
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2018

Delta debugging microservice systems Delta debugging microservice systems

Xiang ZHOU

Xin PENG

Tao XIE

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Wenhai LI

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Citation Citation
ZHOU, Xiang; PENG, Xin; XIE, Tao; SUN, Jun; LI, Wenhai; JI, Chao; and DING, Dan. Delta debugging
microservice systems. (2018). 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018), Corum, Montpellier, France, September 3-7.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4656

This Conference Paper is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Xiang ZHOU, Xin PENG, Tao XIE, Jun SUN, Wenhai LI, Chao JI, and Dan DING

This conference paper is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4656

https://ink.library.smu.edu.sg/sis_research/4656

Delta Debugging Microservice Systems

Xiang Zhou∗
Fudan University

China

Xin Peng∗†
Fudan University

China

Tao Xie
University of Illinois at
Urbana-Champaign

USA

Jun Sun
Singapore University of Technology

and Design
Singapore

Wenhai Li∗
Fudan University

China

Chao Ji∗
Fudan University

China

Dan Ding∗
Fudan University

China

ABSTRACT
Debugging microservice systems involves the deployment and ma-
nipulation of microservice systems on a containerized environment
and faces unique challenges due to the high complexity and dy-
namism of microservices. To address these challenges, in this paper,
we propose a debugging approach for microservice systems based
on the delta debugging algorithm, which is to minimize failure-
inducing deltas of circumstances (e.g., deployment, environmental
configurations) for effective debugging. Our approach includes
novel techniques for defining, deploying/manipulating, and exe-
cuting deltas following the idea of delta debugging. In particular,
to construct a (failing) circumstance space for delta debugging to
minimize, our approach defines a set of dimensions that can affect
the execution of microservice systems. Our experimental study
on a medium-size microservice benchmark system shows that our
approach can effectively identify failure-inducing deltas that help
diagnose the root causes.

CCS CONCEPTS
• Software and its engineering → Cloud computing; Soft-
ware testing and debugging;

KEYWORDS
Microservice, Delta Debugging, Testing

∗X. Zhou, X. Peng, W. Li, C. Ji, and D. Ding are with the School of Computer Science and
Shanghai Key Laboratory of Data Science, Fudan University, China and the Shanghai
Institute of Intelligent Electronics & Systems, China.
†X. Peng is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3240730

ACM Reference Format:
Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding.
2018. Delta Debugging Microservice Systems. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering (ASE
’18), September 3–7, 2018, Montpellier, France. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3238147.3240730

1 INTRODUCTION
Beyond the implementations of individual microservices, many fail-
ures of microservice systems are due to their runtime environments
(e.g., containers), communications, or coordinations [19]. Therefore,
debugging a failure in microservice systems faces unique challenges
due to the high complexity and dynamism of microservices in four
dimensions: node, instance, configuration, and sequence. First, nu-
merous microservice instances run on a large number of nodes (e.g.,
physical or virtual machines) and the distribution of microservice
instances over nodes is constantly changing, bringing great uncer-
tainties to microservice communication. Second, the instances of a
microservice may be in inconsistent states and thus behave differ-
ently. Third, microservice systems involve complex environmental
configurations such as memory/CPU limits of microservice and con-
tainers, and improper or inconsistent environmental configurations
may incur runtime failures. Fourth, microservice invocations are
executed or returned in an unexpected sequence due to the use
of asynchronous invocations (via REST invocations or message
queues).

To address the preceding challenges, in this paper, we propose
an approach for debugging microservice systems, based on repre-
senting microservice system settings as circumstances (specified
from various dimensions) such as multi-node and multi-instance
deployment. Such representation enables us to conduct delta debug-
ging [18], a technique for simplifying or isolating failure causes (e.g.,
searching for minimum failure-inducing circumstances) among all
circumstances. During delta debugging, a series of delta testing
tasks are created to run the test cases with different circumstances.
Our experimental study on a medium-size openmicroservice bench-
mark system [19] shows that our approach can effectively identify
failure-inducing deltas that help identify the root causes.

https://doi.org/10.1145/3238147.3240730
https://doi.org/10.1145/3238147.3240730

ASE ’18, September 3–7, 2018, Montpellier, France Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding

2 BACKGROUND
Our work is enabled by recent advances in infrastructures and
runtime management of microservices. Such advances allow us to
manipulate the runtime deployment, configuration, and interac-
tions of microservice systems as required to test the target system
with different settings.

