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ABSTRACT 
Software defect prediction studies have shown that defect 
predictors built from static code attributes are useful and 
effective. On the other hand, to mitigate the threats posed by 
common web application vulnerabilities, many vulnerability 
detection approaches have been proposed. However, finding 
alternative solutions to address these risks remains an important 
research problem. As web applications generally adopt input 
validation and sanitization routines to prevent web security risks, 
in this paper, we propose a set of static code attributes that 
represent the characteristics of these routines for predicting the 
two most common web application vulnerabilities—SQL 
injection and cross site scripting. In our experiments, vulnerability 
predictors built from the proposed attributes detected more than 
80% of the vulnerabilities in the test subjects at low false alarm 
rates.  

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification – 
Statistical methods. D.2.8 [Software Engineering]: Metrics – 
performance measures, product metrics.  

General Terms 
Measurement, Experimentation, Security. 

Keywords 
Defect prediction; static code attributes; web application 
vulnerabilities; input validation and sanitization; empirical study 

1. INTRODUCTION 
Recent research in software defect prediction shows that static 
code attributes such as cyclomatic complexity can be used to 
effectively predict defective software modules. Following the data 
mining techniques used in this defect prediction study, in our 
earlier work [10], we showed that vulnerability predictors, built 
from static code attributes that characterize input sanitization code 
patterns, provide an alternative and cheaper way of addressing 
common web application vulnerabilities.    

However, web applications also adopt input validation as 
complementary or alternative to input sanitization. Conditional 
branching is a common input validation method for preventing 
web security vulnerabilities and thus, any technique that ignores 
control flow is prone to errors [14]. Data dependence graphs were 
used for data collection in our previous work. As data dependence 
graphs do not include predicates, we could not consider input 
validation code patterns previously. As such, our initial work is 
incomplete.  

Hence, in this paper, we propose additional static code attributes 
that characterize input validation code patterns. Static code 
attributes are collected from backward static program slices of 
sensitive program points to mine both input sanitization code 
patterns and input validation code patterns. From such static code 
attributes and vulnerability information of existing web 
applications, we then train vulnerability prediction models for 
predicting SQL injection (SQLI) and cross site scripting (XSS) 
vulnerabilities, the two most common and critical security issues 
found in web applications [9]. 

2. CLASSIFICATION 
SQLI vulnerability occurs when an SQL statement access 
database via a query built with unrestricted user inputs because an 
attack could include SQL characters or keywords in the inputs to 
alter the intended query syntax. Similarly, XSS vulnerability 
occurs when an HTML output statement references unrestricted 
user inputs because an attacker could insert malicious scripts into 
the inputs to change the intended HTML response output. As 
such, both SQLI and XSS vulnerabilities are caused by absence, 
inadequate, or insufficient implementation of input validation and 
sanitization methods. Since inputs accessed by web application 
programs are typically strings, input validation checks and 
sanitization operations if performed in programs are mainly based 
on string operations.  

Therefore, the concept of our approach is to classify the string 
operations applied on the inputs according to their potential 
effects on the vulnerability of sensitive program statement k 
which reference those inputs.  

Intuitively, such validation checks and sanitization operations can 
be found in backward static slice of the given web program with 
respect to k and set of variables referenced in k. As given by 
Weiser [12], backward static slice Sk with respect to slicing 
criterion <k, V> contains all nodes (including predicate nodes) in 
the CFG which may affect the values of V at k where V is the set 
of variables used in k. 

 

 
 

Following our initial work [10], we classify a node k in the CFG 
of a web program as SQL sink if the execution of k may lead to 
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SQLI attacks and as HTML sink if the execution of k may lead to 
XSS attacks. For example, Figure 1a shows the sample PHP code 
extracted from a vulnerable application called PhpNuke, and in 
the code, program statement 5 is an HTML sink.    

Likewise, we follow the classifications of input types and input 
sanitization methods. The attributes that represent these 
classification schemes are listed in the appendix (Table 2).  

