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Abstract:  

Benefiting from the advancement of algorithms in massive data and powerful computing 

resources, deep learning has been explored in a wide variety of fields and produced 

unparalleled performance results. It plays a vital role in daily applications and is also subtly 

changing the rules, habits, and behaviors of society. However, inevitably, data-based learning 

strategies are bound to cause potential security and privacy threats, and arouse public as well 

as government concerns about its promotion to the real world. In this article, we mainly focus 

on data security issues in deep learning. We first investigate the potential threats of deep 

learning in this area, and then present the latest countermeasures based on various underlying 

technologies, where the challenges and research opportunities on offense and defense are also 

discussed. Then, we propose SecureNet, the first verifiable and privacy-preserving prediction 

protocol to protect model integrity and user privacy in DNNs. It can significantly resist 

various security and privacy threats during the prediction process. We simulate SecureNet 

under a real dataset, and the experimental results show the superior performance of 

SecureNet for detecting various integrity attacks against DNN models. 
 

Introduction  

Similar to biology, deep learning attempts to imitate humans to think, analyze, and make decisions 

through continuous training based on a complex topology between neurons. Benefiting from the rich 

computing resources, deep learning has shown remarkable performance in autonomous driving [1], 

wireless communication systems [2] and other daily activities of society [3]. For example, by using 

the massive datasets generated in the wireless network environment, deep learning can be exploited to 

solve many problems in wireless communication systems, such as decision making [2], resource 

optimization, and network management [4]. Google has also embedded a deep-learning-based vehicle 

identification algorithm in autonomous driving. Its onboard laser detection device can accurately 

identify obstacles such as pedestrians, trains, and vehicles, and calculate the buffer distance and the 

best route in real time. Undoubtedly, the enormous potential of deep learning has fueled its extensive 

research, and made it one of the hottest topics in both academia and industry.  

To facilitate automated deep learning, many well-known companies (e.g., Google, Microsoft, and 

Amazon) provide cloud-assisted machine learning services, usually called machine learning as a 

service (MLaaS). MLaaS provides a range of customized training and prediction services that only 

require users to upload local data. However, outsourced deep learning also brings about various 

privacy and security concerns. As mentioned above, while configuring deep learning and enjoying 
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feedback more conveniently, outsourcing data to untrusted third parties (e.g., a cloud server) puts 

users’ private data at risk. Intuitively, once data is contributed or outsourced to a third party, the data 

owner will no longer be able to control its utilization as a deposed person. On the other hand, various 

attacks have been constructed to pose a long-term danger to deep-learning-based frameworks. For 

example, in a deep neural networks (DNNs) trojan attack [5], the adversary can subtly modify the 

target model to induce the model to erroneously classify predefined inputs. Such attacks have 

occurred in public transportation places with dense traffic, such as airports, train stations, and 

terminals [1, 6], where the adversaries can obtain illegal entry by launching DNN trojan attacks on the 

face system placed at the inspection port.  

Recently, for the weaknesses of deep learning, some results [5, 6] have demonstrated that customized 

attack against the target model can efficiently undermine the data integrity and availability. On 

addressing these issues, several defense mechanisms have also been designed for different scenarios. 

However, the research in this area is still in its infancy. To alleviate these problems, in this article, we 

first investigate recent works on data security associated with deep learning. Then, to protect the data 

integrity and privacy in outsourced prediction services, we propose SecureNet, the first verifiable and 

privacy-preserving protocol to protect model integrity and user privacy in DNNs. Compared to 

existing models, SecureNet is generalized and can be used for all types of neural network structures 

without any additional hyper-parameter assumptions. Moreover, SecureNet is also the first practical 

solution that can guarantee the confidentiality of all user-related private data during the prediction 

process, while supporting verification of the integrity of a model’s parameters outsourced to an 

untrusted server. Extensive experiments also show the superior performance of SecureNet for 

detecting various integrity attacks against DNN models. 

