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ABSTRACT

Control-Flow Integrity (CFI) is an effective approach in
mitigating control-flow hijacking attacks including code-reuse
attacks. Most conventional CFI techniques use memory page
protection mechanism, Data Execution Prevention (DEP), as
an underlying basis. For instance, CFI defenses use read-only
address tables to avoid metadata corruption. However, this
assumption has shown to be invalid with advanced attacking
techniques, such as Data-Oriented Programming, data race,
and Rowhammer attacks. In addition, there are scenarios
in which DEP is unavailable, e.g., bare-metal systems and
applications with dynamically generated code.

‘We present the design and implementation of Control-Flow
Carrying Code (C?), a new CFT enforcement without depend-
ing on DEP, which makes the CFI policies embedded safe
from being overwritten by attackers. C® embeds the Control-
Flow Graph (CFG) and its enforcement into instructions of
the program by encrypting each basic block with a key derived
from the CFG. The “proof-carrying” code ensures that only
valid control flow transfers can decrypt the corresponding
instruction sequences, and that any unintended control flow
transfers or overwritten code segment would cause program
crash with high probability due to the wrong decryption
key and the corresponding random code bytes obtained. We
implement C* on top of an instrumentation platform and
apply it to many popular programs. Our security evaluation
shows that C® is capable of enforcing strong CFI policies and
is able to defend against most control-flow hijacking attacks
while suffering from moderate runtime overhead.
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1 INTRODUCTION

Control-Flow Integrity (CFI) introduced by Abadi et al. [1]
provides attractive security features because of its effective-
ness in defending against injected and code-reuse attacks
(CRA), including advanced attacking techniques like Return-
Oriented Programming (ROP) [5, 9, 37]. CFI techniques typi-
cally compute a Control-Flow Graph (CFG) statically [48, 50]
or dynamically [28, 29] and instrument the binary code by
adding checks before indirect branches. These checks ensure
that any control transfers during execution never deviate
from the CFG, even when the program is under attack.

An assumption made in most existing CFI approaches,
including coarse-grained [48, 50] and fine-grained [28, 29, 44|
ones, is that read-only data and code sections cannot be over-
written by attackers. For example, CFI proposed by Abadi
et al. [1] relies on read-only tags inside the code segment,
and numerous approaches use a table structure (made read-
only) to store valid targets of indirect branches [28, 29, 50].
However, there are scenarios in which such page-level pro-
tection is unavailable, e.g., bare-metal systems which do
not have a Memory Management Unit (MMU) and applica-
tions with dynamically generated code. Moreover, data race
attacks [51], Rowhammer attacks [6] and Data-Oriented Pro-
gramming (DOP) [21] have demonstrated that it is possible
to gain arbitrary memory read and write access.

In this paper, we explore the possibility of enforcing CFI
in the absence of such an assumption. Specifically, we look
into encoding CFI policies into the machine instructions di-
rectly without relying on policies specified in additional data
structures (i.e., the read-only table structures in existing CFI
approaches) or inserting CFI checks into the code segment.
The general idea is to embed a statically constructed CFG to
the instructions, execution of which is conditioned on correct
control flows. In this way, each intended instruction will carry
a proof that can validate the control flow transfer. Unin-
tended instructions cannot be executed as the proof in these
instructions are not correct. Intuitively, instructions with
CFG embedded can be seen as a proof-carrying code [27],
where this proof is self-contained in the code rather than
being encoded into a separate table. The challenge is how to
embed the CFG into the instructions and how to correctly
execute them at runtime.

To this end, we present Control-Flow Carrying Code, C3, a
general CFI method that embeds CFG into instructions and
performs CFI checks automatically. We stress that with C3,
instructions in a program themselves carry the CFG informa-
tion and its enforcement without relying on any additional
data structure. Inspired by the framework of Instruction-Set
Randomization (ISR) [22] where instructions of a program
are encrypted with a secret key, C* encrypts each basic block
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in the program with a key derived from the CFG. More specif-
ically, the key is derived from (the addresses of) valid callers
of the basic block to ensure correct control flow transfers. At
runtime, only the valid callers (their addresses) could enable
the correct reconstruction of the key to decrypt the basic
block. In this way, C® manages to embed and enforce CFI in
the program instructions.

However, two challenges remain in making C? practical.
First, a basic block may have multiple valid callers. These
valid callers have different addresses, while the successor
block has to be encrypted with a single key. How does C*
enable the reconstruction of the single correct key by all the
valid control flow transfers? To address this challenge, C3
utilizes the secret sharing scheme [38] to make the key shared
among valid callers.

Although secret sharing helps solve this important chal-
lenge at a high level, we encounter more challenges in its
application in our setting. For example, secret sharing re-
quires that all (a variable number of ) callers of the basic block
be on the same secret sharing curve. The implication is that
once we have the curve fixed, addresses of these callers can no
longer take arbitrary locations but have to be on the secret
sharing curve determined. This imposes extra challenges in
laying basic blocks in the text segment of the program. To
address this, we design an algorithm to redistribute basic
blocks to positions satisfying the secret sharing curve.

We have implemented C? that consists of two components,
one that performs binary rewriting to redistribute and en-
crypt basic blocks, and the other as a plug-in to an existing
instrumentation platform to assist runtime execution of the
rewritten executable. We apply C? to a number of server
and non-server applications on the Linux platform. Our ex-
perimental results demonstrate that C® effectively defends
against control-flow hijacking attacks and at the same time,
introduces realistic runtime performance overhead for server
applications comparable to existing Instruction-Set Random-
ization (ISR) implementations on the same instrumentation
platform. Similar to the arguments in ISR systems, we be-
lieve that such overhead could be significantly reduced with
a hardware-assisted platform.

2 RELATED WORK
2.1 Control-Flow Integrity

CFI [1] forces control flow transfers in the program to follow
the policy presented by the CFG. It can be classified into
instrumentation-based and hardware-assisted ones.

2.1.1 Instrumentation-based CFl. This category of enforce-
ment typically inserts CFI checks before each intended indi-
rect branch during compiling or installation to consult a CFI
checking module, e.g., MCFI [28] and wCFI [29]. Forwarding
CF1 [44] inserts checks before all forward-edge control-flow
transfers to check whether the function signatures (return
type and the number of arguments) are correct. The original
CFI proposal [1] and its variants rewrite each indirect branch

transfer in the binary to validate the ID of the control trans-
fer target. BinCFI [50] instruments indirect branch transfers
to jump to address translation routines that determine the
targets of the transfers. CCFIR [48] instruments indirect
transfers to limit them to flow only to a “springboard” sec-
tion. O-CF1I [26] combines fine-grained randomization and
CFI by inserting checks before each indirect branch to check
whether its target is within a valid boundary.