A variety of input condition checks may be found in the nodes in 
Sk (program slice). For example, Figure 1b shows the CFG of the 
backward static program slice with the slicing criterion <5, {$url, 
$url_title}>. Node 3 in the slice uses regular expression matching 
to check if an input data conforms to a valid URL format. 
Different condition checks may serve different purposes and may 
have different effects on the tainted-ness of an input. Thereby, we 
classify input validation methods carried out at a node into the 
following types:  

1) Null: functions that check if the data is present (e.g., isset()). 
2) Size: functions that return the size or length of an argument 

(e.g., strlen()). 
3) Containment: functions that check if an argument contains 

any predefined characters (e.g., strops()). 
4) Match: functions or operations that compare an argument 

with another argument (e.g., strnatcmp(), $a = = “abc”).  
5) Regex-match: regular-expression-based string matching 

functions (e.g., preg_match()).  
6) Type: functions that check the type or format of an argument. 

We further classify this type into Numeric-type check (e.g., 
is_int()) and Other-type check (e.g., is_string(), is_file()) to 
reflect our experience that numeric data type checks usually 
un-taint the input values. 

 

 

 

 

 

 

 

 

Figure 1. (a) Sample vulnerable web application program. (b) 
CFG of the backward static program slice of statement 5. 

3. DATA 
Combining the 21 attributes listed in the appendix (Table 2) and 
the 7 attributes (including the sub-types) that we propose in 
Section 2, each sensitive sink in the program is represented with a 
28-dimensional attribute vector that characterizes the input 
validation and sanitization implemented for the sink. 

As an illustration, for the program in Figure 1a, the attribute 
vector for HTML sink node 5 can be collected from its backward 
program slice (shown in Figure 1b) as (1, 1, 2, 1,…, Vulnerable) 
in terms of (HTML, Regex-match, XSS-sanitization, Propagate,…, 
Vulnerable?).  

We use a data collection tool called PhpMinerII to extract the 
attributes from seven open source PHP-based web applications 
downloaded from sourceforge.net. Table 1 lists these test subjects 
and shows the statistics of the 11 data sets collected for this study. 
The test subjects’ vulnerability information can be found in 
BugTraq (http://securityfocus.com).   

PhpMinerII is based on an open source PHP code analysis tool 
called Pixy [3]. Then, we classify the nodes contained in the slices 
by simply checking the functions invoked and the operators used. 
PhpMinerII handles over 300 PHP built-in functions and 30 PHP 
operators for classification. The detailed information of the tool 
and the collected data sets are provided in the authors’ web site 
(http://sharlwinkhin.com/phpminer.html).  

Table 1. Data sets 

Test Subject #HTML 
sinks 

%Vuln. 
to XSS 

#SQL 
sinks 

%Vuln. 
to SQLI 

geccbblite 
0.1 

20 50 9 44 

schoolmate 
1.5.4 

172 80 189 80 

faqforge 
1.3.2 

115 46 42 41 

webchess 
0.9.0 

73 30 53 45 

utopia news 
pro 1.1.4 

74 23 - - 

yapig 
0.95b 

21 29 - - 

phpmyadmin 
2.6.0-pl2 

58 28 - - 

4. EXPERIMENT 
4.1 Experimental Design 1  $url = htmlspecialchars($url); 

2  $url_title = htmlspecialchars($url_title); 
3  if (!eregi(‘(^http[s]*:[/]+)(.*)’, $url)) 
4     $url = “http://” . $url;   
5  echo “<b>RELATEDLINK:</b><a href=‘$url’> 

   $url_title</a><br>”;    

Classifiers: We used three different classifiers, Naïve Bayes 
(NB), C4.5, and Multi-Layer Perceptron (MLP), for predicting 
SQLI and XSS vulnerabilities. Thereby, we could cross-check the 
general effectiveness and usefulness of the predictors built from 
our proposed attributes. Detailed information of these 
classification algorithms can be found in Witten and Frank [13]. 

(a) 

 

Training and testing method: We used 5-fold cross validation 
method to train and test the three classifiers. The data set is 
divided into 5 partitions. Each classifier is trained on 4 partitions 
and then tested on the remaining partition; this process is repeated 
five times where each partition serves as the test set once, 
randomizing the order of the test set each time.   

