
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2018

PFix: Fixing concurrency bugs based on memory access patterns PFix: Fixing concurrency bugs based on memory access patterns

Huarui LIN

Zan WANG

Shuang LIU

Jun SUN
Singapore Management University, junsun@smu.edu.sg

Dongdi ZHANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Citation Citation
LIN, Huarui; WANG, Zan; LIU, Shuang; SUN, Jun; ZHANG, Dongdi; and WEI, Guangning. PFix: Fixing
concurrency bugs based on memory access patterns. (2018). ASE 2018: Proceedings of the 33rd ACM/
IEEE International Conference on Automated Software Engineering, Corum, Montpellier, France,
September 3-7. 589-600.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4655

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4655&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Huarui LIN, Zan WANG, Shuang LIU, Jun SUN, Dongdi ZHANG, and Guangning WEI

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4655

https://ink.library.smu.edu.sg/sis_research/4655

PFix: Fixing Concurrency Bugs Based on Memory Access
Patterns

Huarui Lin
School of Computer Software

Tianjin University
Tianjin, China

linhuaruitju@tju.edu.cn

Zan Wang∗
School of Computer Software

Tianjin University
Tianjin, China

wangzan@tju.edu.cn

Shuang Liu∗
School of Computer Software

Tianjin University
Tianjin, China

shuang.liu@tju.edu.cn

Jun Sun
Singapore University of Technology

and Design
Singapore

sunjun@sutd.edu.sg

Dongdi Zhang
School of Computer Software

Tianjin University
Tianjin, China

zhangdongdi@tju.edu.cn

Guangning Wei
School of Computer Software

Tianjin University
Tianjin, China

weiguangning@tju.edu.cn

ABSTRACT

Concurrency bugs of a multi-threaded program may only mani-
fest with certain scheduling, i.e., they are heisenbugs which are
observed only from time to time if we execute the same program
with the same input multiple times. They are notoriously hard to
fix. In this work, we propose an approach to automatically fix con-
currency bugs. Compared to previous approaches, our key idea is
to systematically fix concurrency bugs by inferring locking policies
from failure inducing memory-access patterns. That is, we auto-
matically identify memory-access patterns which are correlated
with the manifestation of the bug, and then conjecture what is the
intended locking policy of the program. Afterwards, we fix the
program by implementing the locking policy so that the failure
inducing memory-access patterns are made impossible. We have
implemented our approach in a toolkit called PFix which supports
Java programs. We applied PFix to a set of 23 concurrency bugs
and are able to automatically fix 19 of them. In comparison, Grail
which is the state-of-the-art tool for fixing concurrency bugs in
Java programs can only fix 3 of them correctly.

CCS CONCEPTS

• Software and its engineering → Software testing and debug-
ging;

KEYWORDS

Multi-threading, Concurrency bugs, Memory-access pattern, Lock-
ing policy, Automatic fixing

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238198

ACM Reference Format:

Huarui Lin, ZanWang, Shuang Liu, Jun Sun, Dongdi Zhang, and Guangning
Wei. 2018. PFix: Fixing Concurrency Bugs Based on Memory Access Pat-
terns. In Proceedings of the 2018 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE ’18), September 3–7, 2018, Montpellier,
France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3238147.
3238198

1 INTRODUCTION

Multi-threading is ubiquitous nowadays with the development of
multi-core andmany-core processors. Concurrency bugs (of a multi-
threaded program) are bugs which may only manifest with certain
scheduling, i.e., they are heisenbugs which may only be observed if
we execute the same program with the same input multiple times.
They are known to be hard to debug [55]. The difficulty in fixing
concurrent bugs is at least threefold. Firstly, it is challenging to
replay a concurrency bug. Even with the right test input, we must
find a failure-inducing scheduling as the bug may manifest only
with certain scheduling. In general, there could be exponentially
many schedulings in the number of schedulable points. Researchers
have tackled this problem by recording the scheduling during a test
execution so that the bug can be replayed [12, 13]. Secondly, even
with the recorded scheduling, debugging the multi-threaded bug
may still be challenging due to the large number of steps and context
switches in the test execution (i.e., the execution of the test case
with particular scheduling), many of which may not be relevant to
the bug. A programmer must be able to “abstract” the test execution
so as to identify the root cause of the bug. Recently, there have been
several proposals on abstracting a test execution using memory-
access patterns. It has been shown that memory-access patterns
are often correlated to the presence of multi-threaded bugs [50].
Thirdly, it is challenging to fix concurrency bugs as a fix must be
able to avoid the bug with all possible scheduling.

