can assign between 21.82% and 65.00%
of the SEUs to the split process, which is consistent with the

TABLE I
PROPERTIES OF SIX SAMPLE ANDROID APPS IN OUR EVALUATION

App name Version Size of APK # of Java classes # of activities # of native lib. # of native methods
GOM Player 1.4.2 34 MB 7,222 45 6 192
Twitter 7.33.1 36 MB 29,212 192 10 141
Uber 4.197.10002 20 MB 21,145 235 11 189
Carousell 2.51.6.20 27 MB 18,539 129 13 176
Lazada 6.3.1 22 MB 19,891 90 24 102
Pinterest 7.0.0 22 MB 21,832 29 16 559

TABLE II
FLEXIBILITY ON SPLIT EXECUTION FOR FIVE SAMPLE APPS

GOM Player Twitter Uber Carousell Lazada Pinterest
of activities (a) 45 192 235 129 90 29

of SEUs (b) 20 110 69 79 45 21
of activities per SEU (c=a/b) 2.25 1.75 3.41 1.63 2 1.38

of SEUs not requiring permissions (d) 13 24 43 26 13 4
of exported native methods (e) 192 141 189 176 102 559

of exported native methods that can be de-coupled (f) 180 72 68 69 102 93
% of exported native methods that can be de-coupled (g=f/e) 93.75% 51.06% 35.98% 39.20% 100% 16.63%

of f while requiring permissions (h) 2 0 10 0 1 0
of permissions required by the app (i) 15 33 31 20 36 18

of permissions required by SEUs (j) 6 17 19 11 14 6

values of d shown in Table II. In addition to that, assigning
two permissions to the split process will allow more than 50%
of the SEUs to be moved to the split process, which could be a
sweet spot in user’s configuration (gaining substantial security
benefits of separation while assigning minimal permissions to
the split process).

Fig. 5. SEUs and SMALI code size at split process with permissions given

Figure 5 also shows the amount of SMALI instructions
executed on the split process. An interesting observation here
is that the rate of increase for the percentage of SMALI code

is significantly lower than that for the SEUs, which suggests
that SEUs requiring permissions typically contain smaller code
size. Another way to look at this is that code involving Java
permissions exhibits less dependency on data and runtime
context. This means that the initial gain in security with none
or a small number of permissions given to the split process
is relatively big (with a large amount of code running on the
split process), while the marginal security gain (in terms of
additional code running on the split process) goes down with
more permissions given to the split process. Note that the
percentage of SMALI code is far from reaching 100% even
when all SEUs are running on the split process due to non-
movable Java code (for execution environment setup), non-
invoked library modules, data structure classes, background
task classes that are not services, etc.

We extend the analysis to the top 100 ranked apps. The
SEUs of the top-ranked apps require 7.85 of permissions on
average out of 13.43 permissions required by an app. The
pool of flexible permission separation, therefore, is near half
of the permissions used by an app. In the splittable component
perspective, the top-ranked apps had 24.95 SEUs (59.59% of
activities), and 16.18 SEUs of them required one or more
permissions on average. The remaining 8.77 SEUs (20.95%
of activities) did not require any permissions. Regarding
permission-to-usability trade-off, 20.95% of the activities can
be separated into the split process without any permissions,
and a user can get a much better ratio by allowing a few
common permissions. Lastly, the removable permissions from
the main process by splitting every possible Java and native
code is 6.38 (47.49% of the permissions required by an app).

3) De-coupling native methods: The analysis above shows
the flexibility SplitSecond provides with Java code along with
the corresponding permissions to be given to the split process.

Figure 5 shows that users may prefer having fewer SEUs at
the split process in order to minimize the permissions given.
In the following analysis, we investigate the possibility of de-
coupling native methods from their corresponding parent SEUs
so that the native methods can be executed on the split process
while the parent SEU is tied to the main process. Here, our
focus is on a subset of JNI-exported native methods which
do not have any data dependency with its caller Java method.
Non-JNI-exported methods cannot be de-coupled because they
can only be called by the other native methods.