C3 falls into this category using binary rewriting. The
fundamental difference is that C* has the CFG and CF1I policy
embedded into every machine instruction without relying on
additional metadata, and therefore works effectively without
the assumption of keeping such metadata read-only.

2.1.2 Hardware-assisted CFl. Other CFI techniques make
use of hardware features to record branch transfers where
CFI checks are triggered. For example, kBouncer [32] and
ROPecker [11] use Last Branch Record (LBR) which records
a small number of the most recent control transfers with
minimal overhead. Recent proposals show that an adversary
can break heuristics used in these approaches by using long
gadgets and launching “history-flushing” attacks [8]. To over-
come the limitation in the size of LBR, some [17, 19, 20, 24]
make use of Intel Processor Trace (IPT) to enforce CFI.
However, control flow transfers recorded by IPT are in a
compressed form and decoding it results in large performance
overhead.

2.2 Instruction-Set Randomization

Instruction-Set Randomization (ISR) was initially proposed
to fight against code-injection attacks [2, 16, 22, 34]. It en-
crypts instructions and provides a unique instruction set to
every program. Injected code would first be decrypted to
a random byte sequence and result in illegal instructions
executed. Recently, researchers looked into using ISR to de-
fend against CRA. Scylla [43] encrypts every instruction in a
basic block with respect to its predecessor to defend against
CRA that jumps to the middle of a basic block. Polyglot [40]
encrypts the binary at the page granularity to defend against
JIT-ROP [41]. SOFIA [15] uses ISR to enforce CF1I for cyber-
physical systems with instructions at a fixed length of 32-bit,
and is probably the closest to our proposed technique. It
enforces CFI via an integrity check of instruction blocks
where the Message Authentication Code (MAC) is encrypted.
However, their limitations include, e.g., supporting up to
two callers of a basic block and requiring hardware assis-
tance. C2, on the other hand, does not have such limitations.
DynOpVm [10] shares a similar idea with C* on using secret
sharing for the purpose of defending against frequency analy-
sis attacks on VM-based obfuscators. However, it leaves the
original callers as plain-text in the executable and cannot
defend against control-flow hijacking attacks.

2.3 Shamir’s Secret Sharing

Secret sharing refers to the sharing of s among n parties so
that only when the parties bring together their respective
shares can the secret be reconstructed. When counting on all



participants to combine the secret is impractical, Shamir [38]
introduced a (¢,n) threshold scheme which allows the secret
to be shared among n participants while any ¢ (but not fewer
than t) of them are sufficient to recover the secret.

The essential idea of Shamir’s secret sharing relies on the
fact that we can fit a unique polynomial of degree (¢t — 1)
to any set of ¢ points that lie on the polynomial curve. For
example, two points are sufficient to define a straight line,
and three points are sufficient to define a parabola. The first
coefficient is usually used as the secret.

Secret-sharing schemes are important building blocks in
cryptography in Byzantine agreement, threshold cryptogra-
phy, access control and attribute-based encryption. In this
paper, C? uses it to enforce CFI so that only valid transfers
can reconstruct the secret.

3 OVERVIEW OF C3
3.1 Threat Model and Assumptions

The proposed defense, C3, is aimed to protect a vulnerable
application against control-flow hijacking attacks such as
ROP attacks. The application to be protected may have
some vulnerabilities that can be leveraged by an attacker
to inject an exploit payload (code or data). We focus on
user-space attacks leaving kernel exploits out of our scope.
Specifically, we assume that:

e The target program does not contain self-modifying or
dynamically-generated code.

e Attackers could use attacks to bypass WX, such as Data-
Oriented Programming [21], data race [51] and Rowham-
mer attacks [6], and could exploit information disclosure
vulnerabilities to investigate the victim’s process memory.

e Since the current implementation of C? is on top of the
popular instrumentation platform Pin, we assume that
attackers do not target Pin in their attacks and the partial
memory segment managed by Pin (e.g., the code cache) is
secure. This assumption can be removed if C* is supported
by native hardware.

3.2 Embedding CFG to Instructions

Rather than consulting additional information stored in read-
only memory, we propose to embed CFG to instructions. An
instruction with CFG embedded can check the integrity of
the control flow automatically during the execution without
querying other data structures. In particular, C® embeds
the CFG information by encrypting each basic block (an
idea inspired by ISR [22]) with a key generated from control
flow dependent information. At runtime, the basic blocks are
decrypted using a key reconstructed from the actual control
flow transfers taken. Only when the correct control flow paths
are taken will the instructions be decrypted correctly.

In Figure 1, each node represents an encrypted basic block
while edges indicate control flows. The solid edges represent
valid control flows with S; indicating the encryption key for
basic block i. S3 and S4 are generated according to the valid
control flow path < 1,3 >, < 2,3 > and < 3,4 >. When
there is an invalid control flow transfer from node 2 to 4

—» Valid control flow
------------ » Invalid control flow

777777777 » Secret reconstruction

Figure 1: Example of secret reconstruction. Each circle
represents a basic block of instructions.

denoted by the dotted edge, a wrong key S} is constructed
which would result in illegal instruction faults.

Although the idea sounds straightforward, there are multi-
ple design questions and challenges. First, what information
do we use to generate the key? Such information needs to
be both statically and dynamically available, and it shall
allow enforcement of CFI. How do we deal with basic blocks
involved in multiple control flows, which may lead to different
keys constructed dynamically? A simple solution is to insert
(constant) shares at the caller and callee with which the secret
can be reconstructed at runtime. However, such an approach
does not provide Control-flow integrity because an attacker
can reuse the share at other caller sites.