In this work, we investigate the problem of fixing concurrent
bugs. There have been multiple methods and tools proposed for
fixing concurrency bugs [25, 29, 32, 34]. Existing approaches fix
concurrent bugs resulting in either atomicity violations [10, 25, 26,
33], deadlocks [9, 53], or data races [48]. Roughly speaking, existing
approaches design their fixes based on a few concrete execution
traces which are either obtained from user-provided bug reports or

589

https://doi.org/10.1145/3238147.3238198
https://doi.org/10.1145/3238147.3238198
https://doi.org/10.1145/3238147.3238198

ASE ’18, September 3–7, 2018, Montpellier, France H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, G. Wei

from runtime monitoring. We refer the readers to Section 5 for a
detailed discussion on existing approaches.

In most of the cases, the fix in existing approaches amounts to
inserting additional locks and synchronization to inhibit the bad
concrete executions. In contrary, our approach is designed to sys-
tematically fix concurrency bugs based on inferring the intended
locking policy (which allows us to reuse existing locks). As stated
in [45] and other places, the key to reduce concurrency bugs and
ensure thread-safety is to design a locking policy according to the
program specification. For instance, a well-designed locking pol-
icy must guard the same variable with the same lock throughout
the program and must guard related variables with the same lock
throughout the program. Only by implementing a well-designed
locking policy systematically throughout the program, we can guar-
antee thread-safety and thus free of concurrency bugs. Ideally, if
the locking policy is explicitly documented, we can fix a concur-
rency bug by examining where the locking policy is not correctly
implemented and fix it accordingly. In practice, however software
engineers often do not document the locking policies properly. The
challenge is then how to infer the locking policy and subsequently
fix concurrency bugs systematically.

Our approach is designed as follows. Firstly, we apply existing ap-
proaches to systematically identify failure-inducing memory-access
patterns with regard to a concurrency bug. The idea of correlating
bugs with memory-access patterns has been explored in [40, 54, 57].
It has been found that memory-access patterns are often corre-
lated with the root cause of concurrency bugs [50]. In our setting,
the failure-inducing memory-access patterns represent violation
of the locking policy which ought to be implemented systemati-
cally to prevent the bug. Afterwards, we automatically conjecture
what is the intended locking policy of the program. The idea is to
identify a well-designed locking which makes the failure-inducing
memory-access patterns impossible. The last step of our approach
is to systematically fix the program by consistently implement-
ing the conjectured locking policy throughout the program. Our
approach is different from those existing approaches on fixing con-
currency bugs as our fixes are based on a comprehensive set of
failure-inducing memory-access patterns (which have been shown
to be complete [50]), whereas existing approaches are often based
on concrete executions or particular patterns like single-variable
atomicity violation. Furthermore, our fixes work through consis-
tently implementing well-formed locking policies and thus not only
fix those program executions which have been observed but also
potentially those unseen ones. It is our belief that locking policies
should play a central role in building thread-safe programs and
thus should be the basis of fixing concurrency bugs.

Our approach has been implemented in a self-contained toolkit
called PFix [4] (short for pattern-based fix) for Java programs.
PFix is implemented based on existing frameworks including Java
Pathfinder [19] and Soot [6]. We have experimented PFix with a
set of 23 concurrency bugs, which we collect from previously pub-
lished repositories. PFix is able to automatically fix 19 of them. On
average, PFix spends 33.7 seconds to fix a bug, which we consider is
reasonably efficient. For baseline comparison, we apply Grail [34]
to the same set of bugs and it is only able to fix 3 of the bugs. We
remark that other previously reported tools are either not main-
tained or target different programming languages (e.g., AFix [25],

public synchronized StringBuffer append(StringBuffer sb){
if (sb == null) { sb = NULL; }
//fix: synchronized (sb) {

1. int len = sb.length();
int newcount = count + len;
if (newcount > value.length) {expandCapacity(newcount);}

2. sb.getChars(0, len, value, count);
//fix: }
count = newcount;
return this;