We find that the percentage of such a subset of JNI-exported
native methods that can be de-coupled varies from 35.98%
to 100% (see values of g in Table II) from the six sample
apps. This percentage is on average 66.8% on the top-100
ranked Android apps. Our manual analysis shows that methods
cannot be de-coupled mainly due to the use of direct memory
access for efficient memory copying and image processing.
Interestingly, most of the methods that can be de-coupled do
not require any permissions to execute (see values of h in
Table II), which makes such de-coupling really attractive.

SplitSecond also provides flexibility in handling the native
methods that require permissions. In the case of Uber, ten na-
tive methods require six permissions for sensitive JNI calls but
not for GID-managed object. Therefore, regarding permission
categorization, a reasonable configuration for Uber is to keep
PS empty and let PS→M contain the six permissions. One can
also move the relevant permissions from PS→M to PS, or to
place the ten native methods in the main process.

B. Overhead

Overhead of SplitSecond comes with the following main
contributors.
• Loss of optimization due to the centralized and serial-

ized point for native method trampoline and permission
enforcement.

• Additional process creation and execution, as well as the
extended Android components to catch native methods
and intents.

• Additional context switches between the main and the
split processes.

• Additional binder transactions for every native method
call, JNI call, and return of results. This will likely
introduce negligible overhead, though, as only references
and primitive type arguments and return values are trans-
ferred.

We evaluate the overhead of SplitSecond experienced by
end users in term of memory and time with the five high-
profile applications and the simple media player application.

We set two different usage scenarios, i.e., app initialization
with a split configuration which de-couples all the exported
native methods without Java code, and app specific usage
scenarios which include Java code separation or less dense
native method de-coupling, and measure the time and mem-
ory overhead. The app initialization scenario is tested from
the start of an app to the display-complete message of the
last activity without any user input. The app specific usage

scenarios are posting a tweet for Twitter, opening a PayPal
payment activity for Uber, opening an image gallery activity
for Carousell, searching products on a webview for Lazada,
and opening picture upload activity for Pinterest. Within the
app specific scenarios, Twitter and Lazada have only native
method separation during the test because those actions are
conducted on a view without change of activity.

All the scenarios are started by sending an intent. We tested
each initialization scenario for one hundred times on our hand-
set and measured the average elapsed time using an Android
Debugging Bridge (ADB) command sending intents repeatedly
with an option of killing and restarting the existing process
instead of waking up the process. Similarly, we also tested
the app specific usage scenarios for one hundred times in the
same environment. The elapsed time is measured from sending
an intent toward a target activity to the completion of display
reported by ActivityManager and WindowsManager.
The memory overhead is the difference of average memory
usage between the stock OS and SplitSecond. The average
memory usage is measured by using top command through
ADB during each app specific usage scenario, and we take
the stable values right after completion of the given work.

Table III shows the result of the percentage of additional
time and memory SplitSecond introduces in comparison with
running the same operations on the stock Android OS.

a) Runtime overhead for app initialization: The first
column of Table III shows the time overheads of each app
during initialization. We set a split configuration to decouple
all the possible native method calls into the split process. The
time overhead includes process creation and initialization time
for the split process, IPC transactions from the main process
to the split process for the decoupled native method calls,
and backward JNI-on-IPC transactions from the split process.
According to our observation, the differences among the appli-
cations are caused by loading of mandatory native libraries and
creating background threads in the split process. For example,
debugging and exception handling native libraries on GOM
Player and Lazada are commonly loaded by the main and
split process, which makes it long for the creation of a split
process. In contrast, the effect of IPC transactions was not
a critical factor. GOM Player showed only two JNI-on-IPC
transactions without main-to-split native method calls, whereas
Pinterest made one native method call and nineteen JNI-on-
IPC transactions with thousands bytes of parcels.

b) Runtime overhead for app specific usage: We set
application specific usage scenarios for each app including
Java-code separation. Only Twitter and Lazada have the
configurations that separate native methods. Note that these
scenarios do not include process creation and app initialization
time for the split process. Therefore, the time overhead on the
second column of Table III represent ICC handling, split policy
comparison, and GUI level context switching overhead. As we
can find in the cases of Lazada and Twitter, the native method
separation which does not make a change of the foreground
application showed relatively small time overhead.