(b) 

Performance measures: Learned predictors were evaluated based 
on 4 performance measures—probability of detection (pd), 
probability of false alarm (pf), precision (pr), and accuracy (acc). 
Pd measures the effectiveness of predictor at finding real 
vulnerabilities. Pr measures the efficiency, that is, the number of 
correctly predicted vulnerabilities over the total number of sinks 
predicted as vulnerable. Pf measures the cost of the predictor. Acc 
measures the number of correct predictions over the total number 
of sinks. 

Attribute ranking: We also used gain ratio method [13] to 
identify the most informative (best) attributes and the least 
informative ones. The objective is to check if using only the best 
attributes could improve performances.  
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4.2 Results 
 

                Measure (%) 
Data &  
Classifier 

 
Pd 

 

 
Pf 
 

 
Pr 
 

 
Acc 

 
NB 70 50 58 60 
C4.5 60 40 60 60 

geccbblite-html 

MLP 70 50 58 60 
NB 89 53 87 81 
C4.5 96 18 96 93 

schoolmate-html 

MLP 95 15 96 93 
NB 93 21 79 85 
C4.5 94 3 96 96 

faqforge-html 

MLP 94 2 98 97 
NB 46 24 46 67 
C4.5 77 8 81 88 

webchess-html 

MLP 73 8 80 86 
NB 77 25 48 76 
C4.5 71 5 80 89 

utopia-html 
 

MLP 94 2 94 97 
NB 17 27 20 57 
C4.5 50 13 60 76 

yapig-html 

MLP 67 27 50 71 
NB 75 19 60 79 
C4.5 94 0 100 98 

myadmin-html 

MLP 94 2 94 97 
NB 67 31 57 72 
C4.5 78 13 82 86 

Average 

MLP 84 15 81 86 
 

                Measure (%) 
Data &  
Classifier 

 
Pd 

 

 
Pf 
 

 
Pr 
 

 
Acc 

 
NB 75 20 75 78 
C4.5 75 20 75 78 

geccbblite-sql 

MLP 100 20 80 89 
NB 84 38 90 79 
C4.5 93 27 93 89 

schoolmate-sql 

MLP 95 27 94 91 
NB 88 8 88 91 
C4.5 100 8 90 95 

faqforge-sql 

MLP 94 8 89 93 
NB 88 21 78 83 
C4.5 100 14 86 93 

webchess-sql 

MLP 92 17 82 87 
NB 82 22 84 83 
C4.5 90 18 86 88 

Average 

MLP 97 18 88 91 
 

Figure 2. (a) Results on XSS vulnerability prediction. (b) 
Results on SQLI vulnerability prediction. 

We used the WEKA tool presented in Witten and Frank [13] to run 
the classifiers on the 11 data sets. As shown in Figure 2, on 
average, MLP and C4.5 classifiers produced excellent results. To 
provide a comparison point, we used Wilcoxon signed-rank test 
(as suggested by Demšar [2]) to compare the two classifiers’ 
results with a benchmark result of pd = 71% and pf = 25% 
(achieved by Menzies et al. [8]). In terms of pd, the two classifiers 

performed statistically better (significant at 99%). But, in terms of 
pf, they were neither statistically better nor worse. This is mainly 
due to the high pf resulting from the tests on geccbblite-html.   

On average, MLP and C4.5 classifiers achieved acc ≥ 85% and pr 
≥ 80%. These results can be interpreted as at least 8 out of 10 
cases are correctly predicted and at least 8 out of 10 vulnerable 
cases reported by our predictors are worth investigating for 
security audits. 

NB classifier performed the worst among the three classifiers 
probably due to its naïve assumption that attributes are 
conditionally independent [13]. To address this problem, we used 
WEKA’s gain ratio attribute evaluator to re-build NB classifier 
with only the best 3, 5, or 8 attributes. The classifier did achieve 
more performance increases over the 11 data sets. But, the 
improvements were not statistically significant according to our 
Wilcoxon tests. Similarly, performance increases over the 11 data 
sets were also not statistically significant for MLP and C4.5 
classifiers when built with best 3, 5, or 8 attributes.  