Industrial microservice systems usually rely on runtime infras-
tructures for automating deployment, scaling, and management.
Kubernetes [9] is the most widely used runtime infrastructure for
microservice systems. It supports the configuration management,
service discovery, service registry, and load balancing of microser-
vice systems.

The rise of cloud native applications such as microservice-based
ones promotes the introduction of service mesh [11] as a separate
layer for handling service-to-service communication. Istio [8] is
the most recognized implementation of service mesh for microser-
vices. It supports managing traffic flows between microservices,
enforcing access policies, and aggregating telemetry data. Istio can
be deployed on Kubernetes. They are combined to provide the re-
quired infrastructure for the runtime management of microservices
in our work.

3 APPROACH OVERVIEW
Our delta debugging approach for microservice systems can be
used when a set of test cases are executed on a microservice system
using the same configuration, and at least one of the test cases fails.
The approach needs to be run on a containerized environment, al-
lowing the approach to test the target systemwith different settings.
Figure 1 shows an overview of the approach.

The approach includes an infrastructure layer (gray boxes) that
automates the deployment and manipulation of microservice sys-
tems. The infrastructure layer is built on existing container orches-
tration platforms (e.g., Kubernetes) and service mesh platforms
(e.g., Istio) for microservices. We develop an infrastructure wrap-
per to provide easy-to-use APIs for applying our delta-debugging
approach.

Based on the infrastructure layer, the approach takes as input
a set of test cases (including a failing one and some passing ones)
and a failure-inducing circumstance, and returns a minimum set of
deltas that cause the failure. In particular, a circumstance is defined
based on various dimensions (see Section 4.1). The failure-inducing
circumstance is the circumstance extracted from the execution
of the failing test case. The returned deltas specify a minimum
set of differences on the failure-inducing circumstance that can
change the testing result of the failing test case and at the same time
maintain the testing results of the passing test cases. The approach
includes three components: the delta debugging controller, task
scheduler, and task executor.

Delta Debugging Controller. The delta debugging controller
controls the whole delta debugging process. It first confirms that
the failing test case can pass with the simplest circumstance, the
one where the value of each dimension is the simplest setting. It
then uses the delta debugging algorithm to iteratively search for a
minimum set of deltas of the simplest circumstance to make the test
case fail. During the process, the controller tests a series of delta sets
and for each delta set it creates a delta testing task that runs the test

Figure 1: Approach Overview

cases with the circumstance obtained by applying the delta set to
the simplest circumstance. To optimize the delta debugging process,
the controller dynamically determines the delta testing tasks that
need to be executed, and notifies the task scheduler (described next)
to add or revoke tasks.

Task Scheduler. The task scheduler schedules the execution
of delta testing tasks based on the availability of infrastructure
resources (e.g., virtual machines). It maintains a queue of delta
testing tasks, and adds or revokes tasks according to notifications
from the delta debugging controller. The scheduler monitors the
resource availability of the infrastructure and schedules tasks to
execute when the required resources are available.

Task Executor. The task executor executes a scheduled delta
debugging task on the infrastructure. The executor uses the in-
frastructure APIs to deploy the target system with the allocated
resources and set the environmental configurations and interac-
tions of involved microservices according to the given circumstance.
Then the executor runs the test cases and returns test results for
further analysis.

The delta debugging controller is the key of the approach and is
presented in details in Section 4.

4 DELTA DEBUGGING CONTROLLER
Our delta debugging approach for microservice systems is designed
to address unique characteristics of microservices. In particular, the
circumstances (each of which is specified from five dimensions) and
corresponding deltas considered in our approach reflect the deploy-
ment, environmental configurations, and interaction sequences of
microservices.