}

public synchronized StringBuffer delete(int start,int end){
if (start < 0)

throw new StringIndexOutOfBoundsException(start);
if (end > count) { end = count; }
if (start > end)

throw new StringIndexOutOfBoundsException();
int len = end - start;
if (len > 0) {
if (shared) { copy(); }
System.arraycopy(value,start+len,value,start,count-end);

4. count -= len;
}
return this;

}

public synchronized void getChars(int srcBegin,
int srcEnd, char dst[], int dstBegin) {

if (srcBegin < 0)
throw new StringIndexOutOfBoundsException(srcBegin);

if ((srcEnd < 0) || (srcEnd > count))
3. throw new StringIndexOutOfBoundsException(srcEnd);
if (srcBegin > srcEnd) throw
new StringIndexOutOfBoundsException("srcBegin>srcEnd");

System.arraycopy(value,srcBegin,dst,
dstBegin,srcEnd-srcBegin);

}

Figure 1: A concurrency bug in JDK1.4.2

AXIS [35] and CFix [26]). Furthermore, it has been reported that
Grail is stricter better than AFix and AXIS in [34].

The remainders of the paper are organized as follows. Section 2
illustrates how our approach works through an example. Section 3
presents the details of our approach step-by-step. Section 4 evalu-
ates our approach. Section 5 discusses related work and Section 6
concludes.

2 MOTIVATING EXAMPLE

In this section, we show how our approach works with an illustra-
tive example. The example is a concurrency bug in the StringBuffer
class in JDK1.4.2 [1]. Figure 1 shows the relevant part of the pro-
gram under test, i.e., three methods of the StringBuffer class. Method
append appends a given string buffer to the end of this string buffer;
method delete deletes a substring (from index start to index end)
from this string buffer; and method getChars copies from this string
buffer into the destination character array dst with offset dstBegin.
Note that method append calls getChars through the input string
buffer sb. All three methods are synchronized.

A test case which potentially reveals the bug is shown in Figure 2.
In the test case, two string buffer objects a and b are created and
two threads are created, one executing a.append(b) while the other
executing b.delete(0, b.length()). Executing the test case many times,
we might observe a StringIndexOutOfBoundsException(srcEnd) due
to line 3 in method getChars. One concrete execution which gen-
erates this exception is as follows. First, one thread executes line
1 in method a.append(b) to get string buffer b’s length, which is 5.
Afterwards, the other thread executes method b.delete() to delete
every char in b. As a result, b’s count becomes 0. Next, the thread

590

PFix: Fixing Concurrency Bugs Based on Memory Access Patterns ASE ’18, September 3–7, 2018, Montpellier, France

Table 1: Memory-access patterns in the example

Memory-Access Pattern Susp.
(t1, l1, {count }, {}), (t2, l4, {}, {count }), (t1, l3, {count }, {}) 1.00
(t1, l1, {count }, {}), (t2, l4, {}, {count }) 0.50
(t2, l4, {}, {count }), (t1, l3, {count }, {}) 0.49

executing method a.append(b) calls method b.getChars() at line 2
with len being 5. When method b.getChars() is executed, condition
srcEnd > count (which is 5 > 0) is satisfied and thus the exception
is thrown.

Although there could be many concrete executions which gener-
ate the exception, we can abstractly see that the exception occurs
as long as the following memory-access pattern is present: thread
1 executes line 1, then thread 2 executes line 4, and then threads 1
executes line 3 to update the same variable count . In our approach,
PFix systematically analyzes multiple failing and passing concrete
executions in order to automatically identify a list of ranked ab-
stract memory-access patterns in order to identify the root cause
of the bug. There are a total of 17 generic patterns, and PFix scans
through each concrete execution to count the number of times that
an instance of those 17 patterns occurs. Table 1 shows the three
patterns generated by PFix for this example where l1, l2, l3 and l4
denote line 1, 2, 3 and 4 respectively. Each pattern is composed of a
sequence of steps of the form (t, s,R,W), which reads thread t exe-
cutes instruction s to read variables in R and write variables inW .
Note that the first pattern matches our understanding, whereas the
other two are patterns which capture only part of the first pattern.
PFix computes a suspicious score for each pattern based on how
frequent they appear in failed executions and passed executions.
The second column of Table 1 shows the respective suspicious
scores. Note that the first pattern is always observed in failed test
executions and thus has a suspicious score of 1.