Our solution is to use the addresses of the branch transfer
instruction and its target as the shares since they capture
the control transfer information precisely. To deal with ba-
sic blocks involved in multiple control flows, we use basic
block redistribution and secret sharing [38] to encode the
key. Figure 2 shows an overview of C?, consisting of two
components.

e Embedding CFG. C? transforms branch transfer instruc-
tions (indirect branches, conditional jumps, and direct calls)
to have a secret share embedded, and then redistributes
basic blocks to specific addresses so that all valid callers
are on the same secret sharing curve. Finally, basic blocks
are encrypted with the secret.

e Enforcing CFI. Whenever the program attempts a con-
trol transfer, C® obtains the caller and callee addresses
and reconstructs the key to decrypt the callee basic block
before control transfer takes place.

4 DETAILED DESIGN OF C?

C? takes as input a binary executable (without source code)
and outputs a modified executable with CFG embedded and
CF1T enforced.

4.1 Secret Sharing and Challenges

As discussed in Section 3, our approach of embedding CFG
into instructions is to encrypt a basic block and to enable
decryption with any correct control transfer. For a basic block
with multiple callers, we can imagine that every valid caller
shall contribute to the encryption key; however, in a concrete
execution, only one valid caller is involved and the decryp-
tion key is reconstructed. This is where the idea of secret
sharing comes to our design — only part of the ingredients
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Figure 2: System overview of C3.
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Figure 3: Extracting = and y for address 0x42eb3. C?
obtains x and y from the lower-order odd- and even-index
bits of an address.

of the secret key is needed for correct reconstruction. C2 uses
Shamir’s approach [38] due to its simplicity.

The next question is the degree of the secret sharing equa-
tion. A general guideline is to keep it small to minimize
overhead. We can use a degree of two with the source and
target addresses of the control transfer — the minimum infor-
mation to fully describe a control transfer. However, this runs
into the risk of a code pointer disclosure exploit that discloses
both addresses and allows an attack to decrypt the basic
block. To counter such an attack, we add one random value
(called the master key) which is unknown to the attacker to
construct the secret key. Specifically, we use a degree of three,
with the secret sharing equation

y=ao + ez + asx’ (mod M) (1)

where ag is the secret key for encryption and decryption,
and x, y are k-bit coordinates extracted from the source and
target addresses and the master key. C* obtains z and y from
the lower-order odd- and even-index bits of an address (see
Figure 3 for an example). Reconstruction of the secret follows
Equation 2 with = = 0.

y=> v ] (@-=z)@—2)"" (mod M) (2)

=1 1<j<3.5#i

To support a basic block with multiple callers, we can
simply relocate the caller instructions so that they all lie on
the parabola. However, a more challenging issue is to support
a set of basic blocks with the same (set of) callers. Figure 4
shows an example with BB3 and BB4 having the same set
of callers BB1 and BB2. Following the secret sharing design
we outline above, the two parabolas for BB3 and BB4 will

BB1: BB3:
44df03: mov -0x8(%rbp),%rax | 40b26c: push %rbp

44dfle: callg *%rax 40b2b8: callg 40ab7e

BB2: BB4:
44e00e: mov -0x8(%rbp),%rax 413e60: push %rbp

413e97: callq 41348f

44e020: callq *%rax

Figure 4: Multiple callers to multiple callees. BB1 and
BB2 are callers to callee BB3 and BB4.

have three intersection points — the master key, BB1, and
BB2; however, different parabolas could have up to two
intersections only. Therefore, C* not only needs to relocate
the basic blocks to move them onto specific parabolas, but
also needs to perform some special transformations to control
transfer instructions; see the next subsection.

4.2 Instruction Transformation

In fact, the complexity shown in Figure 4 is not the only one
that C® needs to handle.

e CPX1: Multiple callers to multiple callees. In such
cases, secret sharing curves for the callees have three or
more intersections (including the master key), which is
not possible for parabolas. We add an intermediate block
between the callers and callees so that multiple callees now
have a single caller.

e CPX2: Basic blocks that are not freely movable.
Examples of such blocks include targets of ret instructions
which must follow the call instruction, and the default
branch of conditional instructions which must follow the
conditional branch instruction. They cannot be moved
freely to other locations due to the implicit control flow.
Our strategy is to transform the implicit control flows into
explicit ones.

e CPX3: Basic blocks with multiple entries. Multiple
entries will lead to different keys derived for the same basic
block. Our strategy is to break it up into multiple basic
blocks, each of which has a single entry.

In the rest of this subsection, we use an example (Figure 5)
to explain how C® solves these complexities. Note that the
transformation is via binary rewriting without source code
of the program.



40e02e mov %eax, %eax
40e030 mov 0x41c828(,%rax,8),%rax

_»| 40e038 mov %rdx,%fs:0x60 .
- switch_stub:

e 40e041 mov %rax, %rdx
— 41ea27 mov %fs:0x60,%rdx

k2 40e044 mov %rdx, %fs:0x68 .

. . €a30 jmp *%fs:0x
40e02e mov %eax, %eax \ A 40e04d jmp switch_stub 41ea30 *9%fs:0x68
40e030 mov 0x41c828(,%rax,8),%rax -7
40e038 jmp *%rax 40e800 mov -0x38(%rbp),%eax

' 7_.,—”/' 40e812 push %rax
40e5e2 mov -0x38(%rbp), %eax pp21088 40e813 jmp stub
40e5f4 jmp *%rax __»| 40815 mov -0x48(%rbp),%rax
g3 T .
40e5f6 mov -0x48(%rbp),%rax - e 40e820 jmp 41d0f2
""" [ 40e822 mov 0x2129ae(%rip),%rax
40e601 jmp40e612 /| e
40e603 mov 0x2129ae(%rip),%rax 40e831 mov -0x48(%rbp),%rax
=

.......... 2o B84 |-~ e -
40e612 mov -0x48(%rbp),%rax - BB 40e83d jne con_stub_40e83d N :‘;265‘;,"—400"'8430"'89
------ 40e843 jmp 0x40e845 €0 Jmp Dxales5c
40eb61e jne 40e65a

40e845 mov -0x88(%rbp),%rax
40620 mov -0x88(%rbp),%rax | | ___ BBS to BBS' - _, 40e851 push $0x40e89¢ stub: ]
40e62c call *%rax 40e856 push %rax 41d0f0 ret

40e85b jmp stub
40e65apop %rbp [ _____ ,
40e65b ret BB6 to BB6' - 40e89c pop %rbp ret_stub:

40e89d jmp ret_stub 47 41d0f1 ret
Before instruction transformation copied basic block BB7":

41d0f2 mov -0x48(%rbp),%rax

con_stub_41e8fd:
41e906 jmp 0x40e89c

]

41e8fe jne con_stub_40e8fd
41e904 jmp 0x40e845

After instruction transformation

Figure 5: An example of instruction transformation by C2. C® rewrites indirect and conditional branch transfer
instructions to jump to a stub (bold), and the stub will then jump to the real targets. C* transforms basic blocks with multiple
entries (BB4) by copying each entry to a new address (BB4' and BBT').