4.1 Dimensions
In general, delta debugging determines circumstances that are rel-
evant for producing a failure [18]. For a microservice system, the
relevant circumstances include not only the inputs but also the
deployment, environment, and interactions of microservices. A
circumstance can be specified from the following five dimensions.

• Node. The node dimension specifies the number of nodes
(e.g., physical or virtual machines) that can be used by the
target system. The more nodes that are provided, the more
distributed the instances of the same microservice are. The
distributed deployment of the instances of a microservice
leads to uncertainties in the network communications with

Delta Debugging Microservice Systems ASE ’18, September 3–7, 2018, Montpellier, France

the microservice, thus incurring failures caused by unex-
pected network failures or timeout.
• Instance. The instance dimension specifies the number of
instances of a microservice. Some microservices have explic-
itly or implicitly defined states. For example, a microservice
may store some critical variables in local or remote cache.
Without proper coordination, different instances of the same
microservice may be in inconsistent states, thus causing
failures.
• Configuration. The configuration dimension specifies the
environmental configurations of a microservice, such as the
network configurations and resource (e.g., memory, CPU)
limits of microservices or containers. For example, inconsis-
tent configurations of the memory limit of a microservice
instance and that of a container where the instance resides
may cause the instance to be killed when its memory usage
exceeds the memory limit of the container.
• Sequence. The sequence dimension specifies the execution
and returning sequence of microservice invocations. For a se-
ries of asynchronous invocations, the sequence of execution
and returning of the invoked microservices is often varying
and not consistent with the sequence of requesting. With-
out proper coordination, the asynchronous invocations may
incur unexpected sequences of microservice execution or
returning, which in turn cause failures.
• Input. The input dimension determines the input of a mi-
croservice system. Its influence on a microservice system is
similar to the influence of input on an ordinary C program.

Currently we focus on the first four dimensions for reflecting
a microservice system’s characteristics. The input dimension can
be handled in a way similar to the original delta debugging ap-
proach [18]. A circumstance is a specific combination of the four
dimensions involved in test execution. The differences between two
circumstances are the deltas. The purpose of delta debugging is to
isolate the minimum set of failure-inducing deltas with reference to
the simplest circumstance. Table 1 shows the values of each dimen-
sion in its simplest setting and its general setting. For the first three
dimensions, the simplest setting is 1 or the default value, and the
general setting can be the values from the given failure-inducing
circumstance (i.e., the circumstance derived from the given failing
test case). For example, a microservice has 5 instances in the given
failure-inducing circumstance, and then its instance number is 1
in the simplest setting and the general setting can be 5. For the se-
quence dimension, the execution and returning sequence of a series
of asynchronous invocations is exactly the requesting sequence of
the invocations in the simplest setting, and the general setting can
be any other sequences of the invocations. For example, if three
microservices are invoked asynchronously in a sequence of S1, S2,
S3, then their execution and returning sequence in the simplest
setting is also S1, S2, S3, and the general setting can be any other
sequence of S1, S2, S3 (e.g., S3, S2, S1).

4.2 Circumstance and Delta Representation
A circumstance is represented as a bit vector that includes one or
multiple bits to specify what value to adopt for each dimension. For
the node dimension, a bit is used to indicate the number of nodes of

Figure 2: Representation of Execution/Returning Sequence

the whole system: 0 for adopting the simplest setting (i.e., only one
node) and 1 for adopting the number of nodes in the given failure-
inducing circumstance. For the instance dimension, multiple bits
are used each indicating the number of instances of a microservice:
0 for adopting the simplest setting (i.e., only one instance) and 1 for
adopting the number of instances of the microservice in the given
failure-inducing circumstance. For the configuration dimension,
multiple bits are used each indicating the value of a configuration
item: 0 for adopting the simplest setting (i.e., the default value being
predefined) and 1 for adopting the value of the configuration item
in the given failure-inducing circumstance.