In summary, we find that a native-only separation in the

TABLE III
OVERHEAD IN TIME AND MEMORY IN TWO TEST SCENARIOS

App name Time (app init.) Time (app specific) Mem.
GOM Player 38.58% 22.49% 58.24%
Twitter 12.21% 11.47% 51.32%
Uber 17.52% 12.57% 42.84%
Carousell 21.88% 24.78% 36.29%
Lazada 37.26% 11.56% 27.36%
Pinterest 17.53% 18.07% 43.83%

initialization scenario and Java-code separation scenario show
12% to 38% and 11% to 24% of runtime computation
overhead, respectively, which is diverse and dependent on
the application characteristic. Memory consumption presents
a persistent overhead by additional process and is mainly
dependent on the size of the application code base and size of
the split activity.

V. LIMITATIONS AND FUTURE WORK

Our prototype implementation of SplitSecond shows the
feasibility of flexible privilege separation. Here we summarize
limitations of SplitSecond and our future work.

a) Permissions required by shared components: Our ex-
periments show that apps with background services and tasks
have limited flexibility in code splitting under SplitSecond.
Most of the real-world applications use background tasks
for asynchronous processing of heavy or periodic work, and
the tasks are commonly shared among multiple activities.
Therefore, the code of the shared components and the required
permissions are likely used by both the main and the split
processes. We envision using a message handler to give
flexibility to such components.

b) Attacks on ICC and IPC: SplitSecond makes use of
the distinct UID for protection, but attackers could target ICC
or IPC instead. Though only the pre-determined JNI-on-IPC
calls are allowed by the receiver process, the set of available
objects and methods can be powerful enough to achieve a
critical malicious action, and distinguishing exfiltration from
normal communications is non-trivial. Context-aware mali-
cious ICC detection [13] can be a complementary solution
against these attacks.

VI. RELATED WORK

Many previous efforts have been made to protect Android
privileges from being abused or exploited. Because the priv-
ilege holder in Android systems is a User ID (UID), a main
stream of previous approaches was UID/process separation.
Once the code is separated to an isolated process, the privileges
are protected by the Linux kernel. On the other hand, several
studies attempted to manage the critical resources, including
memory area, system calls, and API calls, by themselves
without isolating the processes.

a) Privilege control with an isolated process: As briefly
discussed above, placing a set of code in an isolated process
having a distinct UID gives kernel level protection unless an
attacker hijacks a higher privileged UID. Isolating native code

from a Java application into an isolated process has been pro-
posed, such as Robusta [3], [4] and NaCl [2], because native
code is more likely to contain exploitable vulnerabilities.

The effectiveness of native code isolation is enhanced in
Android systems due to the introduction of permissions. A
study by Afonso et al. [14] provides more insight about the
native libraries that are the major isolation targets in recent
Android applications. According to their experiments with a
million apps, placing the native libraries with no permission
is not ideal because the native methods also require the
permissions for Java method calls through JNI and system
calls. This motivates our project on more flexible separation
of Android app components.