In summary, our models are effective predictors of XSS and SQLI 
vulnerabilities. Although data reduction could be applied to 
improve the predictive power in some specific cases, statistics 
suggest the limited use of data reduction. 

4.3 Threats to Validity 
First, our data sets could be biased because all the test subjects 
contain multiple vulnerabilities. Second, the results may not be 
applicable for other common web application vulnerabilities. 
Third, the application of additional data preprocessing methods 
such as data filtering might alter our results. Fourth, different 
classification algorithms might result in different performances as 
well. Lastly, our static analysis-based classifications may not 
always be precise. The best solution to address these threats is to 
replicate our experiments. 

(a) 

5. RELATED WORK 
Vulnerability detection approaches identify vulnerabilities 
through tracking the flow of taints (user inputs) to sensitive sinks 
[3, 14]. Static and dynamic analysis techniques are generally used 
for taint tracking. Static analysis-based techniques suffer from 
low precision as these techniques generally overestimate the 
tainted-ness of inputs. Dynamic analysis-based techniques such as 
model checking [6] and concolic execution [4] produce zero false 
positive in principal. But these techniques are generally complex 
and expensive. By contrast, our approach only requires light-
weight static analysis and data mining methods to report 
vulnerabilities.  

Defect prediction approaches [1, 5, 8, 11] typically use static code 
attributes such as lines of code and code complexity attributes [7] 
to predict defective software modules. These approaches could 
correctly predict more than 70% of defects at false alarm rates of 
25% or lower. By contrast, our work builds vulnerability 
predictors through extending the concepts used in defect 
prediction. We use a set of static code attributes that characterize 
input validation and sanitization code patterns.  

(b) 

Our previous work [10] ignored input validation code patterns and 
we observed some false positive cases as a result. Our new 
predictors could handle those cases. Although the previous results 
(pd > 95 and pf < 17) are better than our new results, previous 
evaluation was on only 3 test subjects and data analysis was 
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performed on all the subjects together. This may have over-fitted 
the data.  

6. CONCLUSION 
In this work, we build vulnerability predictors from the static code 
attributes that characterize input sanitization and validation code 
patterns. Static code attributes are measured from backward static 
program slices of sensitive sinks in the web program. In the 
experiments, our best predictors achieved pd ≥ 84% and pf ≤ 15% 
on predicting XSS and SQLI vulnerabilities. As such, the 
proposed models offer an alternative and cheap way of mitigating 
common web applications vulnerabilities. Our future work is to 
enhance our prediction models with more precise dynamic 
analysis-based classification methods. 
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APPENDIX 
Table 2. Static code attributes that characterize input and 
sink types and input sanitization methods [10] 

Attribute Description 
Client The number of nodes which access data from 

external users 
File The number of nodes which access data from 

files 
Database The number of nodes which access data from 

database 
Text-
database 

Boolean value ‘TRUE’ if there is any text-
based data accessed from database; ‘FALSE’ 
otherwise 

Other-
database 

Boolean value ‘TRUE’ if there is any data 
except text-based data accessed from 
database; ‘FALSE’ otherwise 

Session The number of nodes which access data from 
persistent data objects 

Uninit The number of nodes which reference un-
initialized program variable 

SQL The number of SQL sink nodes 
HTML The number of HTML sink nodes 
SQLI-
sanitization 

The number of nodes that apply language-
provided SQLI prevention functions 

XSS-
sanitization 

The number of nodes that apply language-
provided XSS prevention functions 

Encoding The number of nodes that encode data 
Encryption The number of nodes that encrypt data 
Replacement The number of nodes that perform string-

based substring replacement 
Regex-
replacement 

The number of nodes that perform regular-
expression-based substring replacement 

Numeric-
conversion 

The number of nodes that convert data into a 
numerical format 

Propagate The number of nodes that propagate the 
tainted-ness of an input string 

Un-taint The number of nodes that return information 
not influenced by external users 

Custom The number of user-defined functions 
Other The number of nodes that are not classified 

as any of the above types 
Vulnerable? Target attribute which indicates a class 

label—Vulnerable or Not-Vulnerable  
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