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Abstract 

In this paper, we study the bundle design problem for offering personalized bundles of services using 

historical consumer redemption data. The problem studied here is for an operator managing multiple 

service providers, each responsible for an attraction, in a leisure park. Given the specific structure of 

interactions between service providers, consumers and the operator, a bundle of services is beneficial 

for the operator when the bundle is underutilized by service consumers. Such revenue structure is 

commonly seen in the cable television and leisure industries, creating strong incentives for the 

operator to design bundles containing lots of not-so-popular services. However, as customers might 

choose to bypass a bundle completely if it is not sufficiently attractive, we need to impose a quality of 

service (QoS) constraint on the lower bound of the perceived attractiveness. In this paper, we make 

two major contributions (1) recognizing the inherent differences in customer preferences, we propose 

an approach for detecting different user classes, and for each user class, make an appropriate bundle 

recommendation; and (2) in order to make the bundling scheme even more adaptive to unknown 

customer preferences, we propose a dynamic bundling strategy, which allows customers to “trade in” 

any number of undesirable services dynamically so that they can be replaced by an alternative set of 

services. A step to generate fixed or static bundles is also studied. The pros and cons of different 

bundling strategies are illustrated using a real-world dataset collected from a large leisure park 

operator in Asia that manages a large collection of attraction providers. 

 

Keywords 

Bundling, Dynamic recommendation, Static recommendation, Customer segmentation, Recommender 

systems, Matrix factorization 
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23.1. Introduction 

Product development [27] is an important part of service innovation and marketing today. While 

product development could refer to designing new products from scratch or releasing an 

upgraded/modified version of an existing product, it could also refer to combining existing products 

as packages that we see in travel, financial, healthcare, information and telecommunications 

services. The latter process is commonly known as product bundling, which may entail both design 

and pricing aspects. For example, bundling of services are commonly found in vacation packages: 

bundles of airline tickets with hotels and car rental, as well as TV channel subscriptions. 

This work focuses on the bundle design [19] problem, which is a well-studied problem (see related 

work in Sect. 23.2.1). The bundle design problem in this chapter is concerned with designing 

bundles of attractions for a large theme park. Typically in a theme park, there are many attractions 

not all of which are interesting to a given visitor—much like not all TV channels are appealing to a 

particular viewer. Hence, it is an interesting problem to be able to offer a given visitor an 

appropriate bundle of attractions that fits his/her profile. This bundle is then sold as a ticket 

comprising the subset of attractions that can be redeemed by the ticket holder. 

Our work falls under a larger category of consumer analytics for the hospitality industry. It thus 

offers a methodology for the travel industry in terms of generating good bundle options for tourists 

in general. With the increasing number of both domestic and international travellers every year, 

there is a need to better understand demands of customers in order to better serve and provide a 

more enjoyable experience. In the past, many business decisions were made based on the “gut 

feeling” of decision makers, which might not always be the best as important information is not 

usually readily available. With the advancement of technology, especially with the emergence of 

data analytics, these critical business insights may be obtained from data, which allows these 

decision makers to make better business decisions in a timely manner. 

Our goal is to develop strategies for designing bundles for profit maximization with a quality of 

service (QoS) constraint for the park operator. The target bundle design problem has unique 

characteristics differentiating from the existing bundling problems in terms of profit. The profit 

gained from a customer/visitor depends on his/her visit preferences, thus per-visitor profit varies 

among the visitors who bought the same bundle with the same price. While designing bundles, we 

explicitly consider the existence of multiple user classes/segments, and disparate bundling 

strategies typically exist for different user classes. The identification of user classes is achieved 

through analysing historical consumption patterns when customers were free to choose among all 

available services. These consumption patterns turn out to be the major difficulty in designing 

profitable bundles, as the perceived attractiveness of a particular service usually depends on the 

other included services in the bundle. The QoS constraint is used to maintain a certain level of this 

interactive attractiveness while designing profitable bundles. 

We propose a data-driven approach benefiting from recommender systems (RSs) to offer 

personalized bundles of services. RSs refer to a broad range of software systems or tools that 

provide suggestions for items that a user might be interested in consuming [40]. The underlying 

techniques of RSs aim to produce high-quality prediction on ratings users might have for potential 

candidate items. To achieve such an objective, it is essential to have ways to reliably predict users’ 

own preferences, which usually implies that a RS must have access to either a user’s past choices or 

consumptions. Considering a user’s own preferences as basis, a RS can be designed to generate its 

predictions using either other user’s choices (the collaborative filtering approach [50] which is 

discussed in Sect. 23.2.2) or just candidate item’s description/content (the content-based filtering 

approach [53]). Given the huge online footprint of users, service (e.g. retail and entertainment) 

providers have access to large amounts of user service consumption records. With such information, 
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highly effective personalized RSs can be created for a wide variety of items including but not 

limited to movies, books, music, research papers and even friendships. 

The target bundle design problem relates to the three-tier business model shown in Fig. 23.1. 

Examples of such business models include cable networks and leisure parks. The first is the tier of 

customers, who consume services from the given bundle based on their own preferences and 

limitations, like leisure park visitors; second, the tier of service providers who rent resources from 

the operator and provide services to customers, like the service provider of a roller coaster; and 

third, the operator, who owns the resources required for running services (e.g. land for physical 

services, or bandwidth for digital services) like the owner of the whole leisure park. To receive 

services from providers, customers can either pay the full rate directly to providers or they may 

purchase a pre-constructed bundle containing that service from the operator. When purchasing a 

bundle, a customer needs to pay the bundle price upfront (which is usually discounted from the total 

bundle value), but does not need to pay again for any service included in the bundle. As customers 

do not pay providers directly, providers will seek reimbursement at a pre-determined rate from the 

operator using verifiable service records. Table 23.1 gives a numerical example of the interaction 

between operator, services providers and visitors. Consider that a p = 40$ bundle of four attractions 

are bought by four visitors. Whenever one of these visitors visits a particular attraction, a 

predetermined cost occurs to the operator and assumes that these four attractions cost (cj) 17$, 13$, 

8$ and 27$, respectively. Thus, although each visitor bought the same bundle with the same price, 

the operator’s profit (p − cj) from each visitor varies, i.e. 23$, 27$, 32$ and 13$. 

 

Fig. 23.1 A three-tier business model including customers, the service providers and the operator 
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Table 23.1 An example of four visitors who bought a bundle of four attractions where each 

attraction is managed by a service provider (+: visited, −: unvisited) 

 

We are interested in addressing this problem of designing service bundles for the operator. The 

operator receives income from two sources: (1) the fixed income from renting resources to service 

providers, and (2) the variable income from selling bundles. As the operator receives full payment 

for the bundle upfront, and only needs to reimburse a service provider if a customer uses that 

service, the operator actually enjoys additional income if a customer buys the bundle but utilizes 

relatively few services. Thus, solely from the perspective of the operator, having bundles of 

unpopular services seems like a profitable strategy. However, from the service providers’ 

perspective, each attraction should be visited as much as possible so that each service provider who 

is responsible from each attraction can make a high profit. Otherwise, the service providers will not 

be willing to rent the attractions considering that they will not be able to reach their expected profit. 

Consequently, the operator will face the similar problem of making limited profit or losing money 

due to the issues of the service providers. Yet, both the operator’s and the service providers’ 

financial situation mainly depend on the park visitors. If the park visitors enjoy their time in the 

park through trying various attractions, each attraction can have a profitable business. This results 

in an increasing interest of renting the attractions by the service providers, which help the operator 

to make more income from the attractions’ rents. This means that when constructing a service 

bundle, the operator may not simply include all the unpopular services, as the customers will simply 

refuse to buy the bundle if it is not attractive enough. We view this requirement as the Quality-of-

Service (QoS) constraint the bundle needs to satisfy. 

After formally formulating the bundle design problem that provides the mathematical foundation 

for quantifying the trade-off between operator profit and QoS constraint, we make two major 

contributions in designing the RS for the bundle design problem. First, we design a static segment-

specific bundling strategy, in which a fixed bundle is constructed for a given customer (or a 

customer group) according to the segment s/he belongs. The static bundling falls into the category 

of the traditional bundle design. Having a certain level of flexibility of the bundles can make the 

bundling idea even more attractive for the customers. Thus, secondly, in order to grant even more 

flexibility to the consumer, we propose a dynamic bundling strategy where a customer has the 

option to choose to trade in any services s/he does not intend to utilize in the current bundle, and 

receive an alternative replacement which s/he may choose to keep or skip. 