One way to separate execution for a specific set of code
is app repackaging. In particular, NativeGuard [5] proposed
by Sun et al. is one of the state-of-the-art studies in process
isolation approaches, and it shares some common motivations
with our design. NativeGuard separates an app package into
two sub packages, one for Java code and the other for native
code. On the other hand, Dr. Android and Mr. Hide [17]
implement native code isolation by injecting a broker module
and rewriting system libraries. The broker based handling
provides robustness against integrity check in contrast to app
repackaging. In spite of clear isolation of the native code, as-
sumptions on native code isolation approaches face limitations.
As shown by Afonso et al. [14], several permissions should
be given to the native methods for proper execution of most
applications. In comparison with previous native code isolation
approaches, SplitSecond provides flexible code separation and
enhanced handling for the permissions without rewriting or
repackaging of an app.

b) Privilege control without isolated processes: The key
advantage of access control without isolated process is to
avoid system overhead caused by the additional process.
Compac [12] provides component-level access control by
monitoring every component transition. The policy manager
of Compac revokes and re-grants the permissions of an app
by a component transition time. However, a reflection call
allows Java and native codes to call a Java method in a
different class without component transition, and this is a com-
mon drawback of Java level permission control approaches.
Aurasium [11] inserts security policy checking code into the
Java code and native libraries by repackaging an applica-
tion. These app repackaging approaches commonly have a
shortcoming against integrity check to detect the maliciously
modified app packages. CoDRA [18] and APex [19] provide
an extended policy enforcement framework for fine-grained
permission management, even in an individual resource access
level. FineDroid [13] provides a context-aware permission
control distinguishing abnormal intra and inter-application
contexts against unexpected exploitation of a granted per-
mission. In contrast to isolation-based approaches, these fine-
grained permission enforcement only block privileged actions
but do not support “privileged but isolated execution” which
is usually more attractive. As a hardware-supported approach,
FlexDroid [20] provides strong data and privilege security with

memory isolation, but the coverage of configurable code is
still limited to native libraries, though it also provides flexible
permission configuration.

c) Protection with faked environments: The protection
against privileged actions can also be achieved by providing
worthlessness data or faked functionalities. MockDroid [21],
AppFence [22], and TISSA [23] commonly proposed a pri-
vacy and critical resource protection method by providing
faked or anonymized data and resources, like a fake network
interface, instead of blocking privileged actions. Meanwhile
the fine-grained permission systems likely crash against the
suspicious actions, the isolated or faked environments provide
more usability. Compared to an isolated process which is
an indistinguishable environment without capability of the
system-wide view, a mocked environment has an issue on
detectability of the mocked data and interfaces.

VII. CONCLUSION

SplitSecond is a flexible privilege separation system that
provides component-level privilege management. We present
the design and implementation of SplitSecond, overcoming
a number of implementation challenges including data de-
pendency and execution environments, and demonstrate the
success in applying SplitSecond to the top 100 ranked Android
applications. We also evaluate the extent to which SplitSecond
can provide flexibility for users to configure the amount of
code and permissions to be assigned to the split process, and
show that SplitSecond gives flexibility to about 60% of code
and 50% of permissions with moderate overhead.

REFERENCES

[1] Statista Inc., “Global mobile OS market share,” 2019, https://www.
statista.com/statistics/266136/.

[2] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in Security and Privacy, 2009 30th
IEEE Symposium on. IEEE, 2009, pp. 79–93.

[3] J. Siefers, G. Tan, and G. Morrisett, “Robusta: Taming the native beast
of the jvm,” in Proceedings of the 17th ACM conference on Computer
and communications security. ACM, 2010, pp. 201–211.

[4] M. Sun and G. Tan, “Jvm-portable sandboxing of javas native libraries,”
in European Symposium on Research in Computer Security. Springer,
2012, pp. 842–858.

[5] ——, “Nativeguard: Protecting android applications from third-party
native libraries,” in Proceedings of the 2014 ACM conference on Security
and privacy in wireless & mobile networks. ACM, 2014, pp. 165–176.

[6] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “Addroid: Privilege sepa-
ration for applications and advertisers in android,” in Proceedings of the
7th ACM Symposium on Information, Computer and Communications
Security. Acm, 2012, pp. 71–72.