For the sequence dimension, multiple bits are used to represent
the execution/returning sequence of a series of asynchronous invo-
cations, and each bit indicates the order of a pair of invocations: 0
(1) for the order that the first (second) invocation is executed and
returned before the second (first) one. Therefore, for n asynchro-
nous invocations, C2

n bits are needed to represent the setting of
execution/returning sequence. Figure 2 shows an example of the
representation of execution/returning sequence. In this example, a
microserviceMS1 asynchronously invokes a series of microservice
MS2, MS3, MS4, and MS5, and 6 (C2

4) bits are used to capture the
execution/returning sequence of these invocations. If the four mi-
croservices are invoked in the order shown in Figure 2, the simplest
setting of execution/returning sequence for this series of asynchro-
nous invocations is [0, 0, 0, 0, 0, 0] based on the pairs defined in
the figure. Note that some value combinations of the bits are in-
valid as these combinations imply cycles in the relative orders of
microservice invocations. For the example shown in Figure 2, [0, 1,
0, 0, 0, 0] is an invalid execution/returning sequence as there is a
cycle amongMS2,MS3, andMS4.

Based on the representation, the simplest circumstance (i.e., the
one with each dimension in the simplest setting) can be represented
by a bit vector where each bit is set to 0. Thus, an atomic delta based
on the simplest circumstance can be represented by a change from
0 to 1 for a bit of the vector, and the purpose of our delta debugging
process is to find a minimum set of atomic deltas that cause the
failure of a test case.

Note that the representations of the first three dimensions (i.e.,
node, instance, configuration) can be refined to represent more
values. For example, the number of nodes can be any value be-
tween 1 and the number of nodes in the given failure-inducing
circumstance. To reduce the high cost of delta debugging, we con-
sider only the simplest setting and the general setting from the
given failure-inducing circumstance. This strategy can reveal criti-
cal deltas in many cases. Note that for the sequence dimension, our
representation can cover all the possible execution and returning
sequences.

ASE ’18, September 3–7, 2018, Montpellier, France Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding

Table 1: Values of Different Dimensions in a Circumstance
Dimension Target Simplest Setting General Setting

Node the whole system 1 the number of nodes in the given failure-inducing circumstance
Instance a microservice 1 the number of its instances in the given failure-inducing circumstance

Configuration a configuration item the default value its value in the given failure-inducing circumstance
Sequence a series of asynchronous invocations the requesting sequence of the invocations any other sequences of the invocations

4.3 Delta Debugging Algorithm
Our delta debugging process starts with the confirmation of the
testing result with the simplest circumstance. According to the sim-
plest circumstance, all the microservices are deployed on one node;
each microservice has only one instance; all the environmental
configuration is set to its default value (e.g., unlimited memory);
all the asynchronous microservice invocations are executed and
returned by the same orders of requests. If the given failing test
case still fails with the simplest circumstance, the failure can be
thought to be caused by internal faults of related microservices, and
further analysis of the root cause can be supported by traditional
debugging approaches. Otherwise, the simplest circumstance can
be used as the base for delta debugging.

Given the large number of deltas in a microservice system, our
aim is to identify a minimum set of deltas such that applying the
deltas to the simplest circumstance causes the failing test case to
produce failing results and at the same time causes the passing test
cases to maintain passing results. In the ideal case, the minimum
set contains 1 delta, which can help the developers identify the root
cause of the failure. The minimizing delta debugging algorithm [18]
is a variant of the original delta debugging algorithm [16], which
can be applied to solve our problem. Next, we first present the
details on the delta debugging algorithm and then discuss how we
apply it in our setting.

Given a failure-inducing circumstance f c and the simplest cir-
cumstance sc , letU ′ be a set of atomic deltas between circumstance
f c and sc . In other words, applying all deltas inU ′ to sc results in
f c . In the sequence dimension, multiple bits are used to represent
the sequence of a series of asynchronous invocations, and thus we
need to use the union ofU ′ and the set of all the atomic deltas in
the bits for sequence representation as the universal set of deltas,
represented asU .