 

Deep Learning  

Clearly, DNNs are the underlying structure behind the success of deep learning. As described in Fig. 

1, traditional DNNs generally consist of an input layer, one or more hidden layers, and an output 

layer, where each circle represents a neuron associated with an activation function. Traditional 

activation functions have sigmoid, ReLU, and softmax. Typically, with the input data, the neural 

network will output the predicted value after applying linear transformations and nonlinear activation 

functions repeatedly in one or more hidden layers (i.e., feedforward stage). Then, given the real label, 

the task of DNNs is to minimize the value of the loss function between the real label and its 

corresponding predicted result for optimal parameter configuration (this process is called 

Backpropagation). The Stochastic Gradient Descent (SGD) algorithm is usually used to find optimal 

parameters due to its relative efficiency compared to other methods. As illustrated in Fig. 1, the DNN 

is trained by iteratively executing feedforward and backpropagation until the accuracy of the model’s 

output meets the predefined accuracy range. After that, the DNN is used to provide predictive 

services, at which point the user inputs data and only explores feedforward to get the predicted results.  

Based on the type of training sample, deep learning can be divided into supervised learning and 

unsupervised learning. In general, supervised learning uses labeled samples (associated with output 

values) to achieve tasks such as classification and regression based on those existing output values. 

Conversely, training samples adopted in unsupervised learning are not labeled, and the target of this 

type of learning is always to find the structure of data (e.g., clustering). In this article, we focus on 

supervised learning under DNNs. On the other hand, deep learning can be also divided into two types 

by two types of training. 

Centralized Training: The server interacts with the users to get their local data (training samples). 

Then it builds an initialized global model in the cloud and iteratively updates the model to obtain the 

optimal parameters.  
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Collaborative Training: Collaborative training is also known as distributed, federated, or 

decentralized training. Each user has a unified local model that has been agreed upon in advance. 

Then each user optimizes the local model by exchanging parameters with the server frequently. 

 

Figure 1: General DNN training process 

 

Threats 

In this section, we investigate the data security attacks to deep-learning-based systems (listed in Table 

1). Concretely, data security attacks are committed to destroying the data integrity or availability, so 

as to undermine the training process or make the model output abnormal results. For example, studies 

have shown that adversaries can fool the autopilot system by interfering with the sensor [2]. Imagine 

if someone can tamper with the autopilot model to some extent with the sample, which can lead to 

passenger death.  

 

Table 1: Attacks against data security in deep learning 

 

As with the workflow phase, the attack scenario is subject to change depending on the prior 

knowledge acquired by the attacker on the target model. If the adversary model has full access rights 

to all information of a model, such as model architecture, parameter details, and training data, it will 

show a high attack success rate, but is rare in reality. Conversely, if the adversary has limited access 

rights, such as only to the model’s predictive interface, it is hard to attack and may require alternative 
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methods such as substitute model or data. Therefore, based on the access authority of adversaries to 

the DNN model, two types of attackers are considered in our article, that is, black-box attacker and 

white-box attacker.  

Black-Box Attacker: A black-box attacker can make prediction queries on the DNN model, but it is 

prohibited from accessing the model’s internal information such as parameter configuration, 

optimization procedures, and training sets.  

White-Box Attacker: A white-box attacker, in addition to having access to the query function, can 

acquire much more information including the DNN model description, architecture, and some training 

samples. Obviously, white-box attackers are more powerful than black-box attackers. However, due 

to the inaccessibility of target model information, the latter tends to be a more realistic assumption. 

In terms of attacks against data security, such as data integrity and availability, we mainly discuss two 

major attacks at different stages of deep learning: poisoning attack and evasion attack. In the 

following subsections, we describe the definition and research progress in these two types of attacks 

in detail. 