4.2.1 Transforming indirect call and indirect jump instructions. variables are sometimes accessed via %rbp directly without

C?® transforms an indirect call instruction into two push
instructions (one to save the return address and the other
to save the target address onto the stack) followed by a jmp
instruction (jumping to a common stub); see BB5 and BB5’
in Figure 5. The stub block has a single ret instruction.
Although this simple transformation solves CPX1, it po-
tentially enforces a relaxed CFI policy since multiple control
transfer targets now go through the same common stub block.
We stress that the same policy is used by existing coarse-
grained CFI methods [48, 50]. Moreover, C? increases the
difficulty of a stealthy attack since the valid targets are now
encrypted. We could use a more complicated secret sharing
curve to enforce a finer-grained policy, but C* chooses this
solution due to its simplicity and enforcing a CFI policy not
less secure than existing work. Note that a byproduct of
pushing the return address on the stack (the first push in
BB5’) is a solution to CPX2, as the return site can now be
freely moved (explained later in the next subsection).
Indirect jumps are handled in the same way, except that
we only need one push instruction since there is not a re-
turn address, e.g., BB2 in Figure 5. Additional complex-
ity arises here when the indirect jump was generated due
to switch/case statements during compilation, where local

changing %rsp. In such cases, we cannot simply push the tar-
get address of the indirect jump onto the stack because doing
so would overwrite the local variables. Instead, we make use
of thread local storage to store the target; see the indirect
jump in BB1 of Figure 5. In order to transform an indirect
jump jmp *0x8(%rax) (the target is the address in memory)
while having the same switch stub with jmp *(Yrax), we
simply move the target of them to the temporary register
%rdx as shown in BB1’.

4.2.2 Transforming conditional jump instructions. Conditional
jumps usually have a fall-through branch to the instruction
that immediately follows, forming an implicit control transfer
(CPX2). We turn this into an explicit one by inserting a
direct jump instruction as in BB4' of Figure 5. Note that
similar to indirect jumps, conditional jumps may be followed
by multiple callees (CPX1); that is why we also add a stub
block as shown in BB4' of Figure 5.

4.2.3 Transforming return instructions. Handling return in-
structions (CPX1) is simple as we only need to add a common
stub which then returns to the call site; see BB6' in Fig 5. We
can enforce a finer-grained CF1I policy by classifying functions
into indirectly-called and directly-called ones, of which the



latter does not need the additional stub block to be inserted
since any two of them cannot return to the same call site.
We leave this security improvement as our future work.

4.2.4 Transforming basic blocks with multiple entries. The
multiple entries of a basic block correspond to different sets
of ingredients for the secret reconstruction, and therefore will
result in different keys (CPX3). C® handles this by copying
each entry (and subsequent instructions in the block) to a
new address and updating the corresponding control flow
instructions to the new addresses. For example, BB4 in Fig-
ure 5 has two entries, 0x40e603 and 0x40e612, respectively.
C? copies the second entry to a new address (BB7') and
directs the control flow from BB3' to it.

4.3 Basic Block Redistribution

Redistributing basic blocks so that all callers of a control
transfer are on the same secret sharing curve is an interesting
and non-trivial problem. One can consider it as a directed
graph traversal in which whenever a node is traversed, we
pick a parabola and ensure that all its callers are on it by
moving some or all the callers. However, if the traversal is not
carefully designed, we could get into a failure where a node
that has been previously moved on a parabola now needs
to be moved again to satisfy another parabola — a mission
impossible. Therefore, the key is to design a directed graph
traversal algorithm that minimizes or eliminates such a risk.

C? uses a customized Depth First Search (DFS) algorithm.
Intuitively, DFS fits our requirement in that it explores a
branch to its ultimate leaves before backtracking or stepping
into a new branch, which avoids unnecessary moving of caller
nodes of branches already unexplored. We customize it with
a “look ahead” capability which switches to another nearby
branch when continuing exploring the current branch will
get into a “mission impossible” case.

As shown in Figure 6 where shaded nodes denote those that
had previously been moved (and therefore cannot be moved
again) and hollow ones otherwise, continuing to traverse node
A would run into a failure mode since node B will have two
caller nodes fixed, making it impossible to find a parabola
for node B (it already has three points determined including
the master key). In this scenario, our “look ahead” function
will traverse the sub-branch of node B before going back to
traverse node A. This “look ahead” function is also used to
decide the starting point. By default, C? picks a node with
the largest number of callers as the starting point, and then
uses the “look ahead” function to check whether this starting
point and one of its callers target the same basic block. If
they do, C? uses this basic block as the starting point. The
detailed algorithm is shown in Appendix A.

Specifically, for a callee to be processed, we first check
whether there is a prior basic block using the “look ahead”
mechanism described above. Then, for each callee to be
processed, we check whether there exists any of its callers
that has a fixed address. If there is, we use this caller (with
a fixed address) to determine the parabola; otherwise we
randomly choose a caller to determine the parabola. The

O Redistributed block
O Non-distributed block

Figure 6: “Look ahead” DFS search. Traversing node
A would result in node B having two caller nodes fixed. The
“Look ahead” function of C* will traverse the sub-branch of
node B first.

special and additional processing here is that for each (caller
or callee) address, we need to check whether it will have the
same x value with its callee, caller or the master key, since
the same x value could result in a failure in calculating the
inverse to compute the secret as in Equation 2. We generate
a new random address if when detecting this problem.

Once a parabola is determined, we move all the callers onto
it by randomly choosing an unused coordinate on the curve,
which determines the new addresses of the callers. After that,
we use the DFS approach to process other basic blocks.

Since the redistribution of basic blocks might turn a short
jump instruction into a long jump, C? turns every direct
jump into a long jump (with a four-byte displacement) before
the redistribution process starts.