[7] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating smart-
phone advertising from applications.” in USENIX Security Symposium,
vol. 2012, 2012.

[8] X. Zhang, A. Ahlawat, and W. Du, “Aframe: Isolating advertisements
from mobile applications in android,” in Proceedings of the 29th Annual
Computer Security Applications Conference. ACM, 2013, pp. 9–18.

[9] B. Liu, B. Liu, H. Jin, and R. Govindan, “Efficient privilege de-
escalation for ad libraries in mobile apps,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2015, pp. 89–103.

[10] J. Huang, O. Schranz, S. Bugiel, and M. Backes, “The art of app
compartmentalization: Compiler-based library privilege separation on
stock android,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 1037–1049.

[11] R. Xu, H. Saı̈di, and R. J. Anderson, “Aurasium: Practical policy
enforcement for android applications.” in USENIX Security Symposium,
vol. 2012, 2012.

[12] Y. Wang, S. Hariharan, C. Zhao, J. Liu, and W. Du, “Compac: Enforce
component-level access control in android,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy. ACM,
2014, pp. 25–36.

[13] Y. Zhang, M. Yang, G. Gu, and H. Chen, “Finedroid: Enforcing
permissions with system-wide application execution context,” in Interna-
tional Conference on Security and Privacy in Communication Systems.
Springer, 2015, pp. 3–22.

[14] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C. Kruegel,
G. Vigna, A. Doupé, and M. Polino, “Going native: Using a large-scale
analysis of android apps to create a practical native-code sandboxing
policy.” in NDSS, 2016.

[15] B. Gruver, “Smali: An assembler/disassembler for androids dex format,”
2019, https://github.com/JesusFreke/smali.

[16] Google Inc., “Android Open Source Project,” 2018, https://source.
android.com/.

[17] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein, “Dr. Android and Mr. Hide: fine-grained permissions
in android applications,” in Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices. ACM,
2012, pp. 3–14.

[18] N. K. Thanigaivelan, E. Nigussie, A. Hakkala, S. Virtanen, and J. Isoaho,
“Codra: Context-based dynamically reconfigurable access control system
for android,” Journal of Network and Computer Applications, vol. 101,
pp. 1–17, 2018.

[19] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android permis-
sion model and enforcement with user-defined runtime constraints,” in
Proceedings of the 5th ACM symposium on information, computer and
communications security. ACM, 2010, pp. 328–332.

[20] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim, “FLEXDROID: Enforcing
In-App Privilege Separation in Android,” in NDSS, 2016.

[21] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mockdroid: trading
privacy for application functionality on smartphones,” in Proceedings
of the 12th workshop on mobile computing systems and applications.
ACM, 2011, pp. 49–54.

[22] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 2011,
pp. 639–652.

[23] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh, “Taming information-
stealing smartphone applications (on android),” in International confer-
ence on Trust and trustworthy computing. Springer, 2011, pp. 93–107.

https://www.statista.com/statistics/266136/
https://www.statista.com/statistics/266136/
https://github.com/JesusFreke/smali
https://source.android.com/
https://source.android.com/

	SplitSecond: Flexible privilege separation of Android apps
	Citation

	Introduction
	Motivation and Challenges
	Motivating example
	Users of SplitSecond and assumptions
	Challenges and our solutions
	Data and resource dependency
	Execution environment for Java code

	Design and Implementation of SplitSecond
	Static analysis and Split Execution Units
	Flexibility in permissions assignment
	User configuration and app installation
	Runtime components
	Split process management service
	Intent handler
	Object reference manager
	Native invocation handler
	Proxy JNI server and client

	Experimental Evaluation
	Flexibility: how much code and permission can be moved to the split process
	How much Java code can be split
	More Java code split -3mu More permissions?
	De-coupling native methods

	Overhead

	Limitations and Future work
	Related Work
	Conclusion
	References

