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Abstract—Static code attributes such as lines of code and 
cyclomatic complexity have been shown to be useful indicators 
of defects in software modules. As web applications adopt 
input sanitization routines to prevent web security risks, static 
code attributes that represent the characteristics of these 
routines may be useful for predicting web application 
vulnerabilities. In this paper, we classify various input 
sanitization methods into different types and propose a set of 
static code attributes that represent these types. Then we use 
data mining methods to predict SQL injection and cross site 
scripting vulnerabilities in web applications. Preliminary 
experiments show that our proposed attributes are important 
indicators of such vulnerabilities. 

Keywords-defect prediction; data mining; static code 
attributes; web security vulnerabilities; input sanitization 

I.  INTRODUCTION 
In software defect prediction study, researchers correlate 

software code attributes with defects. They built defect 
prediction models by using classifiers that are trained using a 
set of attributes measured from software modules with 
known defect information [1]. Static code attributes such as 
lines of code and McCabe’s code complexity attributes [2] 
are widely used because they can be easily collected and are 
proved to be capable of predicting defective software 
modules with high probabilities and low false alarms [3, 4, 
5]. However, one drawback of defect prediction approaches 
is that there is no universal set of code attributes that works 
on any application domain. 

On the other hand, to address the growing risks of 
security vulnerabilities in web applications, vulnerability 
detection approaches based on static and dynamic analysis 
techniques have been proposed. Static analysis approaches 
[6, 7, 8] are relatively simple to implement, but are known to 
produce too many false positives. Dynamic analysis 
approaches [9, 10] provide more accuracy but require 
potentially complex dynamic environments. 

Web applications in general implement a variety of input 
sanitization schemes to prevent security vulnerabilities such 
as SQL injection (SQLI), cross site scripting (XSS), and path 
traversal [11]. An application is vulnerable if the 
implementation of input sanitization is inadequate or there is 
no such method implemented. Consequently, the 
characteristics of input sanitization implemented in a 

program could be useful for predicting the program’s 
vulnerability.  

Hence, in this study, we classify various input 
sanitization methods into different types and propose a set of 
attributes that represent these types. By mining such attribute 
data and vulnerability information from existing web 
applications, we could train and build vulnerability 
prediction models for newly developed web applications. 
Though these prediction models may not identify the 
vulnerabilities with the same accuracy as concolic execution 
methods, such static code attributes can be easily collected 
by using simple static analysis tools. With the availability of 
data mining tools such as WEKA [12], our models are 
practical. Therefore, they might provide an effective yet 
cheaper way of finding vulnerabilities in web applications.    

To validate this claim, we implemented a proof-of-
concept tool called PhpMinerI to extract the data of our 
proposed attributes from PHP programs. We trained two 
vulnerability prediction models, one for SQLI vulnerabilities 
and another for XSS vulnerabilities, using the extracted data 
and known vulnerability information. In our preliminary 
studies, these models predicted over 85% of the 
vulnerabilities present in different web applications. 

II. CLASSIFICATION 
The classification schemes are based on the control flow 

graph (CFG) of a web application program. As our prototype 
tool is targeted at PHP programs, we shall provide the 
examples using PHP language. The sample PHP code in Fig. 
1 is extracted from one of our test subjects. 

A. Input and Sink Classification  
Web application vulnerabilities, such as SQLI and XSS, 

are mainly caused by the applications’ weakness in handling 
user inputs properly. Typically, a web application program 
accesses user inputs and propagates them via its program 
variables for further processing of the application’s logics. 
These processes may often include sensitive program 
operations such as database updates, HTML outputs, and file 
accesses. If the program variables propagating the inputs 
tainted by attackers are not cleansed before being used in 
those operations, security violations may occur. Therefore, in 
security, it is important to first identify the sources from 
which user inputs may be accessed. 

Hence, according to different natures of input sources, 
we classify the inputs into the following types:  
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Figure 1.  (a) Sample code from Yapig (simplified). (b) Data dependence 
graph of sensitive sink node 12. 

1) Client: Data submitted via HTML forms and URLs 
(e.g., $_GET, $_POST).  

2) File: Data accessed from external files such as cookies 
and XML files (e.g., $_COOKIE, fgets()).  

3) Database: Data retrieved from database (e.g., 
mysql_result()). 

4) Persistent:  Data accessed from persistent data objects 
(e.g., $_SESSION).  

5) Uninit: Variables which may not have been initialized 
(e.g., $img_size at line 12 in Fig. 1a). 