 

Poisoning Attack 

The goal of the poisoning attack is to destroy the availability of the output during the training process, 

thus making DNNs perform poorly in the subsequent prediction service. Its main method is to mislead 

the network to make incorrect predictions by carefully crafting poisoning samples (also called 

adversarial examples). Following the logic flow ahead, we also analyze the effects of the poisoning 

attack in the cases of the black-box attacker and white-box attacker, respectively.  

Black-Box Attacker: In the poisoning attack, the black-box adversary is only allowed to inject a small 

portion of samples into the training process without the authority to access the model and training 

process. In general, a good poisoning attack satisfies three constraints in the case of black-box 

accession:  

• There is nothing to know about the model.  

• Only a small amount of custom training data is allowed to be injected.  

• Poisoning samples are hard for humans to detect. 

For instance, Jagielski et al. [5] first considered investigating attacks against linear regression under 

black-box access to the training model. By optimizing traditional classification-based attack 

algorithms, they proposed a theory-based optimization framework for adjusting regression models, 

and designed a fast attack algorithm only requiring limited knowledge. Suciu et al. [7] proposed 

StingRay, a targeted poisoning attack that overcame the limitations of prior attacks. StingRay 

systematically outlined the minimum prior knowledge required by the adversary under different attack 

goals, and gave a very effective black-box attack even if the target model is protected by existing 

defense mechanisms. 

White-Box Attacker: In a poisoning attack, a white-box attacker has powerful access rights to the 

model’s parameters, architecture, and training details, and can use this information to carefully 

construct poisoning samples. For example, Yuan et al. [8] presented a perfect-knowledge (PK) attack 

under various scenarios. Although the PK attack scenario is an unrealistic setting, the results show 

that it is nearly five times more accurate than a normal black-box attack. Suciu et al. [7] also proposed 

a poisoning attack with black-box access to the target model, which is effective against four real-

world classification tasks, and can bypass the detection of two existing mainstream anti-poisoning 

defenses. Jagielski et al. [5] designed a poisoning attack against linear regression models. They first 
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used an existing poisoning attack as a basic regression attack model. After that, an optimization 

framework for poisoning attacks against regression tasks was designed, in which the objective 

function, initialization strategy, and optimization variables can be selected to maximize the impact of 

attacks on targeted models and datasets. 

 

Evasion Attack 

An evasion attack is often used during the prediction process, which misleads the DNN model into 

predicting an incorrect label by carefully adding noises to the real samples. From a geometric point of 

view, the purpose of an evasion attack is to move a real sample from one class to another by 

destroying the integrity of the original sample. Similarly, we also analyze the effects of the evasion 

attack in the cases of black-box attacker and white-box attacker, respectively.  

Black-Box Attacker: In evasion attack, the black-box attacker has no information about the training 

samples and the targeted model. The information available is only the format of the training data and 

the output of the model. In the real world, it is not easy to access an already trained model or training 

set. Although there is a large amount of public data (images, sounds, videos, etc.), the internal data 

used to train the industrial model is still confidential. Also, an attacker cannot access models 

contained in the mobile device. Therefore, the ability of a blackbox attacker is in line with reality. For 

example, Kwon et al. [9] proposed an evasion attack on a speech recognition system that generates 

selective audio adversarial examples to move a real sample from one class to another. Experiments 

also show that their selective audio adversarial examples can achieve an attack success rate of at least 

91.67.  

White-Box Attacker: In evasion attack, the white-box attacker, in addition to having access to the 

predictive interface, can acquire much more information including the DNN model description, 

architecture, and some training samples. For example, Kevin Eykholt et al. [6] have shown that the 

most advanced DNNs are vulnerable to such attacks even if small noise perturbations are added to the 

input. They further proposed Robust Physical Perturbations (RP2), a general attack algorithm to create 

robust visual adversarial perturbations under different physical conditions. Testing results 

demonstrated the high targeted misclassification rate in the road signal classification scenarios. 