Let test (K) where K ⊆ U be the testing results of the test cases
with the circumstances obtained by applying K to sc . We have
test (∅) = ✓ where ✓ indicates that all the test cases pass and
test (U) = × where × indicates that the failing test case fails in the
same way of the initial failure and the passing test cases pass. It
is possible that test (K) for a subset K results in an unknown case
test (K) =?, where ? indicates that the failing test case fails in other
ways or some passing test cases fail. Formally, the goal is to identify
a subset of U , say N , such that test (N) = × and N is 1-minimal,
i.e., test (N ′) = ✓ for all N ′ ⊆ N and |N ′ | = |N | − 1 where |X | is
the cardinality of set X . Intuitively, in other words, we would like
to find a set of deltas N such that taking away any one of the deltas
can change the testing result.

Figure 3 shows the details of the algorithm, denoted asddmin(X ,n),
with two inputs. One is a set of deltas denoted as X . Initially X is
set to beU . The other is a granularity, denoted as n, for partition

1: partition X into n equal subsets △1, · · · △n ;
2: for each subset △i do
3: if test (△i) = × then
4: return ddmin (△i , 2);
5: end if
6: end for
7: for each subset △i do
8: if test (X \ △i) = × then
9: return ddmin (X \ △i ,max (n − 1, 2));
10: end if
11: end for
12: if n < |X | then
13: return ddmin (X ,min (|X |, 2n));
14: end if
15: return X ;

Figure 3: DDMin Algorithm: ddmin(X ,n)
used in the algorithm. Initially, it is set to be 2. At Line 1 of the algo-
rithm, we partition the set of deltas X into n equal-sized partitions
△1, · · · ,△n . Afterwards, we distinguish four cases.
• Reduce to subset. If there exists a partition △i such that
test (△i) fails, we know that △i is failure-inducing. In such
case, we make a recursive call ddmin(△i , 2) so that we pro-
ceed to reduce △i further. This case yields a “divide and
conquer” approach.
• Reduce to complement. Otherwise, if there exists a parti-
tion △i such that its complement X \ △i is failure-inducing,
i.e., test (X \ △i) fails, we make a recursive call ddmin(X \
△i),max (n − 1, 2)) so that we proceed to reduce X \ △i fur-
ther. Note that the second parameter is set to be n− 1 so that
the granularity is not reduced.
• Increase granularity. Otherwise, if we can increase the granu-
larity (i.e.,n < |X |), we recursively callddmin(X ,min(|X |, 2n))
so that we can analyze the deltas in X with a finer-grained
manner.
• Done. Otherwise, we returnX as we cannot reduceX further.

The ddmin algorithm is designed to reduce the deltas in a way
similar to binary search and thus is reasonably efficient (e.g., more
efficient compared to the original delta-debugging algorithm [16]).
We refer the readers to [18] for detailed discussion on the cor-
rectness and complexity of the algorithm. Note that the preceding
algorithm assumes that deltas are independent of each other, and it
is known [18] that partitioning related deltas in the same partition
improves the efficiency of the algorithm.

5 EVALUATION
We conduct an experimental study to evaluate the effectiveness of
our approach.

5.1 Settings
We implement our approach itself as a microservice system (in-
cluding the delta debugging controller, task scheduler, and task
executor) running on a containerized environment. We conduct
the study based on a medium-size open benchmark microservice
system named TrainTicket [19] (with 41 microservices reflecting

Delta Debugging Microservice Systems ASE ’18, September 3–7, 2018, Montpellier, France

real-world industrial practices) after adapting it to the implementa-
tion of our infrastructure layer. The environment used in the study
includes 13 virtual machines (VMs) provided by a private cloud of
Fudan University. Each VM has a 8-core CPU (Intel XEON 3GHz)
and 24GB memory, and CentOS 7 installed as the operating system.
One of the VMs is used to run our microservice debugging system.

5.2 Results
We conduct an experimental study that uses the approach to debug
real microservice failures. The benchmark system TrainTicket in-
cludes 11 representative fault cases that are replicated from indus-
trial fault cases identified through an industrial survey. Among the
11 fault cases, we choose 3 fault cases that are related to deploy-
ment, environmental configurations, or asynchronous interactions,
as shown in Table 2. The 3 fault cases correspond to a dimension
(i.e., instance, configuration, or sequence), respectively.

