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Fair and Dynamic Data Sharing Framework in
Cloud-Assisted Internet of Everything

Yinbin Miao, Member, IEEE, Ximeng Liu, Kim-Kwang Raymond Choo, Senior Member, IEEE,
Robert H. Deng, Fellow, IEEE, Hongjun Wu, and Hongwei Li

Abstract—Cloud-assisted Internet of Things (IoT) is increas-
ingly prevalent in our society, for example in home and office
environment; hence, it is also known as Cloud-assisted Internet of
Everything (IoE). While in such a setup, data can be easily shared
and disseminated (e.g., between a device such as Amazon Echo
and the cloud such as Amazon AWS), there are potential security
considerations that need to be addressed. Thus, a number of
security solutions have been proposed. For example, Searchable
Encryption (SE) has been extensively studied due to its capability
to facilitate searching of encrypted data. However, threat models
in most existing SE solutions rarely consider the malicious
data owner and semi-trusted cloud server at the same time,
particularly in dynamic applications. In a real-world deployment,
disputes between above two parties may arise as either party will
accuse the other of some misbehavior. Furthermore, efficient full-
update operations (e.g., data modification, data insertion, data
deletion) are not typically supported in the cloud-assisted IoE
deployment. Therefore, in this paper, we present a Fair and
Dynamic Data Sharing Framework (FairDynDSF) in the multi-
owner setting. Using FairDynDSF, one can check the correctness
of search results, achieve fair arbitration, multi-keyword search,
and dynamic update. We also prove that FairDynDSF is secure
against inside keyword guessing attack and demonstrate its
efficiency by evaluating its performance using various datasets.

Index Terms—Internet of Things, Internet of Everything,
Searchable encryption, Full-update operation, Multi-owner set-
ting, Fair arbitration.

I. INTRODUCTION

INTERNET of Things (IoT) is fast, and can be found in
a broad range of applications ranging from consumers

(e.g., smart homes) to organizations (e.g., Industry 4.0) to
governments (e.g., Internet of Battlefield/Military Things) [1],
[2], [3], [4] – collectively, this can be referred to as Internet
of Everything (IoE)1. Due to the limitations of IoT devices,
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1IoE is a term coined by Cisco (see https://newsroom.cisco.com/ioe and
https://www.cisco.com/c/dam/en us/about/ac79/docs/innov/IoE Economy
FAQ.pdf, last accessed December 20, 2018)

such as computation and storage capacities, there is a shift to-
wards cloud-assisted IoE/IoT where computationally intensive
tasks/activities are being offloaded to the cloud [5].

Although outsourcing data to the cloud can significantly
reduce local computation and storage burden, this will pose
potential security risks (i.e., data privacy leakage, data integrity
violation and illegal access in the complex ecosystem). The
cloud provide by third-parties may arbitrarily access the sen-
sitive data (e.g., financial documents, personal health records)
or deliberately discard rarely accessed data. Encryption is
typically used to ensure data confidentiality and privacy, at the
expense of utility (e.g., searching on ciphertexts becomes cost-
ly and challenging). Thus, there has been interest in exploring
the potential of searchable encryption (SE) technique [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], due to its capability
to allow authorized (cloud) users to retrieve data of interest
based on specified keywords.

To the best of our knowledge, the existing SE solutions
generally assume that the cloud server is honest-but-curious,
which faithfully executes search operations based on the
agreed protocols but may be curious to learn potentially
sensitive information [16]. However, in a real-world situation
the cloud server is more likely to be semi-trusted in the sense
that it may delete rarely or never accessed data in order
to cut costs (e.g., reducing storage space and computation
overhead), conduct partial search operations honestly and
output a fraction of inaccurate search results, and so on [17].
Therefore, to determine the correctness of returned results
(the first challenging issue that we intend to deal with), some
SE schemes are designed to provide result verification [18],
[19], [20]. However, such schemes deal with static data rather
than dynamic data (e.g., insertion operation, modification
operation, deletion operation), thereby limiting their usefulness
and scalability in actual deployments, which is the second
challenging issue that we need to solve.

Although a small number of dynamic and verifiable SE
schemes have been proposed [21], [22], these schemes incur
high result verification costs on the resource-constrained IoT
devices. It is because security-oriented processes, such as data
encryption, ciphertext decryption, and trapdoor generation,
are generally computation-intensive operations and mainly
executed by IoT devices. Thus, practical SE scheme should
provide a lightweight data sharing mechanism deployed on
(resource constrained) IoT devices.

To eliminate the high computation and storage burden on
resource-constrained devices (e.g., smartphones, sensors, and
wearable devices), most of verifiable SE solutions always



IEEE INTERNET OF THINGS JOURNAL 2

delegates his/her result verification tasks to a certain public
or private auditor (one that is trusted by the data owner but
not necessarily by the cloud server) to avoid incurring costly
verification overhead. Existing SE schemes generally assume
that the data owner is honest in the security model. However,
both data owner and cloud server may be motivated to behave
dishonestly to obtain some compensation from the other party,
which is the third challenging issue that we want to tackle.
For instance, a greedy data owner may allege an honest cloud
server to benefit financially, for example by uploading invalid
records or corresponding tags and refusing to acknowledge the
authenticity of verification reports [23], [24], [25]. Besides, a
semi-trusted cloud server would typically execute honestly as
the prescribed protocol, but may attempt to pass the result
verification mechanism without offering true search results. In
other words, disputes between these two parties are generally
unavoidable. Thus, the need for fairness guarantee in verifiable
SE schemes is urgent.

Furthermore, most of existing verifiable SE schemes are not
designed to facilitate verifiable keyword search in the multi-
owner setting, which is a common application in practice
and the fourth challenging issue that we try to settle. For
example, each electronic medical record (EMR) belonging
to a certain patient needs to be confirmed and signed by
one or more medical practitioners and/or allied healthcare
professionals before being outsourced to the cloud server.
Although approaches in [26], [27] consider such a setting,
they do not consider decryption authorization. Precisely, the
data user can decrypt retrieved search results on the condition
that (s)he must be authorized by at least a threshold number
of data owners. Therefore, not all data owners are required to
be online at the same time.

Smart house

Healthcare Transportation

Cloud-assisted IoT

False results

Fair arbitration

False results

Fair arbitration

Update Multi-owner
 

Fig. 1: Challenging issues that we attempt to address in
FairDynDSF.

Up to now, the existing SE schemes can just address the
discussed problems separately. To mitigate these four chal-
lenging issues (namely: 1⃝-avoiding returning false results;
2⃝-supporting dynamic update; 3⃝-supporting fair arbitration;
4⃝-supporting multi-owner setting with threshold decryption
privilege) at the same time in Fig. 1, we present a Fair and
Dynamic Data Sharing Framework (FairDynDSF), which aims
at achieving dynamic fairness guarantee, threshold decryption
privilege in the multi-owner setting and high efficiency without
more costly hash operations (e.g., maps each arbitrary string
into group element) in a cloud-assisted IoE environment.
FairDynDSF is designed to also withstand inside keyword-

guessing attacks (KGAs) while achieving secure and fair
arbitration, which is shown as follows:

• Verifiable multi-keyword search. FairDynDSF has a well-
designed result verification protocol to prevent a semi-
trusted cloud server from offering inaccurate search re-
sults, and avoid results of little or no relevance being
returned.