We call a node k in the CFG of a web program a sensitive 
sink if the execution of k may lead to security attacks. For 
this study, we use two types of sensitive sinks:  
1) SQL: Database operations that are susceptible to SQLI 

attacks (e.g., mysql_query()).  
2) HTML: HTML output operations that are susceptible to 

XSS attacks (e.g., print() and echo). 

B. Input Sanitization Classification 
By default, inputs to web application programs are 

strings. As such, input sanitization operations performed in a 
program are mainly based on string operations. Therefore, 
our main objective is to classify the string operations that are 
applied on inputs according to their potential effects on the 
tainted-ness of the input values propagated.  

For each sensitive sink k in a CFG of a web program, we 
extract its data dependence graph DDGk from the CFG. This 
graph contains the data flow information of all the variables 
used in k. Fig. 1b shows the data dependence graph of the 
sensitive sink node at line 12 in Fig. 1a.  

A variety of preventive measures against security flaws 
may be found in the nodes of DDGk. Different preventive 
measures may serve different purposes and may have 
different effects on the tainted-ness of an input. Therefore, 
they should be categorized so that a type of preventive 
measure can be represented with an attribute for data mining 

purposes. Thereby, we classify input sanitization methods 
into the following types: 
1) Sanitization: functions designed to prevent specific 

security issues (e.g., mysql_real_escape_string(), 
htmlentities()). For this study, we use SQLI 
sanitization functions and XSS sanitization functions. 

2) Encoding: functions that encode arguments according to 
specific encoding formats (e.g., convert_uuencode()). 

3) Encryption: encryption or hashing functions designed to 
ensure secure data transfer (e.g., crypt(), sha1()). 

4) Replacement: string-based substring replacement 
functions (e.g., str_replace()). 

5) Regex-replacement: regular expression-based substring 
replacement functions (e.g., preg_replace()). (a)

(b)

1  $MAX=999; 
2  if ($MAX > 0) { 
3    $sz_orig = getimagesize('photos/id.jpg'); 
4    $ratio=$sz_orig[1]/$sz_orig[0]; 
5    if ($sz_orig[0]> $MAX) {      
6      if ($ratio>1) { 
7        $height=$MAX; 
8        $width=(int)($MAX/$ratio); 
       } 
       else { 
9        $width=$MAX; 
10       $height=(int) ($MAX*$ratio); 
       } 
11     $img_size=“style=‘width:$width;height:$height’”;    
     } 
   }   
12 echo "<div $img_size>"; 

6) Numeric-conversion: functions that process arguments 
and return numeric values (e.g., intval()) or numeric 
type casting operations (e.g., $a = (int) $b/$c). 

For each node n in DDGk, if n invokes a language-built-
in function or performs an assignment operation, we simply 
check the function name or the operators used in n and 
classify it into zero or more of the above types (PhpMinerI 
handles over 300 PHP built-in functions for classification).  

It is clear that nodes in DDGk may also include ordinary 
operations that may or may not serve any security purpose. 
They may either propagate or un-taint the input data. There 
may also be other types of preventive measures though we 
have not observed them for the security purposes in the 
context of SQLI and XSS. Furthermore, the function invoked 
at n may also be a user-written function as input sanitization 
is often customized to users’ needs. Consequently, we 
classify the remaining nodes in DDGk that are not classified 
as any of the above types into one or more of the following 
types: 
1) Propagate: functions or operations that may convert 

arguments into different representations but return part 
or whole of the original arguments (e.g., $a=$b, 
substr(), explode()); functions that unquote or 
decode arguments (e.g., html_entity_decode(), 
urldecode(), stripslashes()). 

2) Un-taint: functions or operations that return predefined 
information (e.g., $a=‘text’), information derived from 
configuration settings (e.g., localeconv()), or numeric 
information derived from program operations (e.g., 
mysql_field_len()).  

3) Custom: user-written or library functions.  
4) Other: functions or operations that are not classified as 

any of the above types. 
As an illustration, in DDG12 shown in Fig. 1b, there is a 

node that can be classified as Uninit as the variable 
$img_size may not have been initialized at node 12. Node 
7, 9, 11 can be classified as Propagate as they performs 
simple assignment of a variable or contains string 
concatenation operation. Nodes 4, 8, and 10 can be classified 
as Numeric-conversion as they perform arithmetic and 
numeric type casting operations. Node 3 can be classified as 
Other as it invokes a PHP built-in function not classified as 
any input sanitization type. Node 1 can be classified as Un-
taint as a predefined literal value is assigned to a variable. 
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III. PRELIMINARY EXPERIMENTS 

A. Data Collection 
For data collection, we implemented a proof-of-concept 

tool called PhpMinerI based on an open source PHP code 
analysis tool called Pixy [6]. Since our method only requires 
traditional data flow analysis, any other program analysis 
tool could also be used. For each sensitive sink k in a given 
PHP program, PhpMinerI classifies the nodes in its data 
dependence graph DDGk (generated by Pixy) according to 
their properties.  

