
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2012

Predicting common web application vulnerabilities from input Predicting common web application vulnerabilities from input

validation and sanitization code patterns validation and sanitization code patterns

Lwin Khin SHAR
Singapore Management University, lkshar@smu.edu.sg

Hee Beng Kuan TAN
Nanyang Technological University

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
SHAR, Lwin Khin and TAN, Hee Beng Kuan. Predicting common web application vulnerabilities from input
validation and sanitization code patterns. (2012). ASE '12: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering: Essen, Germany, September 3-7. 310-313.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4678

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4678&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Predicting Common Web Application Vulnerabilities from
Input Validation and Sanitization Code Patterns

Lwin Khin Shar and Hee Beng Kuan Tan
School of Electrical and Electronic Engineering

Nanyang Technological University
Singapore 639798

+65 97423763
{shar0035, ibktan}@ntu.edu.sg

ABSTRACT
Software defect prediction studies have shown that defect
predictors built from static code attributes are useful and
effective. On the other hand, to mitigate the threats posed by
common web application vulnerabilities, many vulnerability
detection approaches have been proposed. However, finding
alternative solutions to address these risks remains an important
research problem. As web applications generally adopt input
validation and sanitization routines to prevent web security risks,
in this paper, we propose a set of static code attributes that
represent the characteristics of these routines for predicting the
two most common web application vulnerabilities—SQL
injection and cross site scripting. In our experiments, vulnerability
predictors built from the proposed attributes detected more than
80% of the vulnerabilities in the test subjects at low false alarm
rates.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Statistical methods. D.2.8 [Software Engineering]: Metrics –
performance measures, product metrics.

General Terms
Measurement, Experimentation, Security.

Keywords
Defect prediction; static code attributes; web application
vulnerabilities; input validation and sanitization; empirical study

1. INTRODUCTION
Recent research in software defect prediction shows that static
code attributes such as cyclomatic complexity can be used to
effectively predict defective software modules. Following the data
mining techniques used in this defect prediction study, in our
earlier work [10], we showed that vulnerability predictors, built
from static code attributes that characterize input sanitization code
patterns, provide an alternative and cheaper way of addressing
common web application vulnerabilities.

However, web applications also adopt input validation as
complementary or alternative to input sanitization. Conditional
branching is a common input validation method for preventing
web security vulnerabilities and thus, any technique that ignores
control flow is prone to errors [14]. Data dependence graphs were
used for data collection in our previous work. As data dependence
graphs do not include predicates, we could not consider input
validation code patterns previously. As such, our initial work is
incomplete.

Hence, in this paper, we propose additional static code attributes
that characterize input validation code patterns. Static code
attributes are collected from backward static program slices of
sensitive program points to mine both input sanitization code
patterns and input validation code patterns. From such static code
attributes and vulnerability information of existing web
applications, we then train vulnerability prediction models for
predicting SQL injection (SQLI) and cross site scripting (XSS)
vulnerabilities, the two most common and critical security issues
found in web applications [9].

2. CLASSIFICATION
SQLI vulnerability occurs when an SQL statement access
database via a query built with unrestricted user inputs because an
attack could include SQL characters or keywords in the inputs to
alter the intended query syntax. Similarly, XSS vulnerability
occurs when an HTML output statement references unrestricted
user inputs because an attacker could insert malicious scripts into
the inputs to change the intended HTML response output. As
such, both SQLI and XSS vulnerabilities are caused by absence,
inadequate, or insufficient implementation of input validation and
sanitization methods. Since inputs accessed by web application
programs are typically strings, input validation checks and
sanitization operations if performed in programs are mainly based
on string operations.

Therefore, the concept of our approach is to classify the string
operations applied on the inputs according to their potential
effects on the vulnerability of sensitive program statement k
which reference those inputs.

Intuitively, such validation checks and sanitization operations can
be found in backward static slice of the given web program with
respect to k and set of variables referenced in k. As given by
Weiser [12], backward static slice Sk with respect to slicing
criterion <k, V> contains all nodes (including predicate nodes) in
the CFG which may affect the values of V at k where V is the set
of variables used in k.

Following our initial work [10], we classify a node k in the CFG
of a web program as SQL sink if the execution of k may lead to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’12, September 3–7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 ...$15.00

310

SQLI attacks and as HTML sink if the execution of k may lead to
XSS attacks. For example, Figure 1a shows the sample PHP code
extracted from a vulnerable application called PhpNuke, and in
the code, program statement 5 is an HTML sink.

Likewise, we follow the classifications of input types and input
sanitization methods. The attributes that represent these
classification schemes are listed in the appendix (Table 2).