• Multi-owner setting. Unlike a common single-owner set-
ting, the multi-owner setting supported by FairDynDSF
allows each record to be co-accredited by multiple data
owners. To be specific, multiple data owners collabo-
ratively delegate the record signature tasks to a trusted
entity, and at least a threshold number of data owners
can grant the record decryption privileges.

• Dynamic update. FairDynDSF supports record dynamic
update (e.g., modification, deletion, and insertion) without
incurring significant computation overhead for cipher-
text update. Specifically, FairDynDSF updates the index
switcher and generates a small portion of EMR signatures
and ciphertexts at a small cost (i.e., computation and
communication overhead).

• Fair guarantee. Due to the fair guarantee feature in
FairDynDSF, dishonest entities are discouraged from
misbehaving (e.g., the untrue accusation from data owner,
returning false search results or refusing update opera-
tions by semi-trusted cloud server).

II. RELATED WORK

SE schemes can be categorized into symmetric and asym-
metric [6], [16], and the focus of this paper is the latter
as the symmetric SE schemes generally incur expensive key
management and communication costs. The first asymmetric
SE scheme is proposed by Boneh et al. [7] (also known as the
Public key Encryption with Keyword Search – PEKS), which
allows the data user to deliver a trapdoor and the cloud server
to test this trapdoor with stored indexes.

As previously discussed, a cloud server may be selfishly
motivated to minimize the operating costs, for example by
deleting infrequently accessed records and producing partial
search results. Thus, this results in the design of verifiable
SE schemes [28], [29], [30]. For example, Liu et al. [28]
presented a verifiable SE with aggregated keys scheme, which
allows an authorized data user to create a single trapdoor
and search different record sets encrypted by different keys.
However, result verification incurs significant computation
costs on resource-limited data users (e.g., wearable devices).
To improve efficiency, Chen et al. [29] presented a verifiable
fine-grained keyword search scheme for mobile healthcare
networks. The scheme allows one to check the completeness
and accuracy of search results by combining the invertible
Bloom lookup table and the Merkle hash tree. However,
the approach results in a high false-positive rate. Therefore,
Miao et al. [27] designed a practical SE scheme in multi-
owner settings [31], which utilizes the private audit server
to guarantee the validity of search results. Unfortunately, the
solutions discussed so far only achieve private verification
rather than public verification.
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Unlike private verification, public verification does not
require a data owner to be online or incur a significant com-
putation load. Hence, public verification has gained popularity
in recent years, for example being utilized in public auditing
technique for cloud storage. To further discourage a semi-
trusted cloud server from discarding rarely or never accessed
data, public auditing enables an arbitrary public verifier to
check the integrity of cloud data on behalf of the data owner
without violating data confidentiality. However, the threat
models in these schemes [32], [33], [34] never consider a
dishonest data owner, who may be financially motivated to
cheat the cloud server. Hence, there is a need to design a fair
arbitration mechanism in public auditing.

Wang et al. [35] devised a fair remote retrieval model, using
homomorphic privately verifiable tags and fair multi-member
key exchange. The model reportedly achieves high efficiency
in terms of computation and communication. However, the
model does not provide dispute resolution. Extending existing
threat models to support fair arbitration, Küpçü et al. [24]
presented a general-purpose arbitration solution for both static
and dynamic settings. Specifically, the solution uses the fair
signature exchange protocol [36], [37]. On the basis of [24],
the approach of Jin et al. [23] provided dynamics support,
public verifiability and dispute arbitration concurrently. How-
ever, these fair data sharing schemes do not support either
keyword-based ciphertext retrieval or multi-owner settings.

Therefore, we seek to address the above discussed limi-
tations (i.e., verifiable keyword search, multi-owner setting,
dynamic data update, and fair arbitration) – see TABLE I.

TABLE I: A comparative summary of features in existing SE
schemes

Schemes F1 F2 F3 F4 F5 F6

[18] Single Private × × Static Resist CKA
[21] Multiple Public/Private × × Dynamic UC-secure
[23] × Public × ! Dynamic Sound
[24] × Public × ! Static/Dynamic —
[25] Single Private × ! Static Resist CMA
[26] Multiple Private ! × Static Resist CKA
[27] Single Private ! × Static Resist CKA
[28] Single Private ! × Static Controllable
[29] Single Public × ! Static Resist CKA
[35] × Public × ! Static —

FairDynDSF Multiple Public ! ! Dynamic Resist KGAs

Notes. F1: Keyword search; F2: Results verification; F3: Multi-owner
setting; F4: Fair arbitration; F5: Dataset; F6: Security; “CKA”: Chosen-
Keyword Attack; “UC-secure”: Universally Composable security; “C-
MA”: Chosen-Message Attack; “KGAs”: Keyword-Guessing Attacks.

III. SYSTEM, THREAT AND SECURITY MODELS

In this section, we respectively describe the system model
(Section III-A), threat model (Section III-B), and security
model (Section III-C).

A. System Model

The FairDynDSF system considers a cloud-assisted IoE
scenario, for example in a hospital setting. In the latter, a pa-
tient’s EMR is collected from multiple medical and healthcare

professionals (e.g., from different hospitals in Texas) via their
IoT devices and then uploaded to a public cloud server (e.g.,
the Texas healthcare cloud). Such a model generally comprises
five entities2, namely: Data Owners (DOs), Data Users (DUs),
Public Cloud Server (PCS), Public Auditor Server (PAS), and
Fair Arbitration Server (FAS) – see Fig. 2. The entities are
introduced below:

• Data owners: Multiple DOs (e.g., medical and healthcare
professionals from different departments and/or hospitals)
collect diagnostic information from a patient, which is
then recorded in the patient’s EMR. Then, the specified
DO Manager (DOM), on behalf of multiple DOs, builds
indexes (based on keywords) and the index switcher,
generates a signature on the EMR, and encrypts each
EMR before outsourcing the final ciphertexts to HCS
– see step 1⃝. DOM can execute EMR update (e.g.,
modification, deletion, and insertion) by using the index
switcher.

• Public cloud server: PCS has significant computation
resources and storage space, stores and processes EMR
from DOs. We assume that PCS may occasionally or
deliberately delete some rarely or never accessed EMRs
to save storage space, or return partial results to cheat
PAS.

• Public auditor server: PAS periodically checks the accu-
racy of returned results in a challenge-response manner
(see steps 3⃝ and 4⃝), and notifies DOM of the veri-
fication reports honestly. In addition, the correct search
results are passed to the queried DU (see step 5⃝).

• Fair arbitration server: When a dispute occurs between
DOs and PCS (as shown by the dotted red line), FAS
provides fair arbitration based on result verification and
EMR update (as shown by the red line).

• Data users: A legitimate DU can search the encrypted
EMRs with the valid trapdoor (see step 2⃝). However,
DU can decrypt the exact search results on the premise
of gaining decryption privileges granted by at least the
default threshold number of DOs (see step 6⃝).

EMR

Indexes

Ciphertexts

Decryption privileges
Trapdoor Challenge

Response

Arbitration

Data users Public auditor server

Public cloud 

server
Data owners

Arbitration

Fair arbitration server

 

Fig. 2: System model of FairDynDSF.