The remainder of the chapter is organized as follows. Section 23.2 provides reviews both bundle 

design and collaborative filtering. The bundle design problem studied here is explained in 

Sect. 23.3. The design details of the data-driven bundle design approach are provided in Sect. 23.4. 

Section 23.5 presents computational results using a real-world leisure park data. The conclusions 

and suggestions for future research are discussed in Sect. 23.6. 

23.2 Background 

The main goal of “bundling” is to deliver more profitable products in bundles than selling each of 

the products in a separate way. Collaborative filtering is a field of recommender systems. It is 

motivated to help group preferences. If two users have common preferences on certain items, their 

preferences are expected to be similar on other items and thus inform predictions. 



5 
 

These two subjects are now related in the literature. Recommender systems have also been used to 

address the bundling problems. In [59], a recommender system was devised to offer k best packages 

by extending the item-based recommendation idea using approximation algorithms. A graphical 

model was proposed to detect the consumers’ unknown preferences that are used to predict user-

specific best possible TV channel bundles in [17]. A bundle recommender system that reduces the 

item set first for discovering an optimal bundle for e-commerce was designed in [66]. 

Crowdsourced data was incorporated to deliver personalized travel packages in [61, 62]. In [9], a 

collaborative filtering based recommender system that utilizes personalized demand functions and 

price modelling was developed, focusing on both suppliers and consumers. Additionally, various 

studies [30, 51] were performed to recommend travel packages from a set of existing ones. 

This section covers some fundamentals on bundling and collaborative filtering as related to our 

present work. 

23.2.1 Bundling 

The purposed goal of “bundling” comes with some advantages [44] including price discrimination, 

cost saving and potential entry deterrence. The goal is aimed to be achieved by attracting and 

satisfying consumers in terms of experiencing bundles and their costs. These objectives have been 

investigated under three perspectives in the literature [55]. These perspectives relate 

to suppliers, consumers and competition. 

Suppliers seek ways to decrease all kinds of costs such as inventory costs [18] and marginal costs 

[54] while increasing profits and sales. In [20], the profitability of bundling was examined for a 

supplier that leads the complete market, considering the negotiations between the intermediaries 

and a competing firm. Another profitability work [16] was carried out under different conditions 

including the consumers’ preferences, product diversity and rival existence. In [58], the supplier 

selection problem was studied from a bundling perspective for notebook manufacturers in Taiwan. 

The goal is to determine the best possible bundle of suppliers for notebook production depending 

on various cost and quality measures. The effects of heterogeneity of the bundled products with a 

risk analysis were investigated in [44]. In [37], a constrained-based adaptive bundling strategy is 

proposed to offer product bundles by taking into account the newly introduced constraints/rules and 

the changes on products’ availability. Bundles of information products were analysed from the 

suppliers’ perspectives with the products’ complementarities and substitutabilities in [36]. In [34], 

bundles of sensor data, referring to applications of the “Internet of Things”, coming from multiple 

suppliers were offered with a pricing strategy. Pricing strategies on mobile tariffs as bundles were 

discussed in [12]. 

Consumers look for bundles to pay less when the bundled products are separately bought and to 

consider bundles that are interesting in terms of the correlation/complementarity between the 

bundled items. The way of discounts offered by bundles of automobiles with optional extras was 

studied considering the consumers’ feedback in [25]. In [1], the factors affecting the consumers’ 

decisions on buying a particular bundle were studied under the light of the bundle size, the bundles’ 

uniqueness and similarities. The relation between the decrease on the consumers valuations for the 

information goods and the number of goods was examined in [22]. A consumer preference analysis 

on choosing between bundles and single products was performed in terms of search and assembly 

costs in [24]. The consumers’ evaluations were analysed on the individual products of a bundle 

considering price discount and product complementarity in [46]. The bundles in the telecom 

industry of Turkey were studied to understand the actions of consumers on buying bundles and their 

future bundle choices in [52]. In [13], the consumers’ behaviour was reviewed on their food bundle 

preferences focusing on fruits and vegetables, relating to their health issues. 
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Competition [8] is another factor that needs to be taken into account if required. From this 

perspective, bundling studies are studied for the monopolist, duopolist, oligopolist and perfect 

competition environments. Monopoly refers to the markets where there is only one supplier for a 

particular product. For the duopolist markets, there are two competing suppliers for a single 

product. In the case of oligopoly, more than two strong yet limited number of suppliers are 

available. The perfect competition occurs when many suppliers and consumers exist. To give a 

number research works concentrating on the competition aspect, in [54], bundle design and pricing 

were studied for the monopolist settings. In [6], the effects of bundling on social welfare were 

studied for monopolists. In [15], an equilibrium theory is studied for the profitability of the bundles 

considering the duopoly and perfect competition markets. For the oligopoly markets, the effects of 

discounts on the bundled products considering the products’ interrelations were analysed in [21]. 

An analysis for two-good bundle pricing is performed under oligopoly in [45]. 

Referring to the form of bundling [49], the studies could be classified as pure or mixed bundling 

[35]. Pure bundling is for the firms that sell only bundled products while mixed bundling [35] is 

valid when a firm sells both bundled and separate products. For the case when there is no bundling, 

“unbundling” is the term used in the literature. 

In this chapter, we study the bundle design problem of a multi-product monopolist (no competition) 

for pure bundling, yet also applicable to mixed bundling, without bundle-related supplier costs, 

where product interactiveness are taken into account. 

23.2.1.1 Item Interactivity 

One of the critical aspects for bundle design is interactiveness of items. Interactiveness is 

considered in three ways, namely complements, substitutes and independent. Among them, 

complementarity and substitutability are studied mostly as interactiveness indicators. The 

traditional approach to specify whether two products are complementary or substitutable is to check 

the sales of products regarding their price changes. For two complementing products, a decrease in 

the price of one product is expected to cause an increase in the sales of the other product. For two 

substitutable products, however, increase in the price of one product is expected to cause an 

increase in the sales of the other product. In other words, the complementary products are 

interesting together for the consumers while the substitutable products are expected to be sold as 

alternatives [64]. For instance, a bike and a bike tyre can be considered complementary while two 

different bikes are substitutable since either one of them could be bought. Yet, changes on the 

prices and sales are unable to provide an ultimate criterion to talk about complementarity and 

substitutability for a given pair of products [47]. It is possible to see some products that are 

complementary for some consumers while they are substitutes for some others [28]. Following the 

same bike example, a road bike and a mountain bike can be complementary if a consumer has a 

particular interest of using them for different purposes, i.e. driving on a regular road or off-road 

driving. These bikes can be substitutable for another consumer if the only purpose is riding a bike. 

The products that are complementary for some consumers, while substitutes for some others, 

require more complex bundling approaches than in the case where it exists a strict interactiveness 

difference. The bundling problem we are working on has an additional characteristic than when 

complementarity and substitutability can be favourable or unfavourable, is unknown. This makes 

our problem even more challenging. However, the bundles of complementing products (a detailed 

discussion is given in Sect. 23.5.1) are usually assumed more attractive to the customers than the 

bundles of substitutable products in the existing studies. 

23.2.1.2 Size of the Bundles 

Although the effects of bundles’ sizes are a crucial subject to research, most of the bundling studies 

focus on the cases where bundle size is only two [14, 32]. In spite of the strong conclusions derived 



7 
 

in these papers, working on the smallest bundles limits the applicability of these studies to the real-

world scenarios. Unlike these studies, thousands of information goods are considered to form 

bundles in [7]. They investigated various topics including market segmentation, interactiveness and 

profit analysis regarding the bundle size. 

Related to this chapter, in [33], the bundling operation is handled by generating a Markov Random 

Field (MRF) based on the visit transition frequencies of a given dataset. MRF is an undirected 

graphical model with Markov property. For our target problem domain, each node refers to an 

attraction and edges between nodes indicate the relation between attractions. Attractions that are 

disconnected or without a directly connecting edge are considered independent or unrelated. In 

other words, unconnected attractions are the ones which are not visited together or visited together a 

few times only. A MRF generated based on a relatively large historical visit dataset is able to reflect 

popular attractions and their level of popularity to be visited together with other attractions. 