Similarly, in view of the existing defense methods using defensive distillation technology, Carlini et 

al. [10] designed three new attack algorithms to prove that defensive distillation does not significantly 

increase the robustness of neural networks. 

Challenges and Opportunities: White-box attacks appear to be very effective, and often bypass most 

defense mechanisms. However, since adversaries need to access the DNN model description, 

architecture, and training samples, it is not easy to implement a white-box attack in reality. For 

example, in collaborative training, each user only shares its local parameters to the server without 

revealing its local dataset. In this case, it is difficult for the adversary to obtain the user’s training 

samples by only analyzing the shared gradients. Black-box attacks consider weaker adversary models. 

However, to obtain more information, an effective black-box attack has to interact with the target 

model multiple times, which inevitably increases the communication overheads. More seriously, 

multiple interactions with the target in violation of common sense will also put the adversary’s 

identity at high risk. Therefore, this is a direction worth studying to design an effective attack that fits 

the realworld scenario. 
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Countermeasures 

There are many approaches proposed for resisting various threats of deep learning. In this section, we 

also discuss the existing defense methods for poisoning and evasion attacks, respectively (listed in 

Table 2). 

 

Table 2: Protection approaches for data security in deep learning 

 

Defense against Poisoning Attack 

In general, one of the main ways to defend against poisoning attacks is to design efficient detection 

mechanisms, which can rapidly detect abnormal samples and eliminate these poisoned data during 

training. For example, Koh et al. [11] first used influence functions to trace and explain the correlation 

between prediction and training sets. They demonstrated that the influence functions can be widely 

used for malicious data detection in poisoning attacks even in nonconvex and non-differentiable 

models. Steinhardt et al. [12] proposed a defense scheme by constructing approximate upper bounds 

on the loss across a broad family of attacks. Further, they designed two efficient defense strategies 

called sphere defense and slab defense to remove outliers (i.e., data suspected of being injected by the 

adversary) that are outside the applicable set. In this way, the false data in the DNN model can be 

effectively detected and filtered. Xu et al. proposed VerifyNet [13]. It uses key sharing protocols to 

protect the integrity of training samples, thereby preventing malicious adversaries from tampering 

with training samples and calculation results. 

 

Defense against Evasion Attack 

In terms of evasion attack, the current mainstream direction is to design an approach effectively 

verifying the integrity of the target model. For example, Ghodsi et al. [14] proposed SafetyNets, a 

data integrity verification framework that can detect whether a malicious cloud server implements an 

evasion attack by modifying the pre-agreed protocol. Specifically, to achieve end-to-end verifiability, 

they used a specialized interactive proof (IP) protocol to verify the results of activation layers, and 

Thaler’s IP protocol [14] for matrix multiplication. He et al. [15] exploited Sensitive-Samples as 

fingerprints of DNN models to check the integrity of results returned from the server, even with 

black-box access rights. They claimed that the Sensitive-Samples-based methodology is very sensitive 

to changes in parameters, where even small misrepresentations are difficult to escape. 
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Figure 2: System model 

 

Figure 3. Example of verifying the model integrity through sensitive samples 

 

Challenges and Opportunities: Several secure approaches [12, 14] have been successively proposed 

to alleviate the effects of poisoning and evasion attacks. However, these schemes either support few 

activation functions or require unrealistic prior knowledge. Also, due to the flexibility of the attack, it 

is difficult for existing defense methods to effectively detect highly concealed attacks, such as target 

poisoning and evasion attacks. Moreover, no solution has been proposed to support both verifiability 

and data privacy protection in the outsourced prediction process. Specifically, in outsourced 

prediction services, once a user outsources its model to the server, it may return incorrect results to 

users by tampering with the model’s parameters. Besides, it is possible that the server abuses the 

user’s model parameters, and even exploits the inference service to collect the user’s sensitive data. 