2Note that the trusted authority tasked with the generation of global public
parameters and public/secret key pairs for various entities is omitted in this
system model.
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B. Threat Model

The threat models in most verifiable SE schemes are not
capable of handling disputes between DOs and PCS, as
DOs are usually assumed to be fully trusted. However, in
FairDynDSF, both DOs and PCS may falsely accuse each
other. Although DOs delegate result verification tasks to PAS
and trust that PAS will return the correct verification reports,
a semi-trusted PCS does not trust the PAS completely. It is
because DOs and PAS may collude with each other to frame
the PCS for financial benefit.

Therefore, to mitigate limitations in such a simplistic threat
model, FairDynDSF is designed on the assumption that an
honest-but-curious FAS exists, which is a tradeoff between
security and efficiency (Note that fully-trusted FAS will lead
to high communication costs caused by building security
channels). In other words, the FAS implements the established
agreement honestly but may be curious to learn the underlying
information (i.e., the indices of updated EMRs, the identity of
DOM, etc.). For security concerns, FairDynDSF can utilize
the random mask and signature techniques to guarantee the
privacy of indices of updated EMRs and identity of DOM,
respectively, which is beyond the scope of our discussion. In
addition, we require FAS to be an impartial third-party and
should provide fair arbitration. Authorized DUs will still need
to be accredited by multiple DOs before they can recover the
plaintext EMRs.

C. Security Model

Similar to previous schemes such as those of [38], [39], the
security of FairDynDSF requires that the index and trapdoor
indistinguishability to be guaranteed, which is based on the
following two games. Here, we briefly describe these two
games.

• In game 1, the adversary A may be the semi-trusted
PCS or a malicious DU. Hence, A can obtain the PCS’s
secret key or the DU’s secret key, but it cannot issue
the trapdoor queries corresponding to the challenging
keywords w0, w1 of his/her choice. FairDynDSF can
ensure the index indistinguishability if there does not
exist an adversary that can tell the indexes of w0 and
w1 without obtaining the valid trapdoor.

• In game 2, A may be the semi-trusted PCS or a malicious
DOM. A can obtain the PCS’s secret key or the DOM’s
secret key. The trapdoor indistinguishability of FairDyn-
DSF requires that A should not be able to distinguish the
trapdoors of keyword(s) w0 (or W0) and w1 (or W1).

Definition 1. FairDynDSF is secure against the inside KGAs
if there does not exist any adversary that can comprise the
index and trapdoor indistinguishability with a non-negligible
advantage in both games 1 and 2 described above.

Besides, we formally define other security property [40]
required in FairDynDSF. This security game is conducted
between the challenger C and A. Note that the semi-trusted
PCS acts the role of A. The introduction of this security game
is shown in Supplemental Material A.

Definition 2. FairDynDSF achieves signature unforgeability
against a semi-trusted PCS if there does not exist an adversary
that can break the above security game with a non-negligible
advantage.

IV. PROPOSED FAIRDYNDSF FOR CLOUD-ASSISTED IOE
Although the scheme in [23] achieves public verification,

fair arbitration, and dynamic update, the particular scheme
does not achieve data sharing within a cloud-assisted IoE
environment. To allow IoT devices to share data without sac-
rificing security, we present the construction of FairDynDSF
(a dynamic and verifiable multi-keyword search with dispute
arbitration scheme in the multi-owner setting). Before describ-
ing FairDynDSF, we will first introduce relevant background
materials.

Let Zp be the field with elements modulo p, G,GT be
two cyclic multiplicative groups of order p. The bilinear map
e : G×G → GT has three key properties: (a) Bilinearity: for
∀h1, h2 ∈ G, a∗, b∗ ∈ Zp, e(ha∗

1 , hb∗

2 ) = e(h1, h2)
a∗b∗ ; (b)

Computability: for ∀h1, h2 ∈ G, there exists an efficient algo-
rithm to output e(h1, h2); (c) Non-degeneracy: ∃h1, h2 ∈ G,
e(h1, h2) ̸= 1. Let H,h denote two collision-resistant map-to-
point hash functions H : {0, 1}∗ → G, h : {0, 1}∗ → Zp, and
[â, b̂] be a set of integers including â, b̂.

FairDynDSF comprises key generation KeyGen, ciphertexts
uploading Enc, EMRs update Update, trapdoor generation
Trap, ciphertexts retrieval Search, result verification Verify,
fair arbitration Arbitrate, and decryption authorization Dec –
see Sections IV-A to IV-H. A summary of notations used in
the framework is listed in TABLE II.

TABLE II: Summary of notations

Notation Description Notation Description
(pko, sko) DOM’s Keys W = {w1, · · · , wn} Keyword set
(pks, sks) PCS’s Keys D = (m1, · · · ,mf ) EMR set
(pku, sku) DU’s Keys I = (I0, I1, I2, {Ij}) Indexes for W
C = {ci} EMRs ciphertexts S = {si} EMRs signatures
So DOM’s signature O = {O1, · · · , Od} DO group
Ss PCS’s signature θ = {(ti, i)} Index switcher
ϕ Update request W ′ = {w′

1, · · · , w′
l} Queried keywords

{z, µz} Challenge info TW ′ = (TW ′,1, TW ′,2) Trapdoor
(µ, s) Proof info C∗ = {c′1, · · · , c′q} Search results

A. Key generation
Given global public parameters pp = (g, g0, u,H, h), where

g is the generator of G, g0, u ∈ G, FairDynDSF calls
KeyGen to produce public/secret key pairs for DOM, DU,
PCS, respectively. Note that the DO group is defined as
O = {O1, · · · , Od}.

• KeyGeno: Choose a ∈ Zp and compute ga, and the
public and secret keys of DOM are defined as pko = ga0 ,
sko = a, respectively.

• KeyGenu: Select b ∈ Zp and compute e(g, g0)
1/b, gb,

and the public and secret keys of DU are defined as pku =
(pku,1, pku,2), sku = b, where pku,1 = e(g, g0)

1/b,
pku,2 = gb, respectively.

• KeyGens: Pick c ∈ Zp and compute gc, and the public
and secret keys of PCS are defined as pks = gc, sks = c,
respectively.
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B. Ciphertext uploading

Upon receiving the EMR, DOM calls Enc to output the
keyword indexes, EMR signature, EMR ciphertext. Then,
DOM uploads the final ciphertexts CT = (I, S, C, So) to PCS,
where I = (I0, I1, I2, {Ij}), C = {ci}, S = {si}.

• As for the keyword index I , DOM first selects v ∈ Zp

and computes I0 = e(g, g)v, I1 = pkvu,2 = gbv ,
I2 = e(g, g0)

av/b, then calculates Ij = g−vh(wj) for each
keyword wj(j ∈ [1, n]) in W = {w1, · · · , wn}.

• DOM encrypts each EMR mi(i ∈ [1, f ]) in D =
(m1, · · · ,mf ) by using a symmetric encryption algorith-
m Enc (e.g., AES, DES), namely: ci = Enca(mi). Then,
DOM randomly chooses a polynomial f(x) of degree
t− 1, f(x) = a0 + a1x+ · · ·+ at−1x

t−1, where a0 = a,
{a0, · · · , at−1} ∈ Zt

p, 2t − 1 ≥ d. Finally, DOM selects
d points {(xr, yr)}(r ∈ [1, d]) from f(x) and computes
qr = gyr , where yr = f(xr) ∈ Zp. Note that yr is sent to
each DO (Or) via a secure channel (e.g., Secure Sockets
Layer – SSL), qr is public.