Weights calculated for attraction subsets indicate how strong this popularity level is. These weights 

are also used to evaluate the popularity of each attraction when a set of certain attractions available 

in the form of conditional probabilities. In the aforementioned study, this information is utilized as 

the indicator of attractions’ attractiveness. While attractiveness level shows the probability of an 

attraction being visited, it is used to calculate the cost that incurs to the main leisure park operator. 

Here, suggesting highly attractive bundles means that visitors will be highly satisfied while the 

operator will pay a large amount to the service providers and vice versa. Due to this inverse 

relationship between attractiveness and cost, the problem is designed as the knapsack problem [31]. 

The only constraint is set as the attractiveness level so that a resulting bundle should have a certain 

attractiveness level at least. Since the attractiveness of attractions is not constant or fixed but varies 

depending on the other attractions included in the bundle, the knapsack problem is considered with 

interactiveness. 

23.2.2 Collaborative Filtering 

Collaborative filtering (CF) [50] became a popular field of research mainly after the Netflix 

challenge [10]. The aim of this competition was to predict a set of users’ preferences on a group of 

movies in the form of ratings/scores when limited rating data is available. Similarly, the 

Amazon.com [29] like datasets have been used for evaluating various CF methods on customer-

item matrices involving the customers’ item preferences. In those datasets, there is no dependent 

relation among both the users and items. Differently, in our case, visitors can be dependent when 

they move in groups and attractions are highly correlated which affects both revenue and QoS. In 

addition, one of the tested data forms here consists of both ordinal and availability information 

together while the current CF literature focuses on single-aspect data like movie ratings as in 

Netflix. 

The motivation behind CF is related to the similarity levels between different users with respect to 

their preferences. If two users have common preferences on certain items, their preferences are 

expected to be similar on other items. Thus, user-based similarity is the straightforward choice for 

CF. Determining similarities between items [41] have also been used to perform predictions. A 

prediction process is concerned with either matrix completion or cold start [42]. The matrix 

completion task is targeted when all the users and items are known at some level. In other words, 

each user should have his/her score at least on one item and each item should be evaluated at least 

by one user. In the cold start case, the goal is to make predictions for unknown or new users and 

new items. 

23.2.2.1 Memory-Based and Model-Based Collaborative Filtering 

Existing CF algorithms are studied under two categories including memory-based CF and model-

based CF. The memory-based methods predict unknown elements directly using available sparse 
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data. The nearest-neighbour algorithm is the primarily studied memory-based approach. The idea is 

to determine missing matrix values by using a predetermined number of similar users or items. 

Model-based algorithms build a model which approximates to a given matrix. Matrix factorization 

(MF) is the primary technique used for this purpose, mostly via optimization. The memory-based 

CF techniques are very effective in spite of their simple designs. However, they are likely to deliver 

worse performance than the model-based CF approaches when the data provided is highly sparse 

[50]. 

Matrix factorization is basically a mathematical process to derive two matrices from a given matrix 

where the multiplication of these two matrices relates to the original matrix. Singular value 

decomposition (SVD) [11] is one of the well known matrix factorization methods used in various 

CF studies. The main issue with this kind of pure mathematical approaches is the requirement of 

having a full matrix. Thus, a pre-processing step is needed to complete a sparse matrix first. The 

other family of MF algorithms define the factorization process from an optimization perspective. 

The goal is to find two matrices that gradually approximates to a given matrix. While earlier 

methods like SVD deliver a perfect factorization, the second group of methods usually provide 

near-perfect or near-optimal factorization. Thus, they are also referred to as “matrix 

approximation”. 

23.2.2.2 Matrix Approximation and Factorization Methods 

The matrix approximation methods have been used on two different types of matrices. The first 

matrix type involves both negative and positive real values. The basic strategy to address matrix 

completion is minimizing the sum of squared error between the original matrix and the predicted 

matrix. Gradient descent is used to perform this optimization task by updating two factorized-

matrices in an alternating manner. Besides this basic implementation, Maximum-Margin Matrix 

Factorization (MMMF) [48] emulates SVM by considering multiple classification tasks and 

accommodating the hinge loss. Semidefinite programming is used to realize the whole optimization 

process. Due to the scalability issues of semidefinite programming, a gradient-based optimization 

technique was proposed to speed up MMMF in [38]. Unlike these methods, probabilistic MF [43] 

optimizes the posterior distribution on the factorized-matrices. In order to deliver better 

factorization performance, tensor factorization [56] has been studied to add content-based user or 

item specific data as additional dimensions to the traditional two-dimensional matrices. The second 

matrix type only allows non-negative values. The idea is to further analyse factorization results by 

applying the non-negative MF (NMF) algorithms [65]. The analysis part is related to the 

hidden/latent factors characterizing users and items, revealed by MF. In the non-negative case, 

these factors, which are also non-negative, are directly interpretable due to their additive nature. 

Although the factors from the first matrix type are still useful, there is no a systematic way to 

specify what each factor refers to. In terms of solution strategies, we evaluate a number of memory-

based and model-based CF algorithms on two different matrix forms. Besides that, we suggest a 

way to combine the strengths of the tested methods when they are used on one of the matrices to 

deliver overall better performance. 

23.3 Problem Statement 

In this section we will define the problem we are dealing with, in which we have multiple customer 

classes. However, to understand the concept we rely on first explaining the single-cluster model 

which can then be generalized to a multiple-cluster one so we start with this one first. 
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23.3.1 Single-Cluster Model 

Let N = {1, 2, …, N} be the set of available services. Let K < N be the desired bundle size. The 

objective of our bundle design problem is to maximize the expected profit for a typical bundle 

customer: 

 (23.1) 

with the QoS constraint that the overall bundle attractiveness must be at least c: 

 (23.2) 

Finally, to ensure that the bundle size is correct, we have: 

 (23.3) 

In the above formulation, xi is a binary decision variable: set to 1 if service i is included and 0 

otherwise. x = {x1, …, xN} is the vector of all decision variables xi, i ∈N. The function ri(x) gives the 

expected profit earned by the operator when the bundle is {i|xi = 1, i ∈N}. Following earlier 

definitions, this expected profit function can be computed as: 

, (23.4) 

where P(Si = 0|S1 = x1, …, SN = xN) is simply the probability that a typical bundle customer would 

choose NOT to utilize service i, and ui is the fee the operator needs to pay service provider i if the 

customer uses the service. 

The attractiveness of service i can be similarly defined as: 

, (23.5) 

where the first component of Eq. (23.5) is the probability that a customer would choose service i, 

and vi is the associated value it would bring to the customer. Note that for both cases, P(⋅) needs to 

be computed from the historical data. 

Both Eqs. (23.4) and (23.5) are nonlinear; to linearize these two sets of equations, we can 

enumerate all possible bundles of size K as set YK, and define new decision variables yj to take on 

the value of 1 if bundle Yj ∈YK is chosen, and 0 otherwise. Let YjiYij be 1 if service i is included in 

bundle j; Eqs. (23.4) and (23.5) can then be rewritten as: 

 (23.6) 

 (23.7) 

With (23.6) and (23.7), the bundle design problem (23.1)–(23.3) can then be linearized as: 
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 (23.8) 

s.t. 

, (23.9) 

 , (23.10) 

The final constraint ensures that exactly one bundle is selected. 

The above optimization model looks deceivingly simple, yet it is non-trivial to solve, as the 

set YK is combinatorial, and the number of decision variable yj will grow exponentially in K. 

23.3.2 Multi-Cluster Model 

As stated earlier, one major contribution we make in this chapter is the incorporation of multiple 

customer classes. To accommodate this, we only need to modify Eqs. (23.6) and (23.7). Instead of 

having only a single set of joint probability distribution on service selection (P(⋅))(P(⋅)), we will 

now have multiple sets of probability distributions. 