While some generalized techniques such as arithmetic circuits can be applied to protect the model’s 

integrity during an outsourced prediction process, the huge overhead in the implementation process 

leaves them stuck in the theoretical stage. Recently, trusted hardware such as SGX and TrustZone are 

also being adopted to provide trusted execution environments (TEEs) for deep learning. However, in 

addition to increasing operating costs, trusted hardware alone does not achieve the dual goals of data 

privacy and model integrity. Hence, it is worthwhile to delve into designing a lightweight learning 

framework that can protect both data security and privacy in DNNs. 
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Example Scheme to Deal with some of the Proposed Challenges 

As discussed above, there are many attacks in deep learning. In this section, we propose SecureNet as 

an example that only focuses on the verifiability and data privacy protection in the outsourced 

prediction process. It is worth emphasizing that our SecureNet is the first verifiable and privacy-

preserving prediction protocol to protect the model’s integrity and user’s privacy in DNNs. To present 

our model details in an easy-to-understand way, in the following sections we first describe the system 

model and designed goals considered in our protocol. Then we describe the technical details of our 

SecureNet. 

 

System Architecture and Designed Goal 

As shown in Fig. 2, our SecureNet consists of two generic entities, a user and a cloud server. To 

achieve automated outsourcing prediction services, the user first outsources its DNN model to the 

server. As described in Fig. 2, the w denotes the parameters of DNNs, and x represents the variable of 

input. Please note that we do not make any assumptions about the DNN training process, which 

means that the user can obtain the DNN model by training locally or get it from open source 

resources. After receiving the DNN model from the user, the server allocates resources for this model 

and releases the application programming interface (API) for prediction. In the end, the user submits 

the query request (e.g., classification and regression task) to the server and receives the predicted 

results. 

However, the outsourced prediction service also brings about several security and privacy issues 

(shown in the red font in Fig. 2). Specifically, once a user outsources its DNN model to the server, a 

malicious adversary may intentionally tamper with the model’s parameters for obtaining certain 

benefits. For example, face recognition has been widely used in monitoring systems in large public 

places. To bypass the recognizer or make it malfunction, the adversary would seek to modify the 

model parameters without being noticed. On the other hand, once the user uploads the local model to 

the server, it is possible that the server abuses the user’s model parameters and even exploits the 

prediction service to collect the user’s sensitive data, such as query requests and predicted results. 

Therefore, the goal of our SecureNet is to provide secure and privacy-preserving prediction service. 

To achieve this, we first transform the complex nonlinear activation functions (e.g., Sigmoid and 

ReLU) of DNNs into polynomials. Then leveled homomorphic encryption (LHE) is used to encrypt 

all user-related private data. In the end, we generate generic Sensitive-Samples to verify the integrity 

of parameters outsourced to the server. In the following sections, we describe these technologies used 

in our SecureNet in detail. 

 

Privacy-preserving Prediction based on LHE 

We know that homomorphic encryption, SMC, and differential privacy are three main underlying 

structures exploited to protect data privacy in deep learning. However, in the outsourced prediction 

process, since we only require the server to execute the prediction program of DNNs without sharing 

secrets, SMC is not suitable for our application scenarios. Similarly, the statistical operation is not 

involved in the prediction process; hence, the use of differential privacy technology will inevitably 

lead to errors that are difficult to offset. Fully homomorphic encryption (FHE) is a potential solution. 

However, as discussed before, it leads to huge computational overheads. To address the above 

problems, we exploit LHE in our SecureNet to encrypt users’ private data. LHE is more efficient than 

FHE, but only supports limited addition and multiplication in the ciphertext. This shortcoming makes 

it impossible for LHE to calculate complex activation functions such as ReLU, Sigmoid, and Tanh 
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under ciphertext. To combat that, we adopt a function approximation algorithm to convert nonlinear 

activations to polynomials. Based on the Weierstrass approximation theorem, we can prove that most 

of the activation functions existing in DNNs can be approximated by polynomials. Hence, in 

SecureNet, the original DNN model first will be transformed into another model that only contains 

addition and multiplication operations. Then the transformed model will be encrypted by LHE and 

sent to the cloud. In the end, the user submits an encrypted query request (encrypted by LHE) to the 

server and receives the ciphertext results. 