• DOM outputs the signature for each EMR mi as
si = (H(ti)u

h(ci))a, and generates the signature So =
H(seq||θ)sko on the index switcher θ = {(ti, i)}(i ∈
[1, f ]), where ti represents the index of signature si, and i
denotes the index of EMR mi. Initially, both EMR indices
and signature indices have the same sequence, ti = i. seq
denotes the update count pointer and its initial value is
0, which is incremented by one when DO executes each
update operation.

To avoid a dishonest DOM (note that DOM does not
tamper or forge EMRs) from outputting false signature si
for each EMR mi so that (s)he can maliciously frame an
honest PCS, PCS first checks the validity of (si, ci) using
e(si, g0)

?
= e(H(ti)u

h(ci), pko) at the initial stage. If the
test succeeds, then PCS is ensured that DOM has generated
the accurate signature. Then, PCS generates its signature
Ss = H(seq||θ)sks on the index switcher θ. PCS also needs to
check the correctness of So using the public key pko, namely
e(So, g0)

?
= e(H(seq||θ), pko). If this verification passes, then

PCS keeps So; otherwise, PCS turns to FAS for fair arbitration.

C. EMR update

To better understand EMR updating in the process of
Update, we first show how to deal with modification, insertion
and deletion operations in θ according to Fig. 3, which is
similar to the scheme in [23]. However, the difference is that
FairDynDSF should encrypt the modified or inserted EMRs
so that PCS cannot access sensitive information.

• Modification. Assume that DOM modifies mk(k ∈ [1, f ])
into m′

k, (s)he assigns an unused signature index t′k for
mk and calculates its new cihphertext c′k = Enca(m

′
k)

and signature s′k = (H(t′k)u
h(c′k))a. Then, (s)he updates

the index switcher θ as θ′. Finally, (s)he returns the update
request ϕ = {seq′, O(M), k, t′k, c

′
k, s

′
k, θ

′, S′
o} to PCS,

where O(M) denotes the modification operation, S′
o =

H(seq′||θ′)sko , seq′ = seq+ 1. Note that seq represents
the value that has been successfully updated previously.

• Insertion. Similar to the modification operation, DOM
also allocates an unused signature index t′k when adding
a new EMR at the k-th position, as well as new ciphertext
c′k and signature s′k. Additionally, there is an update re-
quest ϕ = {seq′, O(I), k, t′k, c

′
k, s

′
k, θ

′, S′
o}, where O(I)

means the insertion operation.
• Deletion. When DOM intends to delete EMR mk, (s)he

just needs to output the updated index switcher θ′ and
submits the update request ϕ = {seq′, O(D), k, θ′, S′

o}
to PCS, where O(D) denotes the deletion operation.

After obtaining ϕ in terms of modification or insertion
operation, PCS first needs to check the authenticity of c′k, s

′
k

by verifying e(s′k, g0)
?
= e(H(t′k)u

h(c′k), pko). If this equation
holds, then PCS proceeds to verify the accuracy of S′

o by using
his/her own updated index switcher θ′ according to the update
request ϕ, namely e(S′

o, g0)
?
= e(H(seq′||θ′), pko). If both

verifications succeed, then PCS will replace the tuple (ck, sk)
with a new one (c′k, s

′
k), or insert the new pair (c′k, s

′
k) into the

stored ciphertexts. Note that PCS only executes the signature
verification for deletion operation. If DOM has generated the
signatures for each updated EMR and index switcher honestly,
then PCS also returns his/her signature S′

s = H(seq′||θ′)sks

on his/her own updated index switcher θ′ to DOM for any
subsequent dispute arbitration.

m1 m2 m3 m4 m5 m6 m7 m8 m9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

EMR indices

Signature indices

m1 m2 m3 m4 m'5 m6 m7 m8 m9

1 2 3 4 10 6 7 8 9

1 2 3 4 5 6 7 8 9

EMR indices

Signature indices

Modify m5 as m'5

m1 m2 m3 m4 m'5 m6 m' m7 m8

1 2 3 4 10 6 11 7 8

1 2 3 4 5 6 7 8 9

EMR indices

Signature indices

m9

9

10

Insert  m'

m1 m2 m4 m'5 m6 m' m7 m8 m9

1 2 4 10 6 11 7 8 9

1 2 3 4 5 6 7 8 9

EMR indices

Signature indices

Delete m3 

Fig. 3: The change of EMR and signature indices in Update.

D. Trapdoor generation

When a particular DU conducts search query W ′ =
{w′

1, · · · , w′
l}, (s)he calls Trap to generate trapdoor TW ′ =

(TW ′,1, TW ′,2). First, DU chooses TW ′,1 = φ ∈ Zp, then
computes TW ′,2 = (pk

1/b
o pk−φ

s )1/(b−
∑l

τ=1 h(w′
τ )), where τ ∈

[1, l]. Finally, DU sends TW ′ along with keyword locations L
of queried keywords in keyword dictionary W to PCS. Here,
we define a function ρ1(·) which maps the keyword index in
W ′ to that in W , namely w′

τ = wρ1(τ). Note that the location
privacy of queried keywords can be protected using random
mask techniques (e.g., pseudo-random functions) [41].

E. Ciphertexts retrieval

In this process, PCS calls Search to check whether the
submitted trapdoor TW ′ matches with indexes T using Eq. 1.
If Eq. 1 holds, then PCS returns the corresponding search
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results C∗ = {c′1, · · · , c′q} to PAS; otherwise, PCS aborts this
process.

e(I1 ·
l∏

τ=1

Iρ1(τ), TW ′,2)I
cTW ′,1
0

?
= I2. (1)

F. Result verification

After obtaining the search results C∗, PAS has to test
the correctness of C∗ by calling Verify. First, PAS selects
an element µz ∈ Zp for each result c′z(z ∈ [1, q]), and
sends the challenging information {z, µz} to the PAS. To pass
the result verification, PAS computes µ =

∑q
z=1 µzh(c

′
z),

s =
∏q

z=1(s
′
z)

µz , and then sends proof information (µ, s)
to PAS, where s′z represents the signature for c′z . For ease of
description, we introduce another function ρ2(·) which maps
each index of search results to that of EMR ciphertext, namely
c′z = cρ2(z), s

′
z = sρ2(z). Upon getting the proof information

(µ, s), PAS checks its validity with Eq. 2. If Eq. 2 holds, then
PAS sends C∗ to DU; otherwise, PAS rejects.

e(s, g0)
?
= e(

q∏
z=1

H(tρ2(z))
µz · uµ, pko). (2)

PAS also needs to guarantee that PCS has performed
the update request honestly. First, PAS selects a challeng-
ing set ω = {z′, µ′

z′}z′∈∆∩k and sends ω to PCS, where
∆ = [1, q]. That is to say, the challenging set includes the
updated EMR. PCS returns proof information (µ′, s′) to PAS,
which verifies the correctness of (µ′, s′) using e(s′, g0)

?
=

e(
∏

z′∈∆∩k H(tρ2(z′))
µ′
z′ · uµ′

, pko). PAS can continue to
verify the validity of S′

s on behalf of DOM. If S′
s is valid,

then it implies that PCS has indeed performed the update
operations.