23.4 A Data-Driven Approach 

The primary contribution of our chapter is the design and implementation of a data-driven approach 

for an operator managing a collection of services. More specifically, recommending bundles of 

services using consumer redemption data should maximize expected profits, while obeying QoS 

requirements (characterized by a lower bound on attractiveness or customer valuation). The 

mathematical formulation of the proposed method is already presented in Sect. 23.3. 

In this section, we introduce and compare approaches for extracting multiple user classes from a 

real-world dataset. As the size of the mathematical formulation grows exponentially, we use an 

efficient and effective greedy heuristic for solving the bundle design problem. To provide a 

concrete context to the methodological discussion, we develop our approaches based on a real-

world dataset (details are presented in Sect. 23.5) collected from a leisure park operator who leases 

out its land parcels to multiple attraction operators (i.e. service providers). 

The proposed approach involves two important stages: (1) customer segmentation: based on 

historical data, infer multiple classes of customers who have inherently different preferences over 

provided services, and (2) segment-specific bundle recommendation: based on segment-specific 

parameters (in the form of probability function P(.)), solve individual bundle design problem using 

a greedy heuristic (to be explained). For the second stage, we propose two variants. The first variant 

recommends static bundles, referring that customers have to commit to the content of the purchased 

bundle. The second variant allows bundles to be dynamic, which means that a customer can request 

part of the bundle to be replaced by new recommendation. The greedy heuristic is based on an 

earlier work [33] on similar problem. For the dynamic variant, a memory-based CF method, i.e. 

nearest-neighbour and a model-based CF algorithm (CofiRank) are applied to two matrices 

consisting binary visit information and time information. Figure 23.2 visualizes the complete 

workflow of the proposed strategy. 
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Fig. 23.2 Workflow of the proposed data-driven approach with three steps including visitor 

segmentation: to determine different types of customers, static bundling: to offer attractive and 

profitable attraction bundles and dynamic bundling: to suggest on-the-fly changes on the bundles 

 

23.4.1 Visitor (Customer) Segmentation 

Visitor segmentation is a critical aspect of a bundle design process. For instance, consider a tourism 

agent who would like to sell travel packages for visiting multiple cities. The first step is how to 

determine these packages. In principle, each package should be designed such that they can meet 

different customers’ needs. There can be a group of customers who are interested in nature while 

another group of customers are interested in history. Designing a single package to satisfy these two 

groups of customers is likely to be an unsuccessful strategy considering the strict differentiation 

between customers’ preferences. Instead, providing a travel package with visits relating to nature 

and a travel package involving visits of historical sites is expected to more satisfactory for these 

customers. 

In order to detect such variations on customers, some prior information regarding consumers is 

required. A questionnaire performed on a large group of people shows that customers’ explicit 

preference information, historical order data and online browsing history are some examples that 

can be used to specify customer groups or can be used to segment customers. In this study, we use 

visit data of earlier visitors in the form of visitor × attraction matrices such that each row refers to a 

visitor and each column represents an attraction. This data indicates which attractions are visited by 

each visitor with day/time information. Although directly using such data would be useful, it might 

be hard to process depending on its size. Besides that, it is likely that data of a large number of visit 

information has some noise. 

Singular Value Decomposition (SVD) [11] is applied to address both data size and noise issues. 

SVD is a widely used MF [26] technique particularly in the CF field both to approximate a given 

matrix to its smaller-rank version and to provide representative latent (hidden) factors. Matrix rank 

here refers to the column rank. SVD is capable of decreasing the number of columns of a 

corresponding matrix allowing to perform various matrix manipulations easier due to having 

relatively smaller-sized data. Thus, SVD is also stated as a dimensionality reduction approach. The 

other capability of SVD, being able to provide latent factors, is helpful to eliminate noise in the 

data. In particular, visitors can be characterized more efficiently by using these latent factors rather 

than directly using their attraction visit information. 
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As shown in Eq. (23.11), applying SVD to a matrix MM results in three matrices, i.e. U, V  

and Σ. U and V  matrices are defined as left and right singular vectors while the diagonal Σ matrix 

provides sorted singular values. These U and V  matrices represent rows and columns of ℳ, 

respectively. The Σ matrix informs about the importance of resulting latent factors that decreases 

for each subsequent dimension, e.g. the first latent factor is more significant than the second one. 

ℳ =U Σ VT  (23.11) 

SVD is practical to achieve an efficient similarity analysis between the elements of a matrix. 

However, the primary reason using it here is to take advantage of dimensionality reduction for the 

sake of better and faster clustering for segmentation. After applying SVD to a customer’s visit data, 

the produced U matrix is used as the matrix representing customers. The clustering on U is 

performed by the Gaussian-means (G-means) algorithm [23]. It is a clustering algorithm using k-

means where k is automatically determined. G-means incrementally applies k-means for 

larger k values if a resulting cluster doesn’t belong to Gaussian distribution. The process starts with 

a single cluster, k = 1 or k > 1 if there is prior knowledge, and k is iteratively increased until all the 

clusters are from Gaussian distribution. The distribution check is operated by applying the 

Anderson-Darling statistic [4]. If this test determines non-Gaussian clusters , the corresponding 

clusters are divided into 2 using principal component analysis and k-means is re-applied. The 

overall customer segmentation process is explained in Algorithm 1. 

Algorithm 1: Two-step clustering strategy for customer segmentation, where ℳv,a is a customer-

attraction matrix 

 

The same MRF approach studied in [33] is pursued, now for each customer segment. Thus, it is 

expected that each segment differs in terms of their visit transition frequencies. For this purpose, the 

clusters determined by G-means are processed to generate transition matrices that are converted to 

vectors afterwards, where the frequency values are normalized as percentages. These vectors are 

compared to a similarity metric for detecting similar clusters. The similarity check is realized either 

using the Cosine similarity (Eq. 23.13) or Pearson Correlation Coefficient (Eq. 23.13). The Cosine 

similarity compares two vectors based on the angle between them while the Pearson Correlation 

coefficient considers average values in addition to Cosine. For the first metric, the similarity values 

change between 0 and 1 where 1 refers to the most similar cases. For the second metric, the 

similarity level varies between − 1 and 1 where 1 refers to the strong positive correlation and − 1 

indicates strong negative correlation. In the equations, vi refers to the customer transition 

vector, a ∈ A is an attraction and rvi,arvi,a is the transition frequency value for a customer-attraction 

pair. 

 (23.12) 

https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-06222-4_23/MediaObjects/385612_1_En_23_Figa_HTML.png
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 (23.13) 

23.4.2 Static Recommendation 

After all the customers are segmented, a static bundle is recommended for each visitor segment. 

The motivation studying static recommendation is to deliver generally acceptable bundles. When a 

new customer arrives, s/he should be able to find a reasonably satisfactory static bundle to start 

visiting the corresponding leisure park. The per segment static bundles with varying sizes are 

generated by applying a simple yet effective greedy construction heuristic [33]. The greedy 

heuristic iteratively adds an attraction with at least c∕K attractiveness level and the lowest cost to 

generate a bundle of a size K, i.e. involving exactly K attractions. The greedy heuristic initially adds 

a single attraction via Eq. (23.14) respecting Eq. (23.15). The remaining K − 1 attractions are 

selected using Eq. (23.16) while satisfying Eq. (23.17). It was shown that this heuristic is capable of 

delivering near-optimal solutions. The bundle tickets at this point are recommended as either fixed 

bundles or flexible bundles. The fixed ones belong to the customer segments which are too large 

considering all the segments. These segments are detected by using the interquartile range 

(IQR). IQR is calculated as IQR = Q3 − Q1, the difference between the third, Q3, and first 

quartiles, Q1. The segments larger than Q3 + (1.5 × IQR) are considered upper outliers. 

(23.14) 

 (23.15) 

 (23.16) 

 (23.17) 

23.4.3 Dynamic Recommendation 

The idea of dynamic recommendation is to make online suggestions by offering changes on an 

existing ticket. Figure 23.2 provides a simple example. In the given scenario, a visitor who bought a 

bundle ticket (2, 5, 6, 9) decides to make changes on the ticket. This visitor either already visited 

attractions 2 and 5 or planning to visit these two attractions. Dynamic bundling aims at suggesting 

other attractions in exchange of attractions 6 and 9 which are not preferred to visit by the visitor. In 

the given example, (6,9) is swapped with (1,8). It should be noted that in this operation there is no 

obligation regarding 1-to-1 exchange meaning that one or more than two attractions can also be 

offered to change with two attractions. 