A variety of input condition checks may be found in the nodes in
Sk (program slice). For example, Figure 1b shows the CFG of the
backward static program slice with the slicing criterion <5, {$url,
$url_title}>. Node 3 in the slice uses regular expression matching
to check if an input data conforms to a valid URL format.
Different condition checks may serve different purposes and may
have different effects on the tainted-ness of an input. Thereby, we
classify input validation methods carried out at a node into the
following types:

1) Null: functions that check if the data is present (e.g., isset()).
2) Size: functions that return the size or length of an argument

(e.g., strlen()).
3) Containment: functions that check if an argument contains

any predefined characters (e.g., strops()).
4) Match: functions or operations that compare an argument

with another argument (e.g., strnatcmp(), $a = = “abc”).
5) Regex-match: regular-expression-based string matching

functions (e.g., preg_match()).
6) Type: functions that check the type or format of an argument.

We further classify this type into Numeric-type check (e.g.,
is_int()) and Other-type check (e.g., is_string(), is_file()) to
reflect our experience that numeric data type checks usually
un-taint the input values.

Figure 1. (a) Sample vulnerable web application program. (b)
CFG of the backward static program slice of statement 5.

3. DATA
Combining the 21 attributes listed in the appendix (Table 2) and
the 7 attributes (including the sub-types) that we propose in
Section 2, each sensitive sink in the program is represented with a
28-dimensional attribute vector that characterizes the input
validation and sanitization implemented for the sink.

As an illustration, for the program in Figure 1a, the attribute
vector for HTML sink node 5 can be collected from its backward
program slice (shown in Figure 1b) as (1, 1, 2, 1,…, Vulnerable)
in terms of (HTML, Regex-match, XSS-sanitization, Propagate,…,
Vulnerable?).

We use a data collection tool called PhpMinerII to extract the
attributes from seven open source PHP-based web applications
downloaded from sourceforge.net. Table 1 lists these test subjects
and shows the statistics of the 11 data sets collected for this study.
The test subjects’ vulnerability information can be found in
BugTraq (http://securityfocus.com).

PhpMinerII is based on an open source PHP code analysis tool
called Pixy [3]. Then, we classify the nodes contained in the slices
by simply checking the functions invoked and the operators used.
PhpMinerII handles over 300 PHP built-in functions and 30 PHP
operators for classification. The detailed information of the tool
and the collected data sets are provided in the authors’ web site
(http://sharlwinkhin.com/phpminer.html).

Table 1. Data sets

Test Subject #HTML
sinks

%Vuln.
to XSS

#SQL
sinks

%Vuln.
to SQLI

geccbblite
0.1

20 50 9 44

schoolmate
1.5.4

172 80 189 80

faqforge
1.3.2

115 46 42 41

webchess
0.9.0

73 30 53 45

utopia news
pro 1.1.4

74 23 - -

yapig
0.95b

21 29 - -

phpmyadmin
2.6.0-pl2

58 28 - -

4. EXPERIMENT
4.1 Experimental Design 1 $url = htmlspecialchars($url);

2 $url_title = htmlspecialchars($url_title);
3 if (!eregi(‘(^http[s]*:[/]+)(.*)’, $url))
4 $url = “http://” . $url;
5 echo “RELATEDLINK:

 $url_title
”;

Classifiers: We used three different classifiers, Naïve Bayes
(NB), C4.5, and Multi-Layer Perceptron (MLP), for predicting
SQLI and XSS vulnerabilities. Thereby, we could cross-check the
general effectiveness and usefulness of the predictors built from
our proposed attributes. Detailed information of these
classification algorithms can be found in Witten and Frank [13].

(a)

Training and testing method: We used 5-fold cross validation
method to train and test the three classifiers. The data set is
divided into 5 partitions. Each classifier is trained on 4 partitions
and then tested on the remaining partition; this process is repeated
five times where each partition serves as the test set once,
randomizing the order of the test set each time.

(b)

Performance measures: Learned predictors were evaluated based
on 4 performance measures—probability of detection (pd),
probability of false alarm (pf), precision (pr), and accuracy (acc).
Pd measures the effectiveness of predictor at finding real
vulnerabilities. Pr measures the efficiency, that is, the number of
correctly predicted vulnerabilities over the total number of sinks
predicted as vulnerable. Pf measures the cost of the predictor. Acc
measures the number of correct predictions over the total number
of sinks.

Attribute ranking: We also used gain ratio method [13] to
identify the most informative (best) attributes and the least
informative ones. The objective is to check if using only the best
attributes could improve performances.