G. Fair arbitration

As mentioned above, both DOM and PCS may accuse each
other. In FairDynDSF, PAS should rely on index switcher θ to
obtain the signature indices so that (s)he can issue the result
verification. The creation and update of θ are only completed
by DOM, which can be potentially exploited by DOM to
frame PCS. Thus, supporting fair arbitration for potential
disputes is indispensable for FairDynDSF. Next, we show how
FairDynDSF resolves the conflict by calling Arbitrate.

The straightforward solution is to send the update infor-
mation (e.g., operation position, operation type, and unused
signature index) to FAS for each update executed by DOM.
However, this method inevitably imposes additional com-
munication and storage costs. Thus, FairDynDSF uses the
signature exchange mechanism [23], [24], [37] to guarantee
the correctness of index switcher, which requires both entities
to exchange their respective signatures on the latest index
switcher after each dynamic operation. Note that PCS can
recover the latest index switcher by employing the essential
update information in ϕ. In the initial phase, the signature
indices are the same as the EMR indices, namely {(ti = i, i)},
and the signature exchange can be easily completed since the
initial content of θ is known to both DOM and PCS. If the

update operation has been performed successfully, not only
the PAS succeeds in issuing result verification in a challenge-
response mode, but also both DOM and PCS maintain the oth-
er side’s signature. This means that both sides have researched
an agreement on the current update. The conflict between these
two parties may happen in any of the following three cases:

• PAS claims a failure of result verification in Verify.
• PCS gains an incorrect update request ϕ in Update.
• DOM obtains an invalid signature on the updated index

switcher in Arbitrate.
As for the first dispute case, the involved FAS asks for

the necessary information {seqo, θo, Ss}, {seqs, θs, So} from
DOM and PCS, respectively. Note that seqo (or seqs) denotes
the value of update count pointer returned by DOM (or PCS),
θo, θs represents the index switcher sent by both parties,
respectively. Next, we show the arbitration results derived from
FAS in Fig. 4. Note that seqo = seqs in the first dispute case
happens in the current update operation.

DOM FAS PCS

Signature So

Signature Ss

Next update

Ss(×), punish DOM 

So(×), punish PCS

seqo=seqs, call Verify

seqo>seqs, punish DOM

seqo<seqs,  punish PCS

, ,o o sseq Sq

, ,s s oseq Sq

Fig. 4: Arbitration on result verification.

To deal with the remaining dispute cases, FAS should help
both parties to complete the current update and signature
exchange. Besides, the signatures in the most recent successful
operation should be checked again so that FAS can proceed
on condition that the current update operation has not yet been
completed. In these two cases, the result verification process is
similar to that in the first case. That is to say, FAS decides that
this party is cheating if (s)he receives an invalid signature from
the corresponding party. As for the comparison between the
values of update count pointer, the fair arbitration is divided
into two situations (e.g., seqo = seqs, seqo ̸= seqs), which is
shown in Fig. 5. Note that seqo = seqs in the last two dispute
cases occurs in the last successful update operation, while the
current update operation has not been accomplished. Besides,
as for the case seqo = seqs + 1, there are three possibilities
(i.e., (1) The DOM has inconsistent EMR and corresponding
signature; (2) The PCS returns an invalid signature on updated
index switcher; (3) PCS refuses to update, etc.) causing fair
arbitration. With regard to the third possibility (also referred to
as denial-of-update), FAS cannot decide which party should be
punished, as each party may behave maliciously to the other
party but honestly to FAS. For instance, the DOM sends a
false updated EMR to PCS in the current update operation but
returns a correct update EMR in the fair arbitration process.
In this case, FAS treats seqo = seqs so that it can accomplish
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the current update operation and signature exchange, which
does not affect the following tasks of result verification and
update operation.

DOM FAS PCS

, punish DOM

Ss(×), punish DOM 

So(×), punish PCS

seqo<seqs,  punish PCS 

1, , , , , ,o k k kseq O k t c s q¢ ¢ ¢ ¢+

, ,o o sseq Sq

, ,s s oseq Sq

, , ( )k k kt c s¢ ¢ ¢ ´

1, , , , , ,o k k kseq O k t c s q¢ ¢ ¢ ¢+, , ( )k k kt c s¢ ¢ ¢

,sm¢ ¢

, ( )sm¢ ¢ ´ , punish PCS

Update q ¢

( 1|| ) osk

o oS H seq q¢ ¢= + ( +1|| ) ssk

s sS H seq q¢ ¢=

( )oS¢ ´ , punish DOM ( )sS¢ ´ , punish PCS

( )oS¢( )sS¢

Finish the current update (seqo=seqs)

Execute next update (seqo seqs)

, 

seqo>seqs+1,  punish DOM 

seqo=seqs+1 ? seqo=seqs+1 ?

Fig. 5: Arbitration on the dynamic update.

H. Decryption authorization
After gaining the correct search results C∗ = {c′z}, DU

still has to obtain at least t decryption authorizations from DO
group O, as the entire DOs cannot be online simultaneously.
Although DOM3 keeps the encryption key a, (s)he cannot
directly give it to DU without DOs’ permissions. Assume that
there are t DOs are on-line, namely {O′

1, · · · , O′
t}, and each

DO (O′
i′(i

′ ∈ [1, t])) keeps the point (x′
i′ , y

′
i′) in f(x), then

they communicate with the DU as follows:
• Each O′

i′ first selects y∗i′ ∈ Zp and computes ŷi′ = (y′i′ −
y∗i′) mod p, q∗i′ = gy

∗
i′ , where q∗i′ is public. Then, O′

i′

sends y∗i′ , ŷi′ to O′
j′(j

′ ∈ [1, t], j′ ̸= i′), DU via SSL,
respectively.

• When O′
j′ receives the element y∗i′ , (s)he first checks

q∗i′
?
= gy

∗
i′ . If this equation holds, then O′

j′ accepts y∗i′ and
forwards it to the DU via SSL; otherwise, (s)he rejects.

• Upon obtaining {(ŷ1, y∗1), · · · , (ŷt, y∗t )}, DU fist com-
putes y′i′ = (ŷi′ +y∗i′) mod p, and then deduces f(0) = a
by utilizing the Lagrange interpolation method (see E-
q. 3). Finally, DU decrypts these results C∗ using the
corresponding secret key a.

f(0) =
t∑

i′=1

y′i′(
t∏

j′=1,j′ ̸=i′

−y′j′

y′i′ − y′j′
) mod p. (3)

3In some scenarios, DOs may not completely trust DOM, since DOM may
distribute inconsistent secret shares to various DOs. To solve this challenge,
DOM should calculate the commitments {ga0 , · · · , gat−1} on all coefficients
{a0, · · · , at−1} of f(x) when computing each point (xr, yr) for each
DO [42], so that each DO is able to verify the validity of (xr, yr) by using

gyr
?
=

∏t−1
i′=0

gai′x
i′
r = g

∑t−1

i′=0
ai′x

i′
r = gf(xr).

The straightforward way is that each DU can directly
communicate with at least t (or the threshold value specified
by DOM) DOs and gain their respective secret keys {y′i′}.
However, there exist no interactions among multiple DOs, and
our FairDynDSF cannot provide flexible access control accord-
ing to each DO’s preference. For example, one may prefer to
grant the decryption permission on the condition that his/her
friends or leaders also permit without leaking his/her secret
share. Hence, this decryption authorization can be deployed
elastically according to the actual system requirements.