4.4 Encryption and Decryption

Before we present details of C* in encrypting a basic block, we
note that completely separating code from data into different
sections is a prerequisite for our encryption to work. This is
because the encryption of any data may disrupt program exe-
cution when it is not decrypted at runtime. Fortunately, many
linkers are configured to ensure such separation, and com-
piler optimizations like jump tables are also typically moved
to a non-code section. C* does not include PLT calls in its
protection as doing so will result in .plt section containing
non-continuous addresses due to basic block redistribution
(see the previous subsection), which in turn makes it impossi-
ble for the dynamic loader to update addresses in the Global
Offset Table (GOT).

C? uses XOR as the encryption function due to its simplic-
ity. The reconstructed secret s from secret sharing is used as
the seed to a pseudo-random function generator to generate
a 16-bit key for encryption. The length of the secret s is
a configurable parameter which has an upper bound of 16
because going beyond that may result in distance between
two instructions greater than 23'. To fight against memory
disclosure attacks that attempt to compromise the master
key, C? stores the master secret key outside of the binary into
a database file, an approach used in some ISR approaches [34].
We note that C* could also perform load-time encryption on
the basic blocks using a session key (replacing the master



key) to further improve security [2, 31]. Also note that when
the binary rewriting process is performed remotely, we could
make use of remote attestation [13] to securely distribute the
master key. We leave both ideas as our further work.

4.5 Transitioning from Unprotected to
Protected Code

C3 supports partial protection of a program that contains
protected (CFG embedded) and unprotected (e.g., system or
third-party libraries without CFG embedded) code. However,
the transitioning from unprotected to protected code needs
special attention since CFI checks will fail as the caller is not
on the secret sharing curve of the callee. Such transitioning
typically occurs in two scenarios.

e Returning to protected code. This happens when pro-
tected code calls an external library function and subse-
quently returns from it.

e Calling to a function in protected code. This happens
when the external library function (e.g., gsort, bsearch)
calls a comparison function in the protected code.

‘We handle these cases by adding a dummy block before
each return target and function entry in the protected code,
since we cannot accurately identify calls to a library function
and functions called by the library. This dummy block has
only one instruction that jumps to the actual target, and is
encrypted with a key generated from its address. C* transfers
control to the dummy block when detecting a control transfer
from unprotected to protected code, the range of which is
recorded into a (secure) database.

In this way, C® ensures that these dummy blocks cannot
be invoked by control flow transfers in the protected code and
provides the same level of protection compared with existing
CFT techniques.

5 IMPLEMENTATION

We implemented C2 on an Ubuntu 64-bit system supporting
inputs of ELF binary executables without source code.

5.1 Binary Rewriter

We developed our custom binary rewriter in 6,500 lines of
Python code with the help of the disassembly engine Cap-
stone [36]. The binary rewriter takes as input the ELF exe-
cutable to be protected and the configuration of k. Embedding
CFGs to an executable consists of three stages.

Before we embed control flow information, we first obtain
the static CFG. We do this by modifying a recent work
typearmor [45] (which builds on Dyninst [3]).

Secondly, we use Capstone [36] to disassemble the binary.
C? uses the algorithm described in Appendix A to select basic
blocks and then compute the secret for each of them. Note
that the redistribution algorithm will likely distribute basic
blocks apart from each other, and many NOP instructions
need to be inserted into the .text section.

In the last stage, we update the corresponding section infor-
mation including program entry point, program header, sec-
tion header, items in relocation table, .dynamic, and .dynsym
sections. In addition, some instructions need to be updated
to maintain the original control flow:

e Direct jumps: We transform all indirect branch transfers
to jump to the stub first; see Section 4.2. Therefore, there
are only direct jumps in the .text section now. The target
address of a direct jump is specified as a relative offset
from the address of the jump instruction, which needs to
be recomputed after basic block redistribution.

e PC-relative addressing mode: We also need to patch
instructions with PC-relative addressing mode, which are
often used to generate position-independent code. The new
x86-64 architecture natively supports PC-relative address-
ing, e.g.,
lea 0x200000 (%rip), %rbp adds 0x200000 to the pro-
gram counter and saves it to %rbp. To ensure correctness,
C3 updates these instructions by recomputing the new
offset using the new program counter and the address of
the redistributed target.

e Function pointers: They are usually absolute addresses
of indirect call targets that are loaded into registers. To
fix these instructions, the absolute address of the callee
should be patched at the instruction that loads its address
into the corresponding register. This is done by identifying
all possible function pointers with the help of the symbol
table and patching them to the redistributed addresses. The
same goes to global function pointers where C* updates
the address in data section.

e Data pointers: They need to be patched, too, because the
starting offset of the data section has changed. C* patches
them by adding the new offset to the original value.

e Jump tables/virtual tables: C* updates the base ad-
dress of the jump table by adding the new offset to it.
Patching virtual tables follows the same mechanism.

5.2 Execution Environment

We make use of Pin [25] to implement the execution envi-
ronment with 1,100 lines of code in C++. It first reads from
the secure database the master key and the protection range
and then installs a callback that intercepts the loading of all
images to obtain ranges of the unprotected memory.

We then use the instrumentation callback at instruction
granularity to detect a branch and compute the key for the
next basic block. The decryption of basic blocks is performed
by installing a callback that replaces Pin’s default mechanism
of fetching code from the target process. If the instruction
fetched is within the range of protected code, we reconstruct
the key from secret sharing parabola for decryption.

For code transitioning described in Section 4.5, we make
use of PIN_SetContextReg to set the value of %rip register
to the address of the dummy block which has just one in-
struction that jumps to the actual target, and then use the
PIN_ExecuteAt API to direct execution to it. For the tran-
sition from protected code to unprotected code, C* stops
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the decryption and let the code execute as normal. Similar
to other CFI approaches, the attacker can use gadgets in
unprotected code to construct code-reuse attack, which C?
cannot defend against.

To avoid performing frequent key reconstruction for direct
branch transfer instructions, we cache the key for subsequent
use. Therefore, each direct branch transfer instruction corre-
sponds to only one key reconstruction.

6 EVALUATION

We first analyze the security of C® and then measure its
performance overhead with real-world applications.

6.1 Security

C? mitigates code-injection attacks in the same way Instruction-
Set Randomization defeats them — when control flow is
redirected to injected code, C? will decrypt it into random
bytes. The attacker could not prepare the correct encrypted
code since she does not know the master key.