In total, there are 18 types, including sub-types, classified 
in Section II. Each classification type is represented with an 
attribute. From the nodes in DDGk, PhpMinerI counts the 
number of nodes that correspond to each classification type 
and assigns the number to the attribute which represents that 
classification type. Therefore, each sensitive sink has one 
attribute vector consisting of the data of 18 attributes plus the 
target attribute—Vulnerable?. For example, the attribute 
vector for sensitive sink node 12 in Fig. 1b is (1, 1, 3, 1, 1, 3, 
…, vulnerable) in terms of (Uninit, HTML, Numeric-
conversion, Propagate, Un-taint, Other, …, Vulnerable?). 

We collected such attribute vectors from three open 
source PHP-based web applications from SourceForge 
(sourceforge.net) to evaluate the usefulness of our proposed 
prediction models. These benchmark applications have been 
used in evaluating some vulnerability detection approaches 
[6, 9]. Table I shows the information of the test subjects, the 
summary of the data set collected and their vulnerability 
information obtained from Pixy [6] and Ardilla [9].   

B. Experimental Design 
Different classification algorithms may produce different 

performances [3, 4]. Therefore, in this study, we use three 
different classifiers, C4.5/J48, Naïve Bayes (NB), and Multi-
Layer Perceptron (MLP), to cross-check the robustness of 
the prediction models built with our proposed attributes.  

C4.5/J48 is a decision tree-based classifier. Naïve Bayes 
is a simple statistical-based classifier. Multi-Layer 
Perceptron is an artificial neural network-based classifier. 
These classifiers assign a given software module to a class of 
the target attribute based on the training data. In our case, a 
module is a sensitive sink and the classes of the target 
attribute are ‘vulnerable’ and ‘not-vulnerable’. The details of 
these classifiers are provided in data mining books such as 
Witten and Frank [12]. 

The selected classifiers are implemented in an open 
source data mining tool called WEKA [12]. The tool allows 
us to simply supply the collected data set for training and 
testing the three classifiers. Similar to Menzies et al. [3], we 
used (M=10) * (N=10)-way cross validation on the training 
data. The data is divided into 10 buckets. The classifier is 
trained on 9 buckets and tested on the remaining bucket; this 
is iterated 10 times without testing the same bucket twice. 

We used three measures—probability of detection (pd), 
probability of false alarm (pf), and precision (pr) to assess 
the performance of learned classifiers. These measures can 
be computed from the following contingency table: 

 

 
 Actual-> Vulnerable Not-Vulnerable 

Vulnerable True Positive (tp) False Positive (fp) 
 

Predicted-> 
Not-Vulnerable False Negative (fn) True Negative (tn) 

The pd (tp/(tp+fn)) measures how good our prediction model 
is in finding actual vulnerable sinks. The pf (fp/(fp+tn)) 
measures false alarm rate. In an ideal situation, pd should be 
close to 1 and pf should be close to 0, that is, the model 
neither misses actual vulnerabilities nor throws false alarms. 
The pr (tp/(tp+fp)) reports the probability that a predicted 
vulnerable case is actually vulnerable. 

C. Results 
We ran WEKA on a Pentium 3.4GHz 4GBRAM PC. 

Each classifier was run twice, one run was for the data set of 
SQL sinks and another run was for the data set of HTML 
sinks. Both C4.5/J48 and NB took less than a second to 
complete each run whereas MLP took nearly 2 minutes to 
complete each run. Results are shown in Table II.  

In the experiments, we encountered a few cases that our 
prediction models could not appropriately handle. For 
example, see a case from the test subject Yapig: 

1 if(!is_int((int)$phid)) 
 2 die; 
 3 echo “<div>$phid</div>”; 

Since our approach does not consider input validations 
through predicates, the input condition check at line 1 will be 
missed for data mining purposes. We also encountered cases 
that check the validity of HTTP referrer before the rest of the 
program operations is executed. For such cases, the mined 
data may not be appropriate as the data dependence graph 
used for data mining do not include predicate nodes. The 
inclusion of control dependency analysis targeted as our 
future work might handle such cases. 