Remarks. In FairDynDSF, we consider both malicious
DOM and semi-trusted PCS at the same time. In addition
to realizing common functionalities (e.g., supporting multi-
keyword search, checking the correctness of search results,
resisting the stronger threat such as inside KGAs) required
in conventional SE solutions, FairDynDSF achieves fair arbi-
tration for dynamic update operations by using the signature
exchange mechanism. Furthermore, FairDynDSF can be ap-
plied in the multi-owner setting, which achieves flexible access
control over decryption authorization by using (d, t)-secret
sharing mechanism. Finally, FairDynDSF is highly efficient
by decreasing costly hash operations (e.g., the operation of a
hash function H), in comparison to prior schemes.

V. SECURITY AND PERFORMANCE ANALYSIS

To demonstrate that the PDF is secure and efficient in prac-
tice, we show the detailed security and performance analysis,
respectively.

A. Security

FairDynDSF not only withstands the inside KGAs in Theo-
rem 1 but also guarantees the signature unforgeability in Theo-
rem 2. Furthermore, the arbitration mechanism in FairDynDSF
offers secure and fair arbitration in Theorem 3.

To resist the inside KGAs, the security of FairDynDSF
requires that it should achieve both index and trapdoor in-
distinguishability in Theorem 1. Note that the index indistin-
guishability in game 1 allows A to enquire the private key
and trapdoor ciphertext except for the trapdoor of challenging
keywords w0, w1 of his choice, the trapdoor indistinguishabil-
ity in game 2 permits A to enquire the secret key and index
ciphertext apart from the index ciphertext corresponding to the
challenging keywords w0, w1.

Theorem 1. FairDynDSF is secure against the inside KGAs
in the random oracle model if no adversaries can break the
game 1 and game 2 with non-negligible probability.

Proof: The proof of Theorem 1 depends on the following
two lemmas, which protects the index indistinguishability
and trapdoor indistinguishability, respectively. Note that the
detailed proofs of these two lemmas can refer to schemes [38],
[39].

Lemma 1. FairDynDSF realizes the index indistinguishability
in game 1 on condition that the strong Decisional Diffie-
Hellman (DDH) assumption [43] holds.
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Lemma 2. FairDynDSF guarantees the trapdoor indistin-
guishability to fight the chosen-keyword attack in the random
oracle model in game 2.

Given the trapdoor TW ′ based on the queried keyword set
W ′, the semi-trusted PCS cannot output the valid keyword
indexes that match with TW ′ unless he obtains DOM’s secret
key. Assume that PCS chooses ã ∈ Zp and calculates gã0 ,
in order to create the index ciphertexts Ĩ = (Ĩ0, Ĩ1, Ĩ2, {Ĩj}).
According to the test equation in Search, the randomly chosen
index ciphertexts Ĩ satisfy the specified trapdoor TW ′ on
condition that ã = a, W ′ = {w′

1, · · · , w′
l} = {w̃1, · · · , w̃l}.

However, the probability of choosing ã ∈ Zp such that ã = a
is 1

p , which is negligible when the value of p is large enough.
Besides, the probability of finding l proper keywords from the
keyword dictionary W = {w1, · · · , wn} is 1/

(
n
l

)
(n ≫ l).

Hence, PCS is unable to issue inside KGAs by calculating all
possible keyword indexes to pass the matching mechanism.

Given the index ciphertexts I = (I0, I1, I2, {Ij}), PCS still
does not have the ability to generate corresponding trapdoor
T̃W ′ which matches with I . Even though PCS is permitted
to choose b̃ ∈ Zp and W̃ ′ = {w̃′

1, · · · , w̃′
l} before outputting

T̃W ′ , the probability of b̃ = b is still negligible. Thus, PCS
also cannot perform the inside KGAs by producing the valid
trapdoor of possible keyword set. Besides, the equation used to
match indexes and trapdoors cannot contribute to finding the
valid trapdoor or executing the inside KGAs as TW ′ includes
the random element. Based on the above analysis, FairDynDSF
is secure against the inside KGAs in the random oracle model.
This completes the proof of Theorem 1.

Similar to the scheme [40], we claim that the EMR signature
is existentially unforgeable in Theorem 2.

Theorem 2. It is computationally infeasible to forge the
legal EMR signatures in FairDynDSF on condition that the
Computational Diffie-Hellman (CDH) assumption holds.

Proof: The signature unforgeability implies that A cannot
output the valid signature. Let A be a (t̃, ϵ̃)-algorithm, which
forges the signature in FairDynDSF with the time t̃, and the
probability ϵ̃, then there exists a (t∗, ϵ∗)-algorithm C which can
break the CDH assumption, where t∗ ≥ t̃+ qH ẽ+ qS ẽ, ϵ∗ ≥
ϵ̃/qHqP , ẽ denotes the operation time of one exponentiation
in G. Note that A can issue at most qH hash queries, qS
signature queries and qP public key queries. The detailed proof
of Theorem 2 is shown in Supplemental Material B.

Finally, FairDynDSF can offer secure and fair arbitration for
potential disputes happening between DOM and PCS, which
can be achieved by Theorem 3.

Theorem 3. The arbitration mechanism in FairDynDSF can
offer secure and fair arbitration on condition that the signature
is unforgeable and the result verification is correct.

Proof: First, we need to show that the arbitration mech-
anism is correct. The signatures signed by DOM and PCS on
the r̃-version of index switcher θr̃ are set as So = H(r̃||θr̃)sko ,
Ss = H(r̃||θr̃)sks , respectively. In the initial stage, the index
switcher is {(ti = i, i)} and the value of update count pointer
is 0. When DOM first uploads his EMRs to PCS, PCS must

verify whether DOM has correctly created the signature for
each EMR. As the initial θ0 is public to all, FAS can quickly
deal with the conflicts and accomplish the initial signature
exchange. At this point, DOM and PCS both have each other’s
signature, namely DOM stores Ss = H(0||θ0)c, PCS keeps
So = H(0||θ0)a. As for each update operation, DOM should
return the update information (e.g., operation type, operation
location, the newly-produced signature index) to PCS so that
it can re-construct the updated index switcher θr̃ and further
check the correctness of DOM’s signature on θr̃. Due to
space limitation, the detailed security analysis of Theorem 3
is demonstrated in Supplemental Material C.

We also need to show the fairness of the arbitration protocol.
Assume that the malicious PCS intends to accuse the honest
DOM, it should have the ability to forge the correct signature
of DOM by utilizing the larger value of ϕ rather than the
agreed one in the last completed update. Let the update count
pointer and index switcher in the last successful update be
seq, θ, respectively, then DOM owns Ss(seq||θ) and PCS
has So(seq||θ). Suppose that DOM wants to accuse PCS,
he should output the correct signature Ss(seq

′||θ′), where
seq′ > seq, θ′ ̸= θ. If PCS attempts to accuse DOM, it
should generate the correct signature So(seq

′′||θ′′), where
seq′′ > seq + 1, θ′′ ̸= θ. Note that θ′, θ′′ denote the
updated index switcher. However, these two situations conflict
the property of signature unforgeability, which is proved in
Theorem 2. That is to say, there exist no adversaries that can
forge the valid signature with a non-negligible advantage. This
completes the proof of Theorem 3.