As shown in the given example, dynamic recommendation is the next step of the static 

recommendation on the bundles. However, it could be argued that the dynamic recommendation 

might not be a critical component since the bundles are already personalized with the prior 
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operation of customer segmentation. Although the argument sounds right, it is not completely 

correct since the primary idea of dynamic recommendation is to increase the level of 

personalization on the bundles. The level of personalization could be increased due to the 

generalization effect of the customer segmentation. From the customer segmentation perspective, 

the optimal segmentation would be considering each customer as a separate segment while the 

worst segmentation would be considering all the customers in a single segment. The customer 

segmentation approach can provide a balance between the optimal segmentation and the worst 

segmentation. The optimal segmentation could have been, of course, used to resolve this issue yet it 

can obviously make the system impractical. For instance, if we consider a leisure park of just 10 

attractions, the possible number of bundles is 1023 (2N − 1 where N = 10) that is the optimal case 

which can easily confuse the customers. The customer segmentation handles this confusion at a 

large extent yet it is still a generalization due to the conflict between the personalization and 

practicality. The dynamic recommendation can give the opportunity of personalizing the bundles 

further. 

Dynamic recommendation is useful not only for a high level personalization but also for addressing 

the issues occurring in real-time. To exemplify, a customer walks towards to an attraction but 

encounters with a long queue and decides that they do not want to wait, or a customer needs to 

leave the leisure park earlier than her/his planned schedule so to find an attraction which requires 

shorter time or a customer sees an attraction from outside and dislikes it. For such cases, a customer 

can easily change her/his decision on-the-fly with dynamic recommendation. 

For addressing dynamic bundling, the idea of collaborative filtering (CF) is incorporated. CF is 

popular in making predictions or recommendations of items that are expected to be interesting for a 

particular customer. When partial customers’ preference information on items is available, a CF 

method can efficiently predict a customer’s preferences on the items s/he haven’t seen or tried yet. 

For this purpose, a number of memory-based and model-based CF methods are utilized. The k-

nearest neighbour (kNN) based prediction method with varying similarity metrics is employed as a 

memory-based CF algorithm. A MF algorithm, i.e. CofiRank, is applied as a model-based approach. 

The customer-attraction matrix either with binary visit information or time period data is used to 

test dynamic recommendation. The results from the first matrix provide dynamic ticket changes 

while the second matrix is useful to also suggest tickets with order-based information. 

For kNN, cosine similarity is used to determine the most similar entries. The similarity 

measurement can be done either by comparing customer entries/rows or attraction entries/columns. 

Due to the data size we are dealing with, similarities are measured based on matrix columns. After 

calculating all the similarities, a prediction matrix is created using the weighted prediction measure 

[39] as shown in Eq. (23.18). 

 (23.18) 

CofiRank [57] is inspired from MMMF [48]. It primarily aims at optimizing a rank-based loss 

function, i.e. Normalized Discounted Cumulative Gain (NDCG), Eq. (23.19). 

NDCG@k is a metric that shows how well the top k items are predicted, besides that predicting an 

earlier item is more valuable for predicting an item that comes later, in the form of ranking. In other 

words, NDCG imitates the motivation behind search engines about finding the most relevant sites 

about a subject, first. The given equation provides a value between 0 and 1 where 0 refers to the 

case where all the predictions are wrong while 1 shows the case of a perfectly correct prediction. 

DCG@k is the actual measure indicating the quality of the prediction. It is divided by IDCG@k 

which is the perfect prediction case to normalize. DCG@k is calculated as shown in Eq. 
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(23.20). ri,j is the score or quality of item j where i indicates the prediction order. 1∕log(i + 2) is the 

discount factor. If the initial items are correctly predicted, their contributions to the DCG will be 

higher. Thus, the objective is to maximize DCG@k so NDCG@k. Besides NDCG, the squared 

regression loss (Eq. 23.21) and ordinal loss (Eq. 23.22) functions are provided. The regression loss 

is the generally used loss function considering the differences between the predicted values, p, and 

the actual values, r. The last function focuses more on predicting the right order of items regarding 

their scores or qualities. CofiRank targets to minimize one of these loss functions 

(L(UV,M)L(UV,M)) together with a trace norm based regularization element, as illustrated in Eq. 

(23.23). The optimization process accommodates a method manipulating U and V  in an alternating 

manner for approximating to a given sparse or incomplete matrix. Due to the superior performance 

of the regression loss, only its results are reported. 

 

Table 23.2 details all the experiments carried out to address dynamic bundling. Besides the 

experiments using the aforementioned CF algorithms for completing sparse binary and time 

matrices, a combined approach is additionally suggested. kNN-BT, CofiRank-BT and kNN-

B+CofiRank-T fall into this category. The idea here is to apply a CF algorithm separately to binary 

and time matrices, then validating the time matrix by the predictions from binary matrix. Each 

element of a time matrix changes between 0 to a relatively large value representing the daily end 

visit time. A 0 means unvisited or “not-be-included” and the rest of the values show that 

corresponding attractions are included. Considering that space of possible values to be assigned, it 

is very likely to set values other than zero to an attraction which is not actually visited. In the case 

of binary matrix, a possible value is either 0 or 1 so the chance of false prediction is very limited in 

comparison to the case where time matrix is used. In order to alleviate this issue, the unvisited 

attractions detected from the binary matrix are used to remove the non-zero elements for those 

attractions in the predicted time matrix. 
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Table 23.2 Tested collaborative filtering methods 

 

 

For comparison purposes, Association Rule Mining (ARM) [63] (a.k.a. Frequent Itemset 

Mining[2]) is used. ARM is a popular approach particularly in market basket analysis. The idea is 

to determine the items which are expected to be bought by a customer when s/he already bought a 

set of items. In other words, ARM looks for rules such that A → B where A is the set of existing 

items and B is the items expected to be included or interesting (A∪B=∅A∪B=∅). ARM operates 

based on frequencies like MRFs but in a simpler way. Support and confidence are the two main 

measures to evaluate the quality of ARM rules. Support of a rule A → B is calculated as shown in 

Eq. (23.24) where nA∪B shows the number of transactions when items A and B are bought together 

and N refers to the total number of transactions. Confidence is calculated using support as presented 

in Eq. (23.25). While support is a basic frequency calculation of a rule, confidence is a conditional 

probability, P(B|A), indicating how strong a rule is. For dynamic bundling, attractions (to be) visited 

are the ones included in A while B are the ones to be offered as dynamic choices ignoring the 

attractions not to be visited. However, it should be noted that using ARM can be costly for large 

datasets. Suppose that there are m items. The total number of itemsets can be derived is 2m − 1. 

Exhaustive search requires N × (2m − 1) checks to evaluate and detect all the rules. 

Increasing m values makes this process computationally expensive. Apriori [3] was introduced to 

efficiently tackle this issue. Apriori is able to quickly derive all the rules where each rule has a 

support level which is equal or higher than a predetermined value. The speed up provided by 

Apriori comes from this support level bound. Whenever it detects a rule that has a lower support 

than this bound, there is no need to check other rules containing the items from this particular rule. 

Thus, many infeasible solutions (the ones with low support) can be eliminated without even 

checking them and delivers a faster way of rule detection. For dynamic bundling, preferences on to-
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be visited attractions and not-to-be visited attractions are provided as prior information to ARM. 

ARM returns the item set or bundle that includes these prior preferences with the highest 

confidence. 

 

As the final comparison algorithm, the aforementioned Greedy construction heuristic is used. In this 

case, dynamic bundling is thought as static bundling with prior information. This prior information 

consists of the attractions to be initially included and the attractions to be ignored from visitors’ 

dynamic bundling requests. 

23.5 Computational Analysis 

We work with a large leisure park operator in Asia which manages 17 attraction providers. The 

attendance (or redemption) records of 22,287 visitors under an all-you-can-visit model (i.e. visitors 

would pay for a bundle that consists of ALL 17 attractions) were collected. Our focus in this section 

is to show how we can improve the bottom line of the operator through better bundle design. 