However, in general, our vulnerability prediction models 
achieved promising results. The models achieved pd > 85 
and pf < 22 which are better than pd > 70 and pf < 25 
benchmarked by software defect prediction studies based on 
traditional size and complexity metrics [3, 4, 5, 13]. The 
result pr > 93 says that at least 9 out of 10 predicted 
vulnerable cases are worth investigating for security audits. 
Although we did not compare the results directly, these 
results seem to be better than the results reported by static 
analysis-based vulnerability detection approaches [6, 7], 
which tend to report many false positive cases. Furthermore, 
our manual inspections confirmed that our models predicted 
all the vulnerabilities detected by a dynamic analysis-based 
approach [9].  

In summary, since the proposed attributes can also be 
easily collected, our models are practical and they offer an 
alternative and cheap way of detecting security 
vulnerabilities in web applications. 

D. Threats to Validity 

First, the data sets used might be small. Second, they 
might also be imbalanced as the test subjects are bench-
marked as vulnerable applications. Third, this preliminary 
study only focused on SQLI and XSS vulnerabilities due to 
the limited information available for other types of web 
vulnerabilities. However, we believe that the proposed 
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TABLE I.  DATA SETS 

Data Set  Gecc-
BBLite 0.1  

SchoolMate 
1.5.4 

Yapig 
0.95b 
(view.php) 

Description A simple 
bulletin 
board 

A tool for 
school 
administration 

Image 
gallery 

LOC 338 8145 4748 
#SQL sinks  9 189 0 
%Vuln to SQLI 44.4% 80.4% 0 
#HTML sinks 17 172 13 
%Vuln to XSS 58.8% 80.2% 7.7% 

TABLE II.  RESULTS 

                Measure (%) 

Model 

pd 

 

pf 

 

pr 

NB 85.3 21.4 93.7 

C4.5/J48 98.7 16.7 95.7 

SQLIV Prediction 

MLP 97.4 16.7 95.6 

NB 87.9 9.4 96.3 

C4.5/J48 98.7 11.3 96.1 

XSSV Prediction  

MLP 98.0 7.5 97.3 

 
method can be applied to any input-related web 
vulnerabilities. The best way to prove or refute our results is 
to replicate and extend our experiments. Interested 
researchers may request the data sets and the tool used in this 
study through the authors’ emails. 

IV. RELATED WORK 
Vulnerability detection approaches such as [6, 7] track 

the flow of tainted data and determine whether or not the 
tainted data is referenced in sensitive program operations. 
Such approaches are simple and relatively easy to be 
adopted; however they have low precision as they do not 
analyze the correctness of input sanitization operations. More 
advanced approaches [8-10] applies techniques such as string 
analysis and concolic execution to determine if the data has 
been properly sanitized before used in sensitive program 
operations. These techniques reduce false positives; 
however, they are computationally expensive. 

By contrast, our work predicts vulnerabilities by using 
data miners learned from code attributes representing the 
characteristics of input sanitization code patterns. It requires 
simple static analysis of data flow to collect the data of our 
proposed attributes.  

Defect prediction approaches [3, 4, 13, 14] investigated 
the predictive performances of classifiers built with static 
code attributes such as LOC counts, McCabe [2], and other 
miscellaneous attributes. Their works can be summarized as 
defect predictors which produce probability of detection > 
70% and probability of false alarm < 25% are useful in 
practice and much software engineering effort could be 
saved by using defect predictors. However, Menzies et al. 
[14] observed that information contents available from size 
and code complexity attributes are limited. Motivated by this 

fact, Zimmermann and Nagappan [5] proposed a set of 
network dependency-based attributes for predicting defects 
in binaries. Their model performed better than models built 
from code complexity attributes. 

The primary difference with current defect prediction 
studies is that our work focuses on web security 
vulnerabilities rather than general software defects. And our 
work is to predict whether or not a particular program 
statement is vulnerable whereas existing software defect 
prediction models in general predict whether or not a 
software module has defects. 

V. CONCLUSION 
In this paper, we first classified the types of inputs and 

sinks that may cause security attacks. Then, we classified the 
types of sanitization methods that are commonly applied to 
inputs to avoid security issues. For each sensitive sink in a 
web program, we collect the static code attributes that 
characterize these classification schemes. Vulnerability 
prediction models are then built using the collected data and 
the vulnerability information of each sink. In our preliminary 
studies, these models predicted over 85% of SQLI and XSS 
vulnerabilities in different web applications. Our future work 
is to conduct more comprehensive experiments on a larger 
set of systems to further validate these results. 
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