B. Performance

The performance of FairDynDSF is analyzed in terms of
theoretical analysis and empirical tests, by comparing with the
state-of-the-art solutions [29], [35], namely the Verifiable Key-
word Search with Fine-grained authorization control (VKSF)
scheme [29] and Fair Remote Retrieval (FRR) scheme [35].
Although the VKSF and FRR schemes allow PCS and DOM
to verify each other’s data, these schemes do not offer the
remedial solutions to eliminate the dispute concerns in the
dynamic update.

1) Theoretical analysis: As for the computation over-
head of theoretical analysis, we first focus on several time-
consuming operations including the pairing operation P, mod-
ular exponentiation operations E,ET in G,GT , hash operation
H which maps each arbitrary string to a random element in G.
It is worth noticing that another hash operation, which maps
each string of arbitrary length into Zp, is much more efficient
than above operations and then omitted in theoretical analysis.
To further analyze the storage overhead of FairDynDSF, we
define the element lengths in G, GT , Zp as |G|, |GT |, |Zp|,
respectively. Next, we compare the computation and storage
overhead of aforementioned three schemes in TABLE III.

It can be seen from the comparison in TABLE III, Fair-
DynDSF is superior to other two schemes in KeyGen, Trap
and Search algorithms in terms of computation and storage
overhead, note that the FRR scheme cannot offer keyword-
based ciphertext retrieval in Trap and Search algorithms. As
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TABLE III: Theoretical computation and storage analysis: A comparative summary

Algorithms VKSF [29] FRR [35] FairDynDSF
Computation costs Storage costs Computation costs Storage costs Computation costs Storage costs

KeyGen |U|(E + |S|E) |U|(|G| + |S||G|) 2E + |U|(E + |T |E) 2Θ1 + |U|(|T | + 1)Θ1 10E + |U|(P + E + ET ) |U|Θ2 + 2|Zp| + 10|G|
Enc ET + E(n + |N |) |GT | + (n + |N |)|G| |L|(H + 2E + P + ET ) |L|(|Zp| + |G|) (n + d + 2)E + Θ3 (n + 3)|G| + 2|GT | + dΘ1

Update — — — — 10P + 12H + 12E 10|GT | + 8|G|
Trap ET + lE |GT | + l|G| — — 2E |G| + |Zp|
Search lP l|GT | — — ET + P 2|GT |
Verify 4qP 4q|GT | 2qE + qH + 3P + E + ET (q + 1)|Zp| + |G| + 2|GT | 2qE + qH + 2P + E (2q + 1)|Zp| + |G| + 2|GT |
Dec q|S|(ET + P) q(|S| + 1)|GT | q|T |2E 3q|T ||Zp| + 2q|T ||G| t2qE 3qt|Zp| + qt|G|

Notes. Θ1 = |Zp| + |G|; Θ2 = |Zp| + |G| + |GT |; Θ3 = 2E + P + 2H + 2ET ;
“|U|”: Number of DUs; “|S|”: Number of DU’s attributes in the VKSF; “|T |”: Number of committees in the FRR; “|N |”: Number of leaf nodes in the access structure of
VKSF; “|L|”: Number of blocks in each record in the FRR; “d”: Number of DOs in FairDynDSF; “n”: Number of keywords in keyword set W ; “l”: Number of queried
keywords; “q”: Number of search results or challenging results; “t”: Thread number of DOs in FairDynDSF.
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Fig. 6: Practical performance analysis in various schemes.

the FRR does not need to build indexes according to keyword
set W in Enc, the ciphertexts generation time and cost in the
FRR is much less than those of VKSF and FairDynDSF. As
for result verification mechanism in Verify, which depends
on the number of returned results, FairDynDSF still does not
incur extra computation and storage costs. A number of DOs
have to conduct mutual authentications before delegating the
ciphertexts decryption permission to DU in Dec, which can
realize the flexible access control, but FairDynDSF has less
computation and storage costs when compared with the FRR
scheme. It is worth noticing that the VKSF just checks the
legitimacy of DU’s attributes without executing interactions
between multiple DOs as this scheme cannot be applied in

the multi-owner setting. In conclusion, FairDynDSF is feasible
according to its theoretical analysis.

2) Empirical Tests: Next, we demonstrate the actual per-
formance analysis by performing the empirical tests over real-
world Enron Email dataset4. Note that this public dataset has
a size of 422 MB and consists of about 517431 emails from
151 users distributed in 3500 folders. Besides, we conduct the
simulation on an Ubuntu Server 15.04 with Intel Core i5-7200
CPU 2.5 GHz by utilizing the C language as well as Paring
Based Cryptography (PBC) Library. In the process of experi-
ments, we select the Type A in PBC as E(Fq) : y

2 = x3 + x,
and let G,GT of order p be the subgroups of E(Fq), where

4http://www.cs.cmu.edu/∼enron/
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the lengths of p and q are defined as 160 bits and 512 bits,
respectively. For comparison, we set |S| = |T | = |L| = t = 5,
d = 9(2t − 1 ≥ d), |N | = 50, |U| = q = l ∈ [1, 50],
n ∈ [1, 1000] in the throughout paper.

In KeyGen, the VKSF outputs the secret key for each DU
with attributes S, while FRR and FairDynDSF also generate
secret keys for other entities (e.g., T committees in the FRR,
d DOs in FairDynDSF) except for DUs. Hence, we set |S| =
|T | = 5, d = 9 and vary the value of |U| from 1 to 50.
From Fig. 6a we notice that the key generation time linearly
increases with |U|. FairDynDSF scheme has less computation
cost than other two schemes as it just executes (P+E+ET )
for each DU, while the other two schemes need 6E for each
DU. With the same reason shown in Fig. 6a, FairDynDSF also
greatly reduces the storage cost of key generation in Fig. 6b.
For example, FairDynDSF mainly stores (|Zp|+|G|+|GT |) for
each DU, and the VKSF and FRR should store 6|G|, 6(|Zp|+
|G|), respectively.

To enable keyword-based ciphertexts search, VKSF and
FairDynDSF need to build indexes according to keyword
dictionary W . Thus, the computation and storage costs of
entire ciphertexts in VKSF and FairDynDSF are much more
than those of FRR due to n ≫ |L|. In here, we set |L| = 5 so
that FRR can accelerate the generation of proof information
or result verification. As shown in Fig. 6c, Fig. 6d, the
performance of Enc in VKSF and FairDynDSF for each record
linearly depends on the variable n ∈ [1, 1000], while that of
FRR remains nearly constant. Since the VKSF also creates the
ciphertexts for the leaf nodes in the specified access policy,
and DOM in FairDynDSF distributes the secret share for each
DO, FairDynDSF still outperforms the VKSF in terms of
ciphertexts generation time and storage overhead by setting
|N | = 50, d = 9. However, Enc can be implemented once
and for all, which cannot negatively impact the DUs’ search
experience.