311

4.2 Results

 Measure (%)
Data &
Classifier

Pd

Pf

Pr

Acc

NB 70 50 58 60
C4.5 60 40 60 60

geccbblite-html

MLP 70 50 58 60
NB 89 53 87 81
C4.5 96 18 96 93

schoolmate-html

MLP 95 15 96 93
NB 93 21 79 85
C4.5 94 3 96 96

faqforge-html

MLP 94 2 98 97
NB 46 24 46 67
C4.5 77 8 81 88

webchess-html

MLP 73 8 80 86
NB 77 25 48 76
C4.5 71 5 80 89

utopia-html

MLP 94 2 94 97
NB 17 27 20 57
C4.5 50 13 60 76

yapig-html

MLP 67 27 50 71
NB 75 19 60 79
C4.5 94 0 100 98

myadmin-html

MLP 94 2 94 97
NB 67 31 57 72
C4.5 78 13 82 86

Average

MLP 84 15 81 86

 Measure (%)
Data &
Classifier

Pd

Pf

Pr

Acc

NB 75 20 75 78
C4.5 75 20 75 78

geccbblite-sql

MLP 100 20 80 89
NB 84 38 90 79
C4.5 93 27 93 89

schoolmate-sql

MLP 95 27 94 91
NB 88 8 88 91
C4.5 100 8 90 95

faqforge-sql

MLP 94 8 89 93
NB 88 21 78 83
C4.5 100 14 86 93

webchess-sql

MLP 92 17 82 87
NB 82 22 84 83
C4.5 90 18 86 88

Average

MLP 97 18 88 91

Figure 2. (a) Results on XSS vulnerability prediction. (b)
Results on SQLI vulnerability prediction.

We used the WEKA tool presented in Witten and Frank [13] to run
the classifiers on the 11 data sets. As shown in Figure 2, on
average, MLP and C4.5 classifiers produced excellent results. To
provide a comparison point, we used Wilcoxon signed-rank test
(as suggested by Demšar [2]) to compare the two classifiers’
results with a benchmark result of pd = 71% and pf = 25%
(achieved by Menzies et al. [8]). In terms of pd, the two classifiers

performed statistically better (significant at 99%). But, in terms of
pf, they were neither statistically better nor worse. This is mainly
due to the high pf resulting from the tests on geccbblite-html.

On average, MLP and C4.5 classifiers achieved acc ≥ 85% and pr
≥ 80%. These results can be interpreted as at least 8 out of 10
cases are correctly predicted and at least 8 out of 10 vulnerable
cases reported by our predictors are worth investigating for
security audits.

NB classifier performed the worst among the three classifiers
probably due to its naïve assumption that attributes are
conditionally independent [13]. To address this problem, we used
WEKA’s gain ratio attribute evaluator to re-build NB classifier
with only the best 3, 5, or 8 attributes. The classifier did achieve
more performance increases over the 11 data sets. But, the
improvements were not statistically significant according to our
Wilcoxon tests. Similarly, performance increases over the 11 data
sets were also not statistically significant for MLP and C4.5
classifiers when built with best 3, 5, or 8 attributes.

In summary, our models are effective predictors of XSS and SQLI
vulnerabilities. Although data reduction could be applied to
improve the predictive power in some specific cases, statistics
suggest the limited use of data reduction.

4.3 Threats to Validity
First, our data sets could be biased because all the test subjects
contain multiple vulnerabilities. Second, the results may not be
applicable for other common web application vulnerabilities.
Third, the application of additional data preprocessing methods
such as data filtering might alter our results. Fourth, different
classification algorithms might result in different performances as
well. Lastly, our static analysis-based classifications may not
always be precise. The best solution to address these threats is to
replicate our experiments.

(a)

5. RELATED WORK
Vulnerability detection approaches identify vulnerabilities
through tracking the flow of taints (user inputs) to sensitive sinks
[3, 14]. Static and dynamic analysis techniques are generally used
for taint tracking. Static analysis-based techniques suffer from
low precision as these techniques generally overestimate the
tainted-ness of inputs. Dynamic analysis-based techniques such as
model checking [6] and concolic execution [4] produce zero false
positive in principal. But these techniques are generally complex
and expensive. By contrast, our approach only requires light-
weight static analysis and data mining methods to report
vulnerabilities.

Defect prediction approaches [1, 5, 8, 11] typically use static code
attributes such as lines of code and code complexity attributes [7]
to predict defective software modules. These approaches could
correctly predict more than 70% of defects at false alarm rates of
25% or lower. By contrast, our work builds vulnerability
predictors through extending the concepts used in defect
prediction. We use a set of static code attributes that characterize
input validation and sanitization code patterns.