Once we identify the failure-inducing memory-access patterns
(i.e., the ones in Table 1), we proceed to generate a fix for the bug,
based on the most suspicious pattern first. For different generic
patterns, we have designed different fixes. According to our bug
fixing algorithm (which will be presented in detail in Section 3), the
fix for this 3-step pattern is to add additional synchronization so
that the first step and the third step are in the same synchronization
block. Intuitively, such a fixwouldmake thismemory-access pattern
impossible and thus prevent the bug. The question is: which lock
object do we use? To answer this question, PFix systematically
monitors all concrete executions in order to identify the locking
policy. That is, PFixmonitors each shared variable and record which
lock is held when the variable is accessed (for either reading or
writing). In this example, PFix observes that variable b .count is
accessed always with lock b held and variable a.count is accessed
always with lock a held. It thus conjectures that count in the class
is to be guarded by this according to the locking policy.

Based on this locking policy, PFix then proceeds to analyze
whether it is possible to introduce a synchronized block synchronized
(sb) { } which encloses both line 1 and 3. Note that the lock object
is sb since both line 1 and line 3 access sb .count . As line 1 and 3
are in different methods, it is infeasible to introduce a synchronized
block directly. PFix then analyzes the call graph in order to identify
a common method where the synchronized block can be introduced.

public void test() {
StringBuffer a = new StringBuffer("Hello");
StringBuffer b = new StringBuffer("World");
new Thread(new Runnable () {

public void run() {
a.append(b);

}
}).start();

new Thread(new Runnable () {
public void run() {

b.delete(0, b.length());
}

}).start();
}

Figure 2: A test case for StringBuffer

In our example, because line 3 is executed due to the function call
at line 2 and line 1 and line 2 are in the same function, PFix then
proceeds to introduce a synchronized block which begins with line 1
and ends with line 2, as shown in Figure 1 in the form of comments.

Lastly, we validate the fixed program through standard means
(i.e., extensive testing or using tools like Java pathfinder [19]) and
repeat the above-discussed steps if necessary.

3 DETAILS OF THE APPROACH

In this section, we present details of each step in our approach. The
input to PFix is a buggy program as well as a set of executions of a
given test case (which can be obtained through standard means).
We assume that at least one of the test executions results in failure
(so that we know there is a concurrency bug).

3.1 Step 1: Identify Memory Access Patterns

The first step is to identify the failure-inducing memory-access
patterns. The reason that we focus on memory-access patterns
is that memory-access patterns are often correlated to bugs as
shown in [37, 43]. An alternative is to focus on failure-inducing
scheduling, which is not ideal for multiple reasons. Firstly, there
might be a huge number of scheduling and many of them may be
failure-inducing. Identifying all of them would be expensive if not
infeasible. Secondly, even if we are able to identify all of them, it is
not clear how to fix the program so that all of them are prevented.
In comparison, concurrency bugs can be always reduced to one or
multiple of a total of 17 generic memory-access patterns as shown
in [42]. The idea is to design fixes for each and every one of the 17
patterns so that we can fix concurrency bugs systematically.

Amemory access pattern is represented in the form of a sequence
of steps of a test execution. Each step is a tuple of (t, s,R,W), where
t is a thread id, s is a bytecode instruction generated by a statement
in the program, R is a set of variables being read andW is a set of
variables being written. Given a bytecode instruction s , we write
oriдin(s) to denote the program statement which generates the
bytecode. In this work, we adopt the set of 17 memory access
patterns defined in [42], shown in Table 2. The second column of
the table shows the memory-access pattern. Each memory-access
pattern is a sequence of at most four steps in the test execution,
which concerns only with two threads and at most two variables.
As a result, given a test execution, the number of memory-access
patterns is bounded by C2

N ∗C2
M ∗C4

K where N is the number of
shared variables, M is the number of threads and K is the total
number of steps in the test execution.