As the FRR scheme does not offer keyword search function-
ality, we analyze the performance of Trap and Search in both
VKSF and FairDynDSF. It is apparent from Fig. 6e, Fig. 6f,
Fig. 6g, Fig. 6h that FairDynDSF has approximately constant
trapdoor generation and ciphertexts retrieval overhead, which
is a particularly important feature for the resource-limited IoT
devices. As the hash operation h : {0, 1}∗ → Zp in Trap and
modular multiplication operation in Search are much more
efficient than the concerned operations (i.e., P,E,ET ) in the
theoretical analysis, the computation costs of these two algo-
rithms in FairDynDSF remain nearly constant with the number
of queried keywords. For instance, FairDynDSF mainly needs
to execute 2E and P+ET to output the trapdoor and retrieve
encrypted EMRs of interest, no matter how many keywords
he queries. Besides, the storage costs of Trap and Search in
FairDynDSF are (|G|+ |Zp|), 2|GT |, respectively, which are
also not affected by the number of queried keywords. However,
the performance of these two algorithms in VKSF is affected
by the number of queried keywords (l ∈ [1, 50]) as the VKSF
cannot implement the multi-keyword search.

In Fig. 6i, Fig. 6j, we demonstrate the performance of result
correctness (or data integrity) verification in Verify, which
varies with the number of returned results (q ∈ [1, 50]). The

VKSF scheme takes about 4|P| to check the authenticity of
each search result by using the invertible Bloom lookup table
and Merkle hash tree, and both FRR and FairDynDSF need
about 2E+H to finish the same task. As H costs much more
time than E,P, these three schemes have approximately equal
computation overhead in Fig. 6i. However, both FairDynDSF
and FRR still have less storage overhead than VKSF. With
regard to the storage overhead in Verify, FairDynDSF and
FRR need about (2q + 1)|Zp|, (q + 1)|Zp|, respectively, but
the VKSF needs about 4q|GT |.

To decrypt the encrypted results, the DU in the VKSF
should gain the authorization from the DO by checking
whether his attributes satisfy the specified access policy,
which takes |S|(ET +P ) operations for each result. However,
FairDynDSF and FRR should undergo the interactive process
before gaining the encryption key. To decrypt search result
in Dec, the FRR must conduct |T |2E before each committee
obtains the encryption key, FairDynDSF should take t2E so
that the DU can restore the encryption key by gaining at least
t authorizations from DOs. Thus, the computation and storage
overhead of results decryption in VKSF is much less than
that of FRR and FairDynDSF, which is shown in Fig. 6k and
Fig. 6l. With supporting the multi-owner setting, FairDynDSN
needs to conduct extra t(t−1)E caused by interactions among
multiple DOs. Thus, the computation and storage overhead of
Dec in FairDynDSN is less efficient than that of VKSF. How-
ever, when applied in the single owner setting, FairDynDSN
is efficient than VKSF, and can achieve flexible access control
and threshold decryption privilege. When compared with the
FRR scheme, FairDynDSF has similar computation cost in
Fig. 6k, but has less storage cost in Fig. 6l, as the FRR needs
to store the additional q|T ||G| or qt|G|.

0 10 20 30 40 50
0

2

4

6

8

10
 

EM
R

 u
pd

at
e 

tim
e 

(s
)

Number of full-update operations

 Computation cost

0

24

48

72

96

120
 Storage cost

EM
R

 u
pd

at
e 

co
st

 (K
B)

Fig. 7: The performance of Update algorithm in FairDynDSF.

As both VKSF and FRR schemes cannot support dynamic
data update in Update, we just show FairDynDSF’s computa-
tion and storage costs of one full-update operation including
modification, insertion and deletion in Fig. 7, which almost
linearly grows with the number of full-update operations.
Note that FairDynDSF needs to execute 4P + 5H + 5E,
2P+2H+E for each modification (or insertion) operation and
each deletion operation, respectively. Besides, FairDynDSF
stores 4|GT | + 3|G|, 2|GT | + 2|G| when conducting one
modification (or insertion) and one deletion operation. When
dealing with the possible disputes between the DOM and the
PCS, the FAS first needs to verify the validity of exchanged
signatures in the current update. As for case 1 in Arbitrate,
FAS needs to execute 6P+(q+2)H+(2q+1)E to terminate
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TABLE IV: An example of actual tests in different datasets

Schemes VKSF [29] FRR [35] FairDynDSF
Computation costs (s) Storage costs (KB) Computation costs (s) Storage costs (KB) Computation costs (s) Storage costs (KB)

Datasets Enron NSF RFC Enron NSF RFC Enron NSF RFC Enron NSF RFC Enron NSF RFC Enron NSF RFC
KeyGen 1.58 1.51 1.63 147.41 139.23 154.37 1.63 1.61 1.74 41.43 38.23 47.32 0.80 0.76 0.89 13.16 12.94 13.87

Enc 6.71 6.54 7.02 147.42 132.49 151.36 0.23 0.19 0.25 1.85 1.82 1.93 5.61 5.57 5.63 129.12 121.38 135.28
Trap 0.18 0.16 0.19 36.68 34.58 40.12 — — — — — — 0.02 0.02 0.03 0.17 0.16 0.21

Search 0.29 0.25 0.32 6.85 6.62 7.13 — — — — — — 0.02 0.01 0.04 0.32 0.29 0.38
Verify 1.57 1.42 1.69 27.41 25.78 28.34 1.64 1.61 1.73 1.57 1.54 1.62 1.44 1.42 1.45 2.42 2.36 2.45

Dec 1.87 1.84 1.99 39.91 38.25 41.03 5.14 4.98 5.22 82.21 79.23 84.57 4.51 4.49 4.58 46.81 45.67 48.12

Notes. |S| = |T | = |L| = t = 5, d = 9, |N | = 50 throughout all algorithms; U = 50 in KeyGen; n = 1000 in Enc; l = 50 in Trap, Search; q = 50
in Verify, Dec.

this kind of disputes completely. About the other two cases
in Arbitrate, the FAS should conduct 12P+ 6H+ 3E to end
these kinds of disputes. However, in practice, these disputes
happen occasionally, or at least not very often. Hence, the fair
arbitration in FairDynDSF is still acceptable.

To further demonstrate the performance of FairDynDSN and
the other two schemes (i.e., VKSF, FRR, etc.) in other datasets
such as NSF dataset (National Science Foundation Research
Awards Abstract 1990-2003 dataset)5 and RFC dataset (Re-
quest For Comments database)6, we also perform a series of
experiments on these three datasets (i.e., Enron Email dataset,
NSF dataset, RFC dataset), which are shown in TABLE IV.
Although these results are different in three datasets, the
conclusion of performance comparison in Enron dataset is
consistent with those in NSF dataset and RFC dataset.

VI. CONCLUSION

With cloud-assisted IoE being increasingly popular, there is
a need to design cryptographic schemes that can be deployed
on a broad range of heterogeneous devices. Therefore, in this
paper, we proposed an efficient and practical FairDynDSF,
which supports result verification, dispute arbitration, dynam-
ic update, decryption authorization and expressive keyword
search simultaneously. In addition, FairDynDSF is also de-
signed to be resilient to data corruption attacks and sufficiently
lightweight for deployment on resource-constrained IoT de-
vices. The formal security analysis showed that FairDynDSF
is secure against inside KGAs, and the empirical examina-
tion using various datasets demonstrated that FairDynDSF is
practical and scalable in practice.

Future research includes improving the performance of
encryption and result verification, as well as implementing a
prototype of the improved framework in a real-world setting
for further evaluation.
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