(b)

Our previous work [10] ignored input validation code patterns and
we observed some false positive cases as a result. Our new
predictors could handle those cases. Although the previous results
(pd > 95 and pf < 17) are better than our new results, previous
evaluation was on only 3 test subjects and data analysis was

312

performed on all the subjects together. This may have over-fitted
the data.

6. CONCLUSION
In this work, we build vulnerability predictors from the static code
attributes that characterize input sanitization and validation code
patterns. Static code attributes are measured from backward static
program slices of sensitive sinks in the web program. In the
experiments, our best predictors achieved pd ≥ 84% and pf ≤ 15%
on predicting XSS and SQLI vulnerabilities. As such, the
proposed models offer an alternative and cheap way of mitigating
common web applications vulnerabilities. Our future work is to
enhance our prediction models with more precise dynamic
analysis-based classification methods.

7. REFERENCES
[1] Arisholma, E., Briand, L. C., and Johannessen, E. B. 2010. A

systematic and comprehensive investigation of methods to
build and evaluate fault prediction models. Journal of
Systems and Software, 83, 1, 2–17.

[2] Demšar, J. 2006. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning Research, 7,
1-30.

[3] Jovanovic, N., Kruegel, C., and Kirda, E. 2006. Pixy: a static
analysis tool for detecting web application vulnerabilities. In
Proceedings of the IEEE Symposium on Security and
Privacy. 258-263.

[4] Kieżun, A., Guo, P. J., Jayaraman, K., and Ernst, M. D.
2009. Automatic creation of SQL injection and cross-site
scripting attacks. In Proceedings of the 31st International
Conference on Software Engineering. 199-209.

[5] Lessmann, S., Baesens, B., Mues, C., and Pietsch, S. 2008.
Benchmarking classification models for software defect
prediction: a proposed framework and novel findings. IEEE
Transactions on Software Engineering, 34, 4, 485-496.

[6] Martin, M. and Lam, M. S. 2008. Automatic generation of
XSS and SQL injection attacks with goal-directed model
checking. In Proceedings of the 17th USENIX Security
Symposium. 31-43.

[7] McCabe, T. 1976. A complexity measure. IEEE
Transactions on Software Engineering, 2, 4, 308–320.

[8] Menzies, T., Greenwald, J., and Frank, A. 2007. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 33, 1, 2–13.

[9] OWASP. Top Ten project 2010. http://www.owasp.org,
accessed January 2012.

[10] Shar, L. K. and Tan, H. B. K. 2012. Mining input
sanitization patterns for predicting SQLI and XSS
vulnerabilities. In Proceedings of the 34th International
Conference on Software Engineering. 1293-1296.

[11] Tosun, A. and Bener, A. 2010. Ai-based software defect
predictors: applications and benefits in a case study. In

Proceedings of the 22nd Innovative Applications of Artificial
Intelligence Conference.

[12] Weiser, M. 1981. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering. 439-449.

[13] Witten, I. H. and Frank, E. 2005. Data Mining. 2nd ed.
Morgan Kaufmann.

[14] Xie, Y. and Aiken, A. 2006. Static detection of security
vulnerabilities in scripting languages. In Proceedings of the
15th USENIX Security Symposium. 179-192.

APPENDIX
Table 2. Static code attributes that characterize input and
sink types and input sanitization methods [10]

Attribute Description
Client The number of nodes which access data from

external users
File The number of nodes which access data from

files
Database The number of nodes which access data from

database
Text-
database

Boolean value ‘TRUE’ if there is any text-
based data accessed from database; ‘FALSE’
otherwise

Other-
database

Boolean value ‘TRUE’ if there is any data
except text-based data accessed from
database; ‘FALSE’ otherwise

Session The number of nodes which access data from
persistent data objects

Uninit The number of nodes which reference un-
initialized program variable

SQL The number of SQL sink nodes
HTML The number of HTML sink nodes
SQLI-
sanitization

The number of nodes that apply language-
provided SQLI prevention functions

XSS-
sanitization

The number of nodes that apply language-
provided XSS prevention functions

Encoding The number of nodes that encode data
Encryption The number of nodes that encrypt data
Replacement The number of nodes that perform string-

based substring replacement
Regex-
replacement

The number of nodes that perform regular-
expression-based substring replacement

Numeric-
conversion

The number of nodes that convert data into a
numerical format

Propagate The number of nodes that propagate the
tainted-ness of an input string

Un-taint The number of nodes that return information
not influenced by external users

Custom The number of user-defined functions
Other The number of nodes that are not classified

as any of the above types
Vulnerable? Target attribute which indicates a class

label—Vulnerable or Not-Vulnerable

313

	Predicting common web application vulnerabilities from input validation and sanitization code patterns
	Citation

	Predicting common web application vulnerabilities from input validation and sanitization code patterns