We incorporate the implementations of the 3 fault cases into the
benchmark system. For each fault case, we use the corresponding
test cases provided by the benchmark system to run the system and
produce a failure. We perform a delta debugging process for each
fault case with the multiple-cluster setting: 12 VMs are divided into
6 clusters and each cluster has 2 VMs. We record and analyze the
delta debugging process for each fault case and obtain the results as
shown in Table 3. For each fault case, the table reports the number
of deltas in the universal set (#Delta (U)), the number of deltas in the
returned delta set (#Delta (R)), the number of tasks created during
the process (#Task (C)), the number tasks scheduled to execute
(#Task (S)), the number of tasks finished (#Task (F)), the time used
(Time), and the indication of the returned deltas. It can be seen
that these fault cases involve 36-63 deltas and the returned result
includes 1-2 deltas. The whole delta debugging process needs 18-30
minutes to finish. During the process, 32-41 delta testing tasks are
created, 20-26 of them are scheduled to execute, and 8-12 of them
finish their executions.

To confirm the effectiveness of the approach, we analyze the re-
turned deltas for each fault case. We first understand the indication
of the returned deltas and then examine whether the root causes
can be identified based on the deltas.

For F1, the returned delta indicates that the failure is induced
by the multi-instance deployment of a microservice. The delta
accurately reveals the circumstance delta that induces the failure.
Based on the indication, the developers need to further check the
states of the microservice to identify the root cause.

For F2, the returned delta indicates that the failure is induced
by the memory limit of a microservice. Actually the fault involves
the improper memory limits of multiple microservices and any of
them can cause a failure. The delta reveals the problem of memory
limit setting of one of the microservices. Based on the result, the
developers can soon identify the root cause of one microservice, and
subsequently identify the root causes of the other microservices,
e.g., by iteratively performing the delta debugging process.

For F3, the returned 2 deltas indicate that the failure is induced
by the orders of two pairs of asynchronous invocations, say (MS1,
MS2) and (MS1,MS3). The real cause of this failure is only the order
of the pair (MS1,MS3). In this case, the simplest circumstance for
the sequence is < MS1,MS2,MS3 > and the given failure-inducing

circumstance is < MS2,MS3,MS1 >. The order betweenMS1 and
MS2, and the order between MS1 and MS3 are included in the
returned deltas as they are different in the two circumstances, but
the failure is induced by only the order betweenMS1 andMS3. In
this case, the right failure-inducing delta (i.e., the order between
MS1 andMS3) is included in the returned deltas, and the developers
need to eliminate the other returned delta (i.e., the order between
MS1 andMS2) by further analyzing the data.

From the preceding analysis, we can see that our approach can
effectively perform a delta debugging process, and can identify
failure-inducing deltas of different dimensions for helping diagnose
the root causes:

1. Instance deltas usually can accurately indicate themulti-instance-
deployment problems of microservices. The developers need to
further analyze the states of the microservices to identify the root
causes.

2. Configuration deltas can identify the configuration problems
of some microservices but may miss the same problems of other
microservices. The developers need to iteratively perform the delta
debugging process to identify the problems of more microservices.

3. Sequence deltas can identify the pairs of microservice invo-
cations that induce the failure but may include irrelevant pairs of
invocations in the same sequence. The developers need to further
confirm the pairs involved in the deltas to identify the root causes.

5.3 Threats to Validity
The major threats to the external validity of our study lie in the rep-
resentativeness of the benchmark system, failure cases, and testing
environment used in our study. Although the benchmark system
is the largest among evaluation subjects for microservice systems
in the research literature, it is smaller and less complex than large
industrial microservice systems. Although the used failure cases are
derived from real industrial cases, these failure cases may be less
complex than various failure cases in industrial systems. Therefore,
the results of our experimental study may not be generalized to
more complex systems, failure cases, or testing environments.