C? also mitigates most Code-Reuse Attacks (CRA) due to
three reasons. First, C* generates a wrong key when an in-
valid control transfer happens, which results in a random byte
stream to be executed. Second, redistributing and encrypting
basic blocks makes it harder for attackers to analyze and
locate gadgets, which defeats most static CRA. Finally, the
encrypted basic blocks result in little information revealed
even when an attacker manages to dump the execution mem-
ory, which defeats most dynamic CRA.

6.1.1 Comparison with existing CFl techniques. A number
of recent proof-of-concept exploits have shown how existing
coarse-grained CFI techniques can be bypassed [12, 14, 18].
Although C? also enforces a coarse-grained policy, its unique
handling of basic blocks (encryption) provides a new defense
to make these exploits unsuccessful. Table 1 compares various
CF1I techniques with C* on the CFI policy enforced and
defense capability against the exploits.

As shown in Table 1, existing instrumentation-based CFI
methods [44, 48, 50] do not insert checks for unintended
control-flow transfers, making them vulnerable to the exploit
proposed by Conti et al. [12]. Such an exploit would not
work on C® as all instructions (intended or unintended) are
encrypted. The exploit proposed by Hu et al. [21] succeeds on
all existing CFI methods as they rely on the assumption that

WoX is effective. Moreover, the content in the CFI table
inserted by BinCFI provides sufficient information about
useful gadgets if there is memory disclosure. However, since
C? does not have this problem because it does not insert any
metadata. The first three CFI approaches in Table 1 also
suffer from TOCTOU attack — time of checking values of
esp/rsp and time of executing ret, when the return address
is stored in memory which could be modified by another
thread. Under the protection of C3, even if the address is
modified by another thread, control flow will transfer to
cipher-text which will result in program crashing.

Exploits that use call-preceded gadgets [14, 18] cannot
succeed on C® since basic blocks are redistributed to random
addresses. We performed experiments to verify the effective-
ness of C* on defending against CRA that uses call-preceded
gadgets using the test application ndh_rop from ROPgadget®,
a publicly available test set for ROP attacks. Our experi-
ments verified that the payload that successfully exploits
ndh_rop failed to run on C3. Upon further investigation, we
realized that it generated an illegal instruction fault when
the return instruction directs control flow to the first call-
preceded gadget. This is because this address is an invalid
instruction which does not carry a valid proof to reconstruct
the correct decryption key.

Compared with fine-grained approaches, e.g., Lockdown [33],
which uses binary instrumentation to enforce CFTI for different
modules, C? can achieve better security as the attacker can-
not make use of memory disclosure to traverse the memory of
the victim program due to encryption of instructions. Basic
block redistribution performed in C? can also be seen as ef-
fectively making the coarse-grained CFI policy finer-grained
since the attacker cannot find the addresses of gadgets.

One may argue that the attacker could dump the protected
code and do offline analysis to decrypt it. However, even if the
attacker dumps the protected code and obtains the master
key and the address of a basic block, she still has to try
all possible encryption keys to see whether the basic block
can be decrypted into valid instructions. We performed such
experiments and realized that there are usually multiple such
keys which have to be further tested on the resulting caller
blocks for validity checks, and such checks have to carry on
for callers of the callers, which makes it difficult for offline
analysis to decrypt the protected code.

6.1.2 CFl effectiveness with AIR. Zhang and Sekar [50] pro-
pose using Average Indirect target Reduction (AIR) for mea-
suring the strength of CFI, which has become a common
method of evaluation [23, 33, 47]. It computes the average
number of machine code instructions that are eliminated as
possible targets of indirect control transfers.

The formula used by Zhang and Sekar is shown in Equa-
tion 3, where n is the number of indirect branch instructions
in the program, and S is the total number of instructions
to which an indirect branch can transfer control flow, whose
value is the same as the size of code in a binary. |Tj| is the

'https://github.com/JonathanSalwan/ROPgadget
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Table 2: Average indirect target reduction.

Programs # of valid targets AIR
ends with | ends with
indirect direct
branch branch
vsftpd (k =9) 25 0 99.84%
Pure-FTPd (k = 10) | 172 0 98.95%
ProFTPD (k =11) | 506 0 99.23%
httpd (k = 11) 171 0 99.74%
Nginx (k = 11) 125 0 99.81%
lighttpd (k =10) | 35 0 99.79%
Memcached (k = 10) | 62 0 99.62%
average [ [ [ 99.57% |

possible number of targets to which indirect branch j can
transfer control flow after CFI enforcement.

n

1 |75
R (-75)

=1

(AIR) 3)

In the case of C3, |Ty| is the possible number of targets
that can be interpreted as valid basic blocks for indirect
branch j. Since we substantially increase the size of the
.text section, instead of enumerating all possible addresses
(which requires testing millions of addresses), we randomly
choose 16, 384 addresses for effective testing when k£ < 10 and
65,536 addresses for other k values. We consider all basic
blocks ending with indirect transfer instructions as valid, and
those ending with direct transfer instructions valid if their
targets are in the .text section.

The results are shown in Table 2 with server applications.
Interestingly, there are few addresses that can be interpreted
as valid basic blocks, and all of them end with indirect transfer
instructions. This is because C* extends the displacement in
direct branches to four bytes, which makes the probability
that a random sequence be interpreted as a valid direct branch
small. On average, C* achieves an AIR value of 99.57%,
comparable to existing CFI approaches [33, 50].

6.1.3 JIT-ROP. JIT-ROP [41] is an attack against fine-grained
randomization. It assembles ROP gadgets “on-demand” with-
out knowing the memory layout by exploiting the disclosure
of a single code pointer. Specifically, the adversary traverses
the memory space that the leaked pointer points to, searches
for gadgets and cross-page transfer instructions to find new
code pages and other useful gadgets. However, under C3, a
read performed from a code page yields cipher-text, which
the adversary cannot disassemble without knowing the de-
cryption key. As such, an adversary cannot use JIT-ROP to
disclose new code pages to find gadgets.

To verify our intuition, we tried to use the ROP gadget
finding tool peda? to identify gadgets in the protected binary
nginx-1.4.0 after the loading phase, simulating the full
disclosure of the code segment. Many gadgets ending with

2https://github.com/longld/peda

ret are found, which are chained together to form an attack
payload. However, the gadgets found were based on encrypted
basic blocks, which become invalid instructions and lead the
execution into an illegal instruction fault.