Each attendance record is a tuple containing 〈Timestamp, CardID, AttrID〉, where AttrID is the 

attraction ID, CardID is the card id representing each visitor and Timestamp shows when a 

particular attraction is visited. Sample attendance records are illustrated in Table 23.3. 

Table 23.3 Sample attendance records of two visitors 

 

The data is then used to generate two matrices as exemplified in Table 23.4. The first is a binary 

matrix indicating whether an attraction is visited by each visitor. The second matrix (called the time 

matrix) keeps track of which attraction is visited at what time by which visitor. For the latter, time 

is sliced into 15-min intervals, where each time interval is denoted by an integer. In the given 

example matrices, visitor v1 is shown as visited attractions a2, a3 and a4 during time periods 1, 4 and 

6, respectively. 

For the dynamic bundling experiments, both binary and time matrices are used. In particular, one 

binary matrix and one time matrix are extracted from each visitor segment that is determined 

earlier. Initially, these matrices are processed to generate test instances in the form of k-fold cross 

validation. The cross-validation is done for the visitors/matrix rows. The visitors are first divided 

into k partitions. For instance, using the matrices from Table 23.4, twofold cross validation can be 

realized by dividing the visitors into two groups as (v1, v2, v3) and (v4, v5, v6). 
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Table 23.4 Redemption data representation example with six visitors and six attractions in two 

matrix forms: 0–1 matrix and time matrix from left to right (v: visitor, a: attraction) 

 

For each partition, x entries are provided while the rest are removed in each row. The resulting test 

matrix has the full matrix entries for k − 1 partitions and only x entries for the visitors in the other 

partition. In total, k different test matrices are created by considering each partition with partial 

data. Again if we look at Table 23.4 with k = 2 and x = 3, we keep the visit information of the first 

visitor group while keeping only x = 3 entries of each visitor for the second group. 

Table 23.5 shows the resulting matrices after performing the explained process. The same process is 

done for the second visitor group. As a result, two versions of binary and time matrices are 

generated for twofold. The goal here is to apply a CF method to complete these two matrices. In the 

matrices to be completed, available x values for each visitor refer to their partial preferences of the 

attractions visited and attractions not being visited. The missing values, denoted as “−”, are the ones 

to be predicted to determine visitors’ preferences on the related attractions. The attractions with the 

prediction of being visited are offered to swap with the attractions excluded as dynamic bundling. 

In a dynamic bundling scenario, the values different than zero refer to the attractions which are 

already visited and entries with zeros refer to the attractions requested to be swapped. 

Table 23.5 Redemption data representation example for dynamic bundling with six visitors and six 

attractions in two matrix forms: 0–1 matrix and time matrix from left to right (v: visitor, a: 

attraction) 

 

In the experiments, k is set to 5 (fivefold cross validation) which is small enough to test on the 

small-sized visitor segments and x is set as 3 to evaluate the dynamic bundling performance when 

the data is sparse enough. 

For the clarity of the computational analysis, the notations used are listed in Table 23.6. 
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Table 23.6 Notations used onwards 

 

23.5.1 Complementarity Analysis 

One of the most commonly studied aspects of bundles is the relation between bundled items. The 

level of relation between items can affect both the attractiveness and the price of a bundle. This 

relation can be evaluated from the perspectives of substitutability and complementarity. 

Substitutability refers to the products or services which have similar nature, e.g. two different roller 

coasters in the same leisure park. Complementarity is used for the goods with different 

characteristics such as a roller coaster and a 3D movie theatre, to be tried in complement to the 

overall experience. In principle, the bundles of complementing products are expected to be more 

attractive than the ones with the substitutable products, to the customers. However, it is not always 

clear to say whether two products are substitutable, complementary or totally independent so to talk 

about the bundles’ attractiveness, as discussed in Sect. 23.2.1. For instance, a customer who likes 

roller coasters a lot would be more interested in a bundle of allowing to experience two roller 

coasters than the bundle of a roller coaster and a 3D movie theatre. 

In [60], the degree of complementarity concept evaluating these relations is introduced from a 

pricing perspective. We consider the same concept using frequency ratios of service bundles (fr(bi)) 

derived from the given historical redemption data. A frequency ratio simply indicates the popularity 

of a bundle. For instance, a bundle of two products, i.e. b = {p1, p2}, appears together in the 

redemption data for 30% of the visitors, means that fr(b) = 0.3. As given in Table 23.6, the degree of 

complementarity (DD) is calculated by using fr(b) of a given bundle divided by average fr(.) of all 

the subsets of b excluding itself. DD changes between 0 and 1 where 1 shows the case when a 

bundle occurs as much as the average of its subsets. Thus, the values close to 1 indicate that the 
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bundles with a high degree of complementarity while 0 indicates that some of the items decrease 

the degree of complementarity. Going back the two product bundle examples, b = {p1, p2}, consider 

that product p1 appears in the 80% of the visits, i.e. fr({p1}) = 0.8 and product p2 is chosen for 70% 

of the time, i.e. fr({p2}) = 0.7. In this case. the degree of complementarity of the 

bundle b is D=fr(b)/((fr({p1})+fr({p2}))/2)=0.3/((0.8+0.7)/2)=0.4D=fr(b)/((fr({p1})+fr({p2}))/2)=0.3

/((0.8+0.7)/2)=0.4. Although both products are relatively popular when considered independently, 

the resulting bundle is unable to provide a similar level popularity as only appearing in 40% of the 

redemption transactions. It should also be noted that the highest possible value of D(bi)D(bi) is the 

product subset with the lowest frequency ratio, fr(.), as shown in Eq. (23.26). Thus, including a 

highly unpopular product set in a bundle substantially degrades the degree of complementarity of a 

bundle additionally with very popular products. 

   (23.26) 

Figure 23.3 indicates D0.01D0.01 of each bundle with respect to its subsets using the target 

redemption data. Without considering bundle size, the figure shows that majority of the attraction 

sets or bundles have a degree of complementarity around 0.1. However, there are still bundles with 

high degree of complementarity, e.g. 0.93, even though they are very rare. When we look at the 

bundles of the same size, the smaller sized bundles show a higher degree of complementarity. The 

underlying reason is about the number of subsets of a bundle, i.e. adding more attractions to a 

bundle increases the number of attraction subsets. Thus, DD has tendency to become smaller yet 

more stable. Besides that, adding an attraction set with very low visit occurrence automatically 

decreases the visit frequency of the whole bundle, as just discussed. 

In addition, having many attractions in a bundle causes a more complex complementarity structure, 

requiring evaluating the relations between all the subsets of a bundle. That’s why complementarity 

has been studied and analysed mostly for the bundles of two products only [5]. 
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Fig. 23.3 Degree of complementarity of the bundles in the given historical redemption data (only 

attraction sets with at least 1% of occurrence (fr(bi) ≥ 0.01) are considered). (a) All bundles. (b) Per 

bundle size 

 

23.5.2 Visitor (Customer) Segmentation 

The time matrix is extracted from the redemption data (Algorithm 1, line 1) for segmenting visitors. 

Each matrix row represents a visitor’s attendance record. SVD is applied to the time matrix first for 

dimensionality reduction (Algorithm 1, line 2). One of the resulting matrices, i.e. Uv,r, is used in the 

next clustering step since it represents visitors. While v shows the total number of visitors, r can be 

set to a value between 1 and min(v, a), where a refers to the number of attractions. min(v, a) here is 

the mathematical dimension limit for SVD. In our case, r can be 17 (min(22287, 17)) at most. Since 

SVD provides a singular matrix with sorted values, the initial features are more critical to 

approximate than the subsequent ones. In particular, the top five singular values returned by SVD 

are 8256, 2794, 2234, 2148, 2091. Due to the large difference of the first singular value to the rest, 

single dimension already provides a very good approximation to the time matrix alone. The clusters 

derived by G-means also showed that for r > 2, there is no significant change on the clusters, 

thus r is set to 2. In the next step (Algorithm 1, line 3), G-means revealed 207 clusters derived from 
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the U matrix with r = 2. The 207 clusters are further analysed to detect the similar clusters in terms 

of their normalized visit frequencies using two similarity metrics, namely Cosine and Pearson 

(Algorithm 1, line 4–5). After combining similar clusters, the number of clusters is decreased to 7 

and 8 for Cosine and Pearson (Algorithm 1, line 6). 