A major threat to the internal validity of our study lies in the
uncertainties of the testing environment used in the study. The
environment consists of virtual machines provided by a private
cloud, and the performance and reliability of the virtual machines
are uncertain, thus making the data (e.g., debugging time) collected
from the environment likely inaccurate.

6 RELATEDWORK
Delta Debugging. Our work is an extension of existing work on
debugging, particularly, delta debugging. Delta debugging is pro-
posed for traditional monolithic systems. Zeller et al. [16] propose
delta debugging for simplifying and isolating failure-inducing in-
puts. Since then, there have been many extensions. For example,
it is extended to isolate cause-effect chains from programs by con-
trasting program states between successful and failed executions
in [17, 18]. Cleve et al. [4] extend delta debugging to identify the
locations and times where the cause of a failure changes from one
variable to another. Sumner et al. [12, 13] improve delta debugging
in its precision and efficiency by combining it with more precise
execution alignment techniques. A cause inference model [14] is

ASE ’18, September 3–7, 2018, Montpellier, France Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Wenhai Li, Chao Ji, and Dan Ding

Table 2: Fault Cases Used in the Evaluation
Fault Description Dimension
F1 A microservice invocation chain involves two invocations of the same microservice, but the invocations are served by two microservice instances in

different states.
Instance

F2 JVM’s max memory configuration conflicts with Docker cluster’s memory limitation configuration. As a result, Docker sometimes kills the JVM process. Configuration
F3 A series of asynchronous microservice invocations are returned in an unexpected order. Sequence

Table 3: Evaluation Results
Fault #Delta (U) #Delta (R) #Task (C) #Task (S) #Task (F) Time Indication of Returned Deltas
F1 36 1 32 20 10 30 m the multi-instance deployment of a microservice
F2 63 1 36 23 8 18 m the memory limit of a microservice
F3 43 2 41 26 12 29 m the orders of two pairs of asynchronous invocations

also proposed to provide a systematic way of explaining the differ-
ence between a failed execution and a successful execution. Burger
et al. [3] propose an approach called JINSI that combines delta de-
bugging and dynamic slicing for effective fault localization. JINSI
can reduce the number of method calls and returns to the mini-
mum number required to reproduce a failure. Misherghi et al. [10]
propose hierarchical delta debugging to speed up delta debugging
by considering hierarchical constraints in the system under debug-
ging. Recently, it is further extended to coarse hierarchical delta
debugging [7]. Multiple tools (e.g., [15]) have also been developed to
support delta debugging. The preceding approaches are all designed
for delta debugging traditional monolithic systems. As discussed
earlier, these existing delta-debugging approaches are ineffective
for microservices due to the unique characteristics of microservices
(i.e., unique deltas and ways of constructing and executing delta
testing tasks).

Microservice Analysis. Our work is also related to existing
work on analyzingmicroservice systems. Francesco et al. [6] present
a systematic study on the state of the art on microservice architec-
tures from three perspectives: publication trends, focus of research,
and potential for industrial adoption. One of their conclusions is
that research on architecting microservices is still in its initial phase
and the balanced involvement of industrial and academic authors
is promising. Alshuqayran et al. [2] present a study on architec-
tural challenges of microservice systems, the architectural diagrams
used for representing them, and the involved quality requirements.
Dragoni et al. [5] review the development history from objects,
services, to microservices, present the current state of the art, and
raise some open problems and future challenges. Carlos et al. [1]
present an initial set of requirements for a candidate microservice
benchmark system to be used in research on software architecture.
Within the best of our knowledge, there exists no previous research
on systematic debugging dedicated to microservices, as focused by
our work.

7 CONCLUSION
In this paper, we have proposed a delta debugging approach for
microservice systems with the objective of minimizing failure-
inducing deltas of circumstances (e.g., deployment, environmental
configurations, or interaction sequences) for effective debugging.
Our approach includes novel techniques for defining, manipulating,
and executing deltas during delta debugging. Our evaluation con-
firms that our approach can effectively identify failure-inducing
deltas that help diagnose the root causes.