6.1.4 Blind ROP. Blind ROP [4] uses the response from
the victim process (crash vs. no crash) as a side channel
to incrementally guess the position of a gadget. It assumes
that the adversary can disassemble the code pages to find
the required gadgets. Since the code pages are encrypted
with C2, Blind ROP will not succeed. We applied the exploit
script provided by Bittau et al.® to nginx-1.4.0 protected
by C?, and found that it made all worker threads “stuck”
as they were all running into an infinite loop of locating
gadgets. Blind ROP uses a conservative implementation to
incrementally populate the stack to find a stack-based stop
gadget to avoid hanging. However, with C2, every attempt
in transferring control to this stack-based stop gadget results
in a failure due to incorrect decryption of the callee block.

6.1.5 Control-Flow Bending. Control-Flow Bending (CFB) [7]
bypasses conventional CFI that statically generates CFGs.
CFB abuses certain functions whose executions may change
their own return addresses to point to any call-preceded site
which allows the attacker to “bend” the control flow. C* mit-
igates CFB attacks by preventing the attacker from locating
call-preceded basic blocks — thanks to redistributing and
encrypting of basic blocks.

Although C? successfully defends against these existing
advanced control-flow-hijacking attacks, we acknowledge that
it is not necessarily effective against an attack specifically
crafted for C3. We further discuss this possibility in Section 7.

6.2 Performance overhead

We evaluated C® with three FTP servers (vsftpd, ProFTPD,
and Pure-FTPd), three web servers (Nginx, lighttpd, and
Apache), a distributed memory caching system (Memcached),
and some common applications (image processing tools sam2p,
GraphicsMagic, and ImageMagics and bzip2). All programs
are executed with their default settings on a desktop computer
with an Intel i7-4510u CPU with 8GB of memory running
x64 version of Ubuntu.

To benchmark web servers, we configured Apache Bench-
mark? to issue 2,000 requests with 100 concurrent connections.
For FTP servers, we configured pyftpbench benchmark® to
open 20 connections and request 100 files per connection with
over 100MB of files requested. To benchmark Memcached, we
used memslap®. We ran each experiment 10 times, ensuring
that the CPUs were fully loaded throughout the tests, and
report the median.

Since C? is implemented on top of the dynamic instru-
mentation platform Pin, we measure the performance of C3
in terms of the additional execution overhead compared to
these programs executing on an un-modified Pin v.3.5. To

Shttp://www.scs.stanford.edu/brop/
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Figure 7: Overall overhead of C3. The result is normal-
ized to the baseline execution time on un-modified Pin.

enable a better understanding of the results, we also report
the execution overhead of another system that is built on top
of Pin, namely Instruction-Set Randomization implemented
by Portokalidis et al. [34].

6.2.1 Execution Time. We report, in Figure 7, the execution
time of each program under four settings: native execution,
ISR [34], C* with encryption disabled, and C* with encryp-
tion turned on. Results are normalized to a baseline for its
execution on un-modified Pin. k was chosen to be the mini-
mum that successfully distributes the basic block for secret
sharing, whose values are shown in brackets.

Being consistent with results reported in the original pa-
per [34], ISR does not incur observable slow down compared
with execution on un-modified Pin since there is no addi-
tional instrumentation. C* presents very similar results when
encryption is disabled for the same reason. With encryption
turned on, C* experiences less than 10% overhead for server
applications while non-server applications generally suffer
from significantly higher overhead. Note that when compared
with their respective native executions, several server applica-
tions on C? have very small runtime performance, although
the average runtime overhead is about 70%.

To gain a better understanding of contributions to such
overhead and why non-server applications perform worse, we
conduct the next finer-grained analysis of C to see which
components of C3 are the main contributors to the overhead.
We first identify the following three main tasks of C* that
potentially contribute to the performance overhead:

e Key Reconstruction (KR). This is performed for every
branch in the program, be it a direct branch (whose key
reconstruction is denoted as dKR) or an indirect branch
(whose key reconstruction is denoted as iKR).

e Decryption. Since C* uses XOR operation as in ISR. [34],
decryption incurs minimal overhead as confirmed in Fig-
ure 7 in which ISR only results in a small overhead.

e Execution Redirection (ER). This happens when exe-
cution transitions from unprotected code to protected code.

mm C3
1 C3 with iKR disabled
120 C3 with KR disabled
—

1 C3 with decryption disabled
C3 with ER disabled
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Figure 8: Detailed overhead of C°.
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Since it requires saving and restoring the entire register
state [30], it could result in significant overhead.

Figure 8 shows the overhead of C? with certain compo-
nents disabled to more accurately attribute the overhead to
the corresponding components. This time, the overhead is
presented in seconds without normalization (to visualize the
small differences). We have two important observations.

First, iKR (whose contribution can be seen by comparing
the bars for C* and those for C* with iKR disabled) con-
tributes more overhead than dKR (whose contribution can
be seen by comparing the bars for C* with iKR disabled
and those for C* with KR disabled). This is mainly due to
optimizations C® implements for direct branches, where key
reconstruction is done only once and results are cached for
subsequent decryption. Such optimization does not apply to
indirect branches since the control transfer target changes
in each indirect branch. Therefore, applications with more
indirect branches suffer higher overhead on C3.

Table 3 records the number of indirect branches, direct
branches, and transitions from unprotected to protected code.
Note that bzip2 has a larger number of indirect branches
executed, which explains its higher overhead on C2.

Our second observation from Figure 8 is on execution
redirection ER. We found that ER contributes significantly to
the performance overhead for vsftpd, proftpd, memcached
and the non-server applications except bzip2, which can be
explained by the numbers in the last column of Table 3.