Figure 23.4 visualizes differences between clusters/visitor segments regarding percentage visit 

frequencies of each attraction in each segment. In other words, this figure gives information like 

30% of the time attraction ai is visited while attraction aj is visited only 5% of the time. In the 

redemption data, the reported visit frequencies indicate that there is no clear similarity between 

visitor segments meaning that visitors are efficiently segmented based on this most basic visit 

frequencies. This is valid for both the Cosine and Pearson similarity metrics. When the visitor 

segments derived using these two metrics are compared, per attraction visit behaviours of the 

customers look similar. This shows that there is relatively high overlap between segments of both 

metrics. If we just consider the most frequently visited attractions in each segment, attractions 2, 7, 

9, 14 and 17 are the most popular ones across different segments for both similarity metrics. If we 

look at the attractions which are either not visited at all or visited least frequently, attractions 1, 4, 

8, 13, 15, 16, 17 and attractions 1, 2, 4, 5, 13, 15, 17 come out for Cosine and Pearson, respectively. 

Fig. 23.4 Percentage visit frequencies of each attraction in each visitor segment for Cosine (top) 

and Pearson (bottom) 

 

In order to further determine the elements affecting the formation of these clusters, eight basic 

visitor features are defined, as given in Table 23.7. The first feature represents the ticket type 

bought by visitors and the second feature shows the number of visits performed by each visitor. 

Unlike these two features, the remaining ones are all date/time-related. Random forests are applied 

to analyse the effects of these features on these clusters by generating a classification model 

between the features and clusters (as classes). Figure 23.5 details the Gini importance of each 

feature while building the corresponding classification models. The results indicate that the 

standard deviation of spent time on attractions and total spent time during a visit are the most 

critical features in determining the clusters obtained. Average spent time per attraction also 

contributed as another relatively useful feature. Following these major features, the number of 
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visited attractions, the visit start time for the first attraction and weekly visit day respectively. 

Among the least important two features, the ticket type has very limited effect since the tickets 

provided do not really differentiate the behaviour of the visitors. The worst performing feature, in 

terms of separating the clusters, is that of whether a particular visit is performed on a weekday or 

weekend. Considering that the number of resulting clusters and this feature is binary, its effect on 

clusters is negligible as expected. 

Fig. 23.5 Feature/variable importance determined by random forests using eight features based on 

clusters determined by the two-stage clustering (features are sorted w.r.t. their importance levels). 

(a) Cosine—seven segments. (b) Pearson—eight segments 
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Table 23.7 Eight features representing visitors 

 

23.5.3 Static Recommendation 

Figure 23.6 illustrates the bundle tickets recommended for different bundle sizes. When Cosine is 

used as the similarity metric to combine clusters determined by G-means, attractions 6 and 12 are 

the ones not included in any of the bundles. Attraction 16 is included in each bundle. For the 

Pearson Correlation, attractions 3, 6, 7, 8 and 9 are not considered in the suggested bundles. 

Although there is no attraction that is always available in the bundles in this case, attraction 10 and 

attraction 16 are the most commonly bundled attractions. 

Fig. 23.6 Outlier bundles delivered by the Cosine and Pearson similarity metrics (black refers to 

fixed attractions, white shows that attractions are not recommended in bundles). (a) Cosine. (b) 

Pearson 

 

Considering that the segment sizes are relatively small, flexible bundle tickets are proposed for the 

remaining segments. Figure 23.7 details these bundles. For both similarity metrics, 0 is the common 

attraction for all the reported bundle sizes. Attraction 16 is also bundled in the majority of the 

bundles. Attraction 10 is the last fixed bundled attraction, but only for relatively large-sized 

bundles. When Cosine is used in segmentation, many attractions are excluded from the bundles, 
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especially for the bundles with a few attractions. The Pearson similarity provides more flexible 

choices for different bundle sizes. 

Fig. 23.7 Non-outlier flexible bundles delivered by the Cosine and Pearson similarity metrics (black 

refers to fixed attractions, grey shows that attractions that can be added to the bundles, white shows 

that attractions are not recommended in bundles). (a) Cosine. (b) Pearson 

 

In order to perform an additional analysis on the quality of the visitor segments or to determine 

whether visitor segmentation is required for our data, we evaluated both the expected cost and 

attractiveness (QoS) of each static bundle generated for each segment. For evaluation, we generated 

a separate MRF for each visitor segment and one MRF using whole redemption data without 

segmentation. Using the resulting MRFs, we re-evaluated each static bundle. 

Figures 23.8 and 23.9 illustrate the results for the static bundles generated after visitor segmentation 

with Cosine and Pearson, respectively. In both figures, one chart focuses on only the largest 

segments which have significantly more visitors than the remaining segments. For these charts, 

expected bundle costs and attractiveness are directly reported. For the smaller-sized visitor 

segments, the costs and attractiveness values are illustrated in the form of weighted average. 

Equations (23.27) and (23.28) show how average cost and average attractiveness are calculated. 

When the largest single segment in Cosine is considered, similar cost evaluation is seen for both 

MRF of the whole data and segment specific MRFs for the bundles sized until K = 5. For the larger 

sized bundles (K > 5), in particular the ones with 6 and 7 attractions, full redemption data based 

MRF expects significantly more costly bundles while segment specific MRFs tell that they are 

actually expected to incur less cost to the park operator. The bundles’ attractiveness levels are 

smaller for the full data based MRF compared to the segment specific MRFs except the bundles 

with size 6 and 7 which are the costly ones. In the Pearson-based largest segment, the changes on 

cost and attractiveness are smoother. The expected bundle costs consistently increase in relation to 

the bundles’ sizes for the MRF generated without segmentation. Until a bundle size of 7, segment 

specific MRF based expected costs and attractiveness levels are higher. For a bundle size of 8, the 

full data based MRF evaluates the corresponding bundle as significantly costly and very attractive 

for the visitors. A similar trend can be seen for the remaining segments of both Cosine and Pearson. 

In these cases, cost and attractiveness of segment based MRFs are very consistent. 
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Fig. 23.8 The effect of Cosine-based visitor segmentation in terms of bundles’ expected costs and 

attractiveness (QoS constraint set to 1.0; bar plots show cost, line plots indicate attractiveness). (a) 

Outlier/largest segment. (b) Remaining segments 
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Fig. 23.9 The effect of Pearson-based visitor segmentation in terms of bundles’ expected costs and 

attractiveness (QoS constraint set to 1.0); bar plots show cost, line plots indicate attractiveness). (a) 

Outlier/largest segment. (b) Remaining segments 

 

In brief, these figures indicate that generating a single MRF using whole redemption data can be 

misleading due to not taking visitors with distinct attraction preferences into account. The 

differences on the expected costs and attractiveness can be explained by two reasons. If expected 

cost and attractiveness are higher when full data based single MRF is used, it means that the 

corresponding bundles occur more frequently in the complete data while these bundles are rarely 

preferred in some of the visitor segments. For the opposite case, there can be a small group of 

visitors with similar visit behaviour. Since the number of these visitors is small, they are considered 

as not-interesting and the single full data based MRF is unable to appreciate their specific 

attractiveness to these small set of visitors. Thus, the expected costs and attractiveness are measured 

as lower by the single MRF. 
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Figure 23.10 shows how diverse the static bundles are and the average weighted cost incurs when 

either Cosine or Pearson is used as a similarity metric besides the bundle size. Both diversity and 

cost are measured across all the static bundles generated for all the visitors segments. Diversity is 

particularly useful to check how similar the bundles proposed for each visitor segment. High 

diversity indicates that different visitors have distinct preferences while low diversity means that 

visitor segmentation is unnecessary for bundling (indicating a homogeneous customer base). 

Diversity is measured using the mean hamming distance, H(B)H(B), where B refers all the bundles. 

As shown in Eq. (23.29), it is calculated as the average of the pairwise distances. 