 

Verify Model Integrity through Sensitive-Samples 

We have adopted LHE to protect the privacy of user data such as the model’s parameters, users’ query 

requests, and predicted results in the outsourcing prediction process. However, Fig. 2 shows that the 

adversary can still change the original model to a targeted model by tampering with the parameter O, 

thus to launch data integrity attacks. To address this problem, our main idea is to generate a small set 

of test samples (denoted as Sensitive-Samples) to check whether the adversary has changed the 

original model. Specifically, by solving the optimization problem, we first generate a set of Sensitive-

Samples that are very sensitive to model parameter changes. Then, as shown in Fig. 3, we submit 

these Sensitive-Samples to the cloud and obtain the corresponding outputs (e.g., classification results). 

By comparing the outputs under the outsourced model with the outputs of the original model, the user 

can verify whether the outsourced model is intact or modified. 

Summary: Based on the above description, we claim that our SecureNet can provide secure and 

privacy-preserving prediction service. Concretely, we first transform the complex nonlinear activation 

functions of DNNs into polynomials. Then we adopt LHE to support privacy-preserving prediction. In 

the end, we generate generic Sensitive-Samples to verify the integrity of parameters outsourced to the 

server. 

 

Performance Evaluation 

We perform our simulation experiments on the MNIST database (http://yann.lecun.com/exdb/ mnist/), 

which holds a test set of 10,000 examples and a training set of 60,000 examples. For simplicity, all 

experiments were done under a convolutional neural network (CNN), which has two fully connected 

layers, one pooling layer, and two convolutional layers. 

In theory, our Sensitive-Samples are generic and resistant to diverse data integrity attacks. To evaluate 

the detection accuracy, in our experiments, we consider four common integrity attacks in the 

outsourcing prediction process.  

Neural Network Trojan Attack (NNTA [6]): The adversary can replace the selected parameters 

with Trojans. This allows the outsourced model to return the correct results for normal inputs, while 

returning the results desired by the adversary for inputs containing Trojans.  

Targeted Poisoning Attack (TPA [5]): To make DNNs misclassify the inputs to targeted outputs, a 

malicious server can retrain outsourced models using carefully prepared training samples.  

Model Compression Attack (MCA): To reduce the cost, a malicious server can compress the 

original model to a simple model without significantly changing its prediction accuracy.  

Arbitrary Weights Modification (AWM): This is very understandable: an adversary (e.g., in the 

cloud) can change any parameter of the outsourced model. 
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As shown in Table 3, we consider the case of a server returning Top-k (k = 1, 3, 5) classification 

labels to users. Since we only have the black-box way to access the outsourced model, the less 

information included in outputs (from Top-5 (most) to Top-1 (least)), the harder it is to detect 

tampering using Sensitive-Samples. Our sensitive samples can detect model tampering with high 

accuracy (> 87.3 percent), even returning Top-1 result, and the model changes can be completely 

detected if the server returns the Top-3 ciphertext results to the user. Hence, based on the results of 

Table 3, we demonstrate that our SecureNet is resistant to diverse data integrity attacks. 

 

Table 3: Detection accuracy of our SecureNet with different attacks 

 

Conclusion 

In this article, we have investigated the research status on data security issues in deep learning and 

explored some of the challenges that need to be addressed. On the basis of previous studies, we have 

also extracted several future research opportunities that deserve to be explored in depth. In the end, 

we propose SecureNet as an example to protect the model’s integrity and the user’s privacy in DNNs. 

As the core of our future work, we are committed to improving the efficiency of SecureNet, including 

reducing the communication and computation overhead of the detection and encryption process. 
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