Table 3: Number of various branches executed. We
report the number of indirect branches executed in iKR #;
dKR # is the number of direct branches executed; the number
of transitions from unprotected to protected code is reported
in ER #.

| Programs | iKR# [ dKR# | ER# |
vsftpd | 3.99 x 10° [ 2.43 x 107 | 1.38 x 10°
Pure-FTPd | 1.09 x 10° | 6.29 x 10° | 2.49 x 10°
ProFTPD | 5.07 x 10° | 5.67 x 107 | 1.68 x 10°
httpd 1.16 x 10° | 4.82 x 10° | 9.97 x 10"
Nginx 3.43 x 10% | 2.51 x 10° | 4.70 x 107
lighttpd | 1.75 x 10° | 2.28 x 10° | 6.31 x 10*
Memcached | 2.37 x 107 | 1.54 x 10% | 7.64 x 10°
sam2p 2.22 x 107 [ 1.33 x 10® | 1.22 x 10°
bzip2 1.36 x 10% | 7.64 x 107 | 5.83 x 10*
convert | 2.55 x 107 | 6.81 x 10" | 4.36 x 10°
gm 1.14 x 10° | 4.25 x 107 | 1.21 x 10°

6.2.2 Space. The redistribution of basic blocks in C* makes
use of a potentially large address space with gaps among
various basic blocks; see Section 4.3. The resulting size of
the binary executable mainly depends on the length of the
secret, i.e., k. For example when k = 12, the address of an
instruction can be as big as 224

Figure 9 shows the resulting file sizes after C* processing
with two settings — one using a smallest possible setting
of k (which varies among different programs) and the other
with £ = 14. We argue that although the size of the binary
increases significantly with bigger values of k, storage is cheap
and it is usually not an issue with hard-disk space. That said,
a larger k also results in slightly bigger runtime overhead as
more instructions are executed to extract the values of x and
y from an address, and key reconstruction could also require
slightly more instructions executed.

7 DISCUSSION

7.1 Return-into-Pin

C3 provides CFI protection on the application but not the
dynamic instrumentation platform, i.e., Pin. An attacker, in
theory, could perform an attack by returning into instructions
in Pin so that control is diverted directly into the gadgets
found in Pin. We call such an attack “return-into-Pin”. Such a
control transfer would circumvent C3, enabling the attacker to
successfully execute control-flow hijacking attacks. Our design
of C? is compatible with other isolation hardening solutions,
such as Software-based Fault Isolation (SFI) [46], though,
which can instrument memory writes to check whether the
application attempts to write to a page “owned” by Pin.
Another (probably better) defense is to implement the exe-
cution environment in a more isolated layer such as the OS
layer, the hypervisor layer, the hardware layer, or even inside
SGX [13].

That said, once instructions are in Pin’s code cache, Pin
will not instrument them but jump there directly, which im-
proves the performance of C3. Meanwhile, such optimization
does not hurt security since Pin uses a local hash table for
each individual indirect branch transfer, which will contain
only the correctly decrypted targets. Any new targets will
result in a hash table miss and basic block decryption.

7.2 Return-into-libc

In general, CFI does not defend against all return-into-libc at-
tacks. Specifically, C® does not encrypt instruction sequences
in the .plt section, and so any return instructions can trans-
fer control to entries in the .plt section. In order to protect
these library function calls, one could statically compile the
libraries into the application.

7.3 Length of the Keys

Brute-force attacks have been introduced to reconstructing
the encryption keys in ISR [42], which is also applicable to
(3. However, since we use a different key for encrypting each
basic block, such brute-forcing will be ineffective because a
successful attack typically requires the reconstruction of keys
for multiple basic blocks. To this end, we believe that using
XOR as the encryption algorithm for improved performance
is justifiable, although C® can definitely use a more secure
encryption scheme. We currently use a 32-bit master key
since it is unique for the entire program. C* could improve
its security with a longer master key of, say, 80 bits.

7.4 Fine-grained CFI Enforcement

C? can be extended to enforce fine-grained CFI. For example,
C? can enforce the fine-grained CFI policy for forward-edge
indirect branch transfer instructions enforced in TypeAr-
mor [45] by classifying functions and indirect call instructions
into different clusters according to the number of arguments
they can accept, and then encrypting basic blocks with the
more accurate set of control transfers derived. We note that
enforcing a finer-grained CFI policy could likely reduce the
execution time and space overhead of C? due to fewer valid
control transfers on average and consequently less secret
sharing and block redistribution needed.

7.5 Other limitations

First, C? relies on static analysis and rewriting of binaries.
The current implementation does not support dynamically
generated code or self-modifying code.

Second, C? prevents attackers from directly reading the
code and finding useful gadgets. However, code pointers in
data areas such as stack and heap are still vulnerable to
indirect memory disclosure. For example, if the protected
binary has a format string vulnerability, the attacker can print
out the valid memory locations for return instructions, which
may allow an attacker to use, e.g., call-preceded gadgets.
This is a rather general limitation shared by other techniques
performing binary rewriting [47, 48, 50].



Third, C® renders caching and pipelining less effective.
It is a limitation for most ISR approaches, excluding those
performing decryption when there are I-cache misses and
store plain text in the I-cache.

Lastly, C? requires symbol names in the executable to
enable patching function and data pointers after basic block
redistribution. It also requires that data and code be com-
pletely separated to enforce instruction encryption. For bi-
naries that do not contain symbol information, we can use
external tools, e.g., Unstrip” and others [35, 39], to restore
the symbol information. Similarly, there are approaches to
identify data embedded within code [49, 50].

8 CONCLUSION

We present C2, a new CFI technique that embeds the CFG
into instructions to perform CFI checks without relying on
additional data structure like the read-only table used in
existing CFI approaches. It encrypts each basic block with
a key that can be reconstructed by any of its valid callers
with the help of a secret sharing scheme. During execution,
C3 reconstructs the key when a branch transfer instruction
is encountered. Our evaluation shows that C* can effectively
defend against most control-flow hijacking attacks with mod-
erate overhead.
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A BASIC BLOCK REDISTRIBUTION
ALGORITHM

Algorithm 1 Basic Block Redistribution

1: procedure REDISTRIBUTION(callee, master_key, k, p)
2 if callee not in key_block then
3 priority_callee = Look_Ahead(callee)
4 if priority_callee then
5: Redistribution(priority_callee, master_key, k, p)
6 callers = callee_caller[callee]
7 moved_callers = find_moved_callers(callers)
8 if len(moved_callers) == 0 then
9 caller = random_choose_caller(callers)
10: if len(moved_callers) == 1 then
11: caller = moved_callers|0]
12: compute_key(callee, caller, master_key, k, p)
7# move all callers of this basic block to be on the curve
13: for i in callers do
14: if i not in redistributed_block then
15: move_caller(callee, i, master _key, k, p)
# DFS: process callees of this basic block
16: for i in caller_callee[callee] do
17: Redistribution(i, master_key, k, p)
7 backtracking
18: for i in callers do
19: for j in caller_callee[i] do

20: Redistribution(j, master_key, k, p)
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