591

ASE ’18, September 3–7, 2018, Montpellier, France H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, G. Wei

Table 2: The generic memory-access patterns [42]

ID Memory-Access Pattern
1 (ta , si , {x }, ∅), (tb , sj , ∅, {x })
2 (ta , si , ∅, {x }), (tb , sj , {x }, ∅)
3 (ta , si , ∅, {x }), (tb , sj , ∅, {x })
4 (ta , si , {x }, ∅), (tb , sj , ∅, {x }), (ta , sk , {x }, ∅)
5 (ta , si , ∅, {x }), (tb , sj , ∅, {x }), (ta , sk , {x }, ∅)
6 (ta , si , ∅, {x }), (tb , sj , {x }, ∅), (ta , sk , ∅, {x })
7 (ta , si , {x }, ∅), (tb , sj , ∅, {x }), (ta , sk , ∅, {x })
8 (ta , si , ∅, {x }), (tb , sj , ∅, {x }), (ta , sk , ∅, {x })
9 (ta , si , ∅, {x }), (tb , sj , ∅, {x }), (tb , sk , ∅, {y }), (ta , sl , ∅, {y })
10 (ta , si , ∅, {x }), (tb , sj , ∅, {y }), (tb , sk , ∅, {x }), (ta , sl , ∅, {y })
11 (ta , si , ∅, {x }), (tb , sj , ∅, {y }), (ta , sk , ∅, {y }), (tb , sl , ∅, {x })
12 (ta , si , ∅, {x }), (tb , sj , {x }, ∅), (tb , sk , {y }, ∅), (ta , sl , ∅, {y })
13 (ta , si , ∅, {x }), (tb , sj , {y }, ∅), (tb , sk , {x }, ∅), (ta , sl , ∅, {y })
14 (ta , si , {x }, ∅), (tb , sj , ∅, {x }), (tb , sk , ∅, {y }), (ta , sl , {y }, ∅)
15 (ta , si , {x }, ∅), (tb , sj , ∅, {y }), (tb , sk , ∅, {x }), (ta , sl , {y }, ∅)
16 (ta , si , {x }, ∅), (tb , sj , ∅, {y }), (ta , sk , {y }, ∅), (tb , sl , ∅, {x })
17 (ta , si , ∅, {x }), (tb , sj , {y }, ∅), (ta , sk , ∅, {y }), (tb , sl , {x }, ∅)

It has been shown that these memory-access patterns capture
the essence of multi-threaded bugs [42]. In addition, it is shown
that this set is complete [50], as multi-threaded bugs can be reduced
to one or more of these patterns. The memory-access patterns can
be viewed as an abstraction of the test execution, which allows us
to get rid of irrelevant details and yet preserve the cause of the
multi-threaded bug.

Based on the frequency of the memory-access patterns in the
test executions, we calculate a suspiciousness score for each pattern
using Equation 1, where #f ail(p) is the number of failing test exe-
cutions in which the pattern p occurs and #succ(p) is the number
of passing test executions in which the pattern p occurs.

suspicious(p) =
#f ail(p)

(#f ail(p) + #succ(p))
(1)

The larger the suspicious score, the more likely that the pattern
is failure-inducing. Therefore, we sort the patterns based on their
suspicious scores in the descending order.

3.2 Step 2: Identify Locking Policy

Once the failure-inducing memory-access patterns have been iden-
tified, we proceed to identify the locking policy on the relevant
variables. The idea is to check if there are locking policies designed
for the variables and whether the reason of the bug is that the lock-
ing policy has not been implemented properly on the part where
the failure-inducing memory access pattern is observed. Formally,
a locking policy is a function lockP : V → L where V is the set
of variables and L is the set of locks. Note that we assume that
a variable should be guarded by exactly one lock following the
discussion in [45]. We use lockP(x) = y to denote that variable x is
guarded by lock y. A locking policy is consistently implemented if
and only if every access of any x is guarded by a lock on lockP(x)
throughout the program1.

In our approach, we infer the locking policy dynamically. That is,
we monitor at runtime when a lock is held and released for each test
execution. For any variablex , we then observewhether it is accessed

1Except the constructors since they are handled differently in Java.

(either for reading or writing) while some lock y is being held. We
may observe that multiple locks are held while x is accessed, in
which case lockP(x) could be any of the held locks or even none
of them if we assume that the locking policy is not consistently
implemented. In general, we can obtain a bag of observations in the
form of (x,y) where x is a variable and y is a lock. Afterwards, we
heuristically conjecture that lockP(x) is y if (x,y) occurs more than
any other pairs (x, z) in the bag. For instance, in the example shown
in Section 2, we obtain (count, this) for every access of count in the
class and thus conclude lockP(count) is this .