 

Fig. 23.10 Diversity and cost of the bundles with varying sizes generated by the greedy heuristic for 

the visitor segments. (a) Diversity. (b) Avg weighted cost 
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In terms of diversity, the best similarity metric changes for different bundle sizes. For instance, if 

the bundle size is set to 4, Pearson provides higher diversity but Cosine is better when bundle size is 

set to 7. Besides that, the diversity values in general and their increase in relation to bundle size 

indicate that visitor segmentation is in fact required and the proposed approach is able to detect the 

differentiate visitors segments. The cost results indicate that Cosine delivers more costly bundles 

for 5 out of 7 bundle size options. As detailed in Fig. 23.11, if the relation between Diversity and 

Cost are explicitly analysed, Pearson usually offers bundles with lower costs for similar diversity 

levels than Cosine. 

Fig. 23.11 Diversity vs Cost relation for the Cosine and Pearson similarity metrics 

 

23.5.4 Dynamic Recommendation 

The performance of different CF recommendation approaches is analysed on the binary and time 

matrices. The first prediction task is to determine which attractions should be included in a bundle 

in the form of dynamic bundling. The other prediction task is about accurately detecting visiting 

order of the bundled attractions. 

Figure 23.12 reports Normalized Mean Absolute Error (NMAE) (Eq. 23.30) for predicting the right 

dynamic bundle suggestions in terms of the attractions included in the bundles. MAE indicates the 

prediction error as the average of the absolute difference between the predicted and actual values. 

NMAE is the normalized version of MAE. For example, NMAE =  0.2 means that 20% of the 

predictions are wrong, so lower NMAEs are better. The results indicate that kNN is able to deliver 

more accurate bundle predictions than CofiRank when the Binary matrix is used even though kNN 

is faster and simpler. 

 

The kNN performance changes between ∼10% and ∼30% for different visitor segments both for 

Cosine and Pearson Correlation, which is very successful from a collaborative filtering perspective. 

The underlying reason behind the superior performance of kNN is the given incomplete matrix. 

Considering that we have a large amount of visitor redemption data, the matrix incompleteness 

level/sparsity is very low in comparison to the existing target collaborative filtering data. Thus, 

memory-based approaches like kNN are expected to perform well. When the incompleteness level 

is very low or there is not enough redemption data, model-based approaches like CofiRank are 

likely to perform better. If the time matrix is used to predict which attractions should be included in 
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a bundle for each visitor, the results are significantly worse compared to the binary matrix case. As 

mentioned earlier, the reason is that the time matrix has two types of information including 

attractions available in each bundle and the visiting time of each attraction with higher range of 

values than just 2 as in a binary matrix. Applying a CF algorithm directly to a time matrix assigns 

time to many of the unvisited attractions. Thus, these attractions are also assumed to be visited in 

the predictions which result in high NMAEs. 

Fig. 23.12 Normalized Mean Absolute Error (NMAE) for evaluating the quality of the dynamic 

bundle suggestions (the graphs belong Cosine and Pearson respectively). (a) Cosine. (b) Pearson 

 

In order to resolve this issue of using the time matrix for prediction, the predictions on the binary 

matrix are utilized to correct the results on the time matrix. As a consequence, a combined 

approach, i.e. kNN-BT, which applies kNN to the binary matrix first to correct the predictions of 

kNN on the time matrix, delivered the best performance. The Wilcoxon rank sum test within a 99% 

confidence level indicated that kNN-BT is statistically better than all tested approaches except 

kNN-T and kNN-B+CofiRank-T. 

Besides recommending dynamic bundles efficiently, predicting a good visiting order for bundles 

would help the visitors to enjoy the theme park more or to make better choices to decide on which 
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attraction to visit next. Figure 23.13 evaluates the performance of the tested CF methods for the 

ordinal predictions in terms of the normalized Kendall’s tau distance (NKTD) ∈ [0, 1] (Eq. 23.32). 

Fig. 23.13 Normalized Kendall’s tau distance (NKTD) for assessing the recommended visiting 

order of the dynamic bundle suggestions (the graphs belong Cosine and Pearson respectively). (a) 

Cosine. (b) Pearson 

 

KTD basically counts the number of times when the pairwise visiting order of attractions is 

incorrect. For the ordinal predictions, kNN-BT comes as the statistically best method together with 

kNN-B+CofiRank-T according to the Wilcoxon rank sum test within a 99% confidence level. kNN-

BT delivers results with NKTD varying between 0.04 and 0.07. This indicates that CF is successful 

in determining good visit orders or trip plans while suggesting dynamic bundle recommendations. 

CF is able to address a small-sized optimization problem without needing an optimization 

algorithm, solely as a recommender system. 
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Figure 23.14 shows the average attractiveness of each attraction included in dynamic bundles for 

the first and largest visitor segments of both Cosine and Pearson. Attractiveness is measured again 

using MRFs. 

Fig. 23.14 Average attractiveness of the dynamic bundles offered w.r.t. MRF’s attractiveness 

measure. (a) Cosine—Segment #1. (b) Pearson—Segment #1 

 

The majority of the bundles’ attractiveness levels are around 0.5–0.6. Although MRFs are not 

suitable for detecting attractive bundles for relatively small group of visitors, it is still able to 

indicate that the tested CF-based dynamic bundling methods are able to deliver attractive bundles. 

This is important since the idea of CF is all about providing attractive suggestions. Thus, this 

analysis also supports the earlier results about the success of using CF for dynamic bundling. 
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The best performing CF-based dynamic bundling method, i.e. kNN-BT, is compared to Apriori 

based ARM approach. Figure 23.15 presents the NMAEs both for Cosine and Pearson. kNN-BT 

clearly outperforms ARM based dynamic bundling and its performance is statistically better within 

a 99% confidence level for the Wilcoxon rank sum test. 

Fig. 23.15 Normalized Mean Absolute Error (NMAE) for evaluating the quality of the dynamic 

bundle suggestions of the best tested CF method and ARM based recommendation (the graphs are 

from Cosine and Pearson results respectively). (a) Cosine. (b) Pearson 

 

23.5.4.1 Dynamic Recommendation as Static Recommendation 

The reported static bundles are found by applying the Greedy heuristic. In order to make a direct 

comparison between static bundling and dynamic bundling, the same heuristic is used to offer 

dynamic bundles. Thus, dynamic bundling is thought as static bundling with prior preferences. 

However, the Greedy heuristic failed to generate comparable bundles. The one reason is that it adds 

attractions to the additional attractiveness of c∕K. If there is no attraction that meets this criterion, it 

is unable to add new attractions to the bundle. Considering that the dynamic bundles offered by CF 

are highly attractive, this criterion fails to generate comparable bundles at most cases. Besides that, 
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CF is able to offer large sized bundles mostly at size of 13 attractions. Since the total number of 

attractions 17, there is not much of attraction choices to vary. The aforementioned per attraction 

attractiveness constraint, c∕K, becomes very challenging to meet. Thus, in order to suggest good 

dynamic bundles via static bundling, the corresponding static bundling algorithm should be more 

flexible, e.g. having a backtracking method. 

23.6 Conclusion 

This chapter introduces a data-driven approach to recommend personalized bundles for leisure 

parks using historical visitor trajectory data. Our idea is to first perform visitor segmentation using 

clustering. We then deliver personalized recommendations on the fly to make changes on existing 

ticket bundle. This is akin to the general idea in marketing of targeted upselling and cross-selling on 

the fly based on the specific visitor consumption pattern, backed by insights derived from a wealth 

of data collected from past visitor sale and consumption records. What set our work apart from 

many others is that we consider bundling and provide recommendation to a visitor without the need 

to take specific visitor information. While this idea has been studied under collaborative filtering 

that uses any preference or rating data to derive recommendations, it is mostly in the online world. 

We have adapted it for the physical world in a specific leisure park setting, which we believe to be 

first of its kind. 

Our experimental results showed the correlation between bundle sizes, their diversity levels and 

costs for the static bundles. The low error rates achieved by the tested CF methods revealed the 

appropriateness of considering the bundling problem as a recommendation problem. 

For future research, the performance of hybrid recommendation systems combining content-based 

and collaborative filtering should be investigated. The temporal dynamics based matrix 

factorization approaches will be additionally applied to offer dynamic bundles considering long-

term visitor behavioural changes. 
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