ACKNOWLEDGMENTS
This work was supported by the National Key Research and Devel-
opment Program of China under Grant No. 2018YFB1004803. Tao
Xie’s work was supported in part by National Science Foundation
under grants no. CNS-1513939 and CNS-1564274.

REFERENCES
[1] Carlos M. Aderaldo, Nabor C. Mendonca, Claus Pahl, and Pooyan Jamshidi.

2017. Benchmark Requirements for Microservices Architecture Research. In
Proc. IEEE/ACM International Workshop on Establishing the Community-Wide
Infrecaseructure for Architecture-Based Software Engineering (ECASE’17). 8–13.

[2] Nuha Alshuqayran, Nour Ali, and Roger Evans. 2016. A Systematic Mapping
Study in Microservice Architecture. In Proc. IEEE International Conference on
Service-Oriented Computing and Applications (SOCA’16). 44–51.

[3] Martin Burger and Andreas Zeller. 2011. Minimizing Reproduction of Software
Failures. In Proc. International Symposium on Software Testing and Analysis (IS-
STA’11). 221–231.

[4] Holger Cleve and Andreas Zeller. 2005. Locating Causes of Program Failures. In
Proc. International Conference on Software Engineering (ICSE’05). 342–351.

[5] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch-Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2016. Microservices: Yes-
terday, Today, and Tomorrow. CoRR abs/1606.04036 (2016).

[6] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago. 2017. Research on
Architecting Microservices: Trends, Focus, and Potential for Industrial Adoption.
In Proc. IEEE International Conference on Software Architecture (ICSA’17). 21–30.

[7] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse Hierarchical
Delta Debugging. In Proc. IEEE International Conference on Software Maintenance
and Evolution (ICSME’17). 194–203.

[8] Istio. 2018. Istio. Retrieved February 21, 2018 from https://istio.io/
[9] Kubernetes.Com. 2018. Kubernetes. Retrieved February 21, 2018 from https:

//kubernetes.io/
[10] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.

In Proc. International Conference on Software Engineering (ICSE’06). 142–151.
[11] William Morgan. 2017. What’s a Service Mesh? And Why Do I Need

One? Retrieved February 21, 2018 from https://buoyant.io/2017/04/25/
whats-a-service-mesh-and-why-do-i-need-one/

[12] William N. Sumner and Xiangyu Zhang. 2009. Algorithms for Automatically
Computing the Causal Paths of Failures. In Proc. International Conference on
Fundamental Approaches to Software Engineering (FASE’09). 355–369.

[13] William N. Sumner and Xiangyu Zhang. 2010. Memory Indexing: Canonicalizing
Addresses Across Executions. In Proc. ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’10). 217–226.

[14] William N. Sumner and Xiangyu Zhang. 2013. Comparative Causality: Explaining
the Differences between Executions. In Proc. International Conference on Software
Engineering (ICSE’13). 272–281.

[15] Delta Tool. 2015. Delta Tool. Retrieved February 21, 2018 from http://delta.tigris.
org/

[16] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Proc. joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE’99).
253–267.

[17] Andreas Zeller. 2002. Isolating cause-effect chains from computer programs. In
Proceedings of the Tenth ACM SIGSOFT Symposium on Foundations of Software
Engineering 2002, Charleston, South Carolina, USA, November 18-22, 2002. 1–10.

[18] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200.

[19] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and Wenyun Zhao.
2018. Poster: Benchmarking Microservice Systems for Software Engineering
Research. In Proc. International Conference on Software Engineering: Companion
Proceeedings (ICSE’18). 323–324.

https://istio.io/
https://kubernetes.io/
https://kubernetes.io/
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://buoyant.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
http://delta.tigris.org/
http://delta.tigris.org/

	Delta debugging microservice systems
	Citation
	Author

	Abstract
	1 Introduction
	2 background
	3 Approach Overview
	4 Delta Debugging Controller
	4.1 Dimensions
	4.2 Circumstance and Delta Representation
	4.3 Delta Debugging Algorithm

	5 Evaluation
	5.1 Settings
	5.2 Results
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