We remark that another way to obtain the locking policy is
through static analysis, i.e., statically analyze when a lock is applied
and released, as well as the variables accessed in between. However,
compared to dynamic analysis, static analysis may suffer from
imprecision due to aliasing, dynamic typing, etc. Therefore, in our
work, we adopt dynamic analysis, which provides more accurate
results.

3.3 Step 3: Fix Bugs

After obtaining the locking policy, we then examine each failure-
inducing memory-access pattern (from the most suspicious to the
least) and see whether the bug is due to an inconsistent implemen-
tation of the locking policy or rather the locking policy itself is
problematic. In the following, we discuss how a bug is fixed for
each failure-inducing memory access pattern. The general idea is
to design a fix such that the corresponding memory-access pat-
tern would be avoided. The algorithm is presented as Algorithm 1,
which takes as input the failure-inducing pattern pattern and the
locking policy lockP which we have inferred in the previous step.
The algorithm to fix bugs according to memory access pattern 1 to
3, 4 to 8 and 9 to 17 (of Table 2) are shown from line 1 to 9, 10 to 14
and 15 to 28 (of Algorithm 1), respectively.

Line 1 to 9 in Algorithm 1 applies if pattern is memory-access
pattern 1 to 3 in Table 2. All of these patterns have two steps, where
two different threads read/write on a shared variable in certain
order. They are fixed in the same way. In the following, we use
the pattern (ta, si , {x}, ∅), (tb , sj , ∅, {x}) (pattern 1 in Table 2) as
an example to illustrate the fix. To make sure that these two steps
are ‘separated’ in the fixed program, we distinguish two cases in
fixing the bug. The first case is that si is not the last access of x in
oriдin(si) (which is the source code statement containing si) or sj
is not the first access of x in oriдin(sj). In such a case, we assume
that the bug can be avoided if oriдin(si) is finished before thread tb
preempts it or the other way around. To achieve that, we examine
whether lockP(x) is defined. If it is the case, we enclose oriдin(si)
and oriдin(sj) in a synchronization block with lock lockP(x). If
lockP(x) is not defined, we introduce a new lock l , and implement
the locking policy by enclosing every access of x with a lock on l .
Note that the same locking policy should be propagated throughout
the program for all accesses of x , not only those statements in the
pattern. If however si is the last access of x in oriдin(si) or sj is the
first access of x in oriдin(sj), we conclude that the bug occurs if
state oriдin(si) is followed by oriдin(sj) and this can not be fixed
with a modified locking policy on x . The fix is then to prevent such
ordering. This is achieved by introducing a fresh volatile boolean
variable z with initial value false, adding i f (z) before oriдin(si) and

592

PFix: Fixing Concurrency Bugs Based on Memory Access Patterns ASE ’18, September 3–7, 2018, Montpellier, France

Algorithm 1: Algorithm f ix(pattern, lockP)

input :pattern: a failure-inducing pattern; lockP : a locking policy; the buggy program
output : the fixed program based on lockP

1 if pattern is any of pattern 1-3 in Table 2 then
2 if (ta , si , {x }, ∅) is not the last x access of or iдin(si) or (tb , sj , ∅, {x }) is not the first x access of or iдin(sj) then
3 if lockP (x) does not exist then
4 set lockP (x) = l where l is a fresh lock and enclose or iдin(si) and or iдin(sj) with synchronization on l ;

5 else

6 enclose or iдin(si) and/or or iдin(sj) with synchronization on lockP (x);

7 else

8 introduce a fresh volatile boolean variable z with initial value false ;
9 add i f (z) before or iдin(si) and add z = true after or iдin(sj);

10 if pattern is any of pattern 4-8 in Table 2 then
11 if lockP (x) does not exist then
12 set lockP (x) = l where l is a fresh lock and enclose or iдin(sj) and enclose or iдin(sj = i) and or iдin(sk) in the same block with

synchronization on l ;

13 else

14 enclose or iдin(sj) and enclose or iдin(sj = i) and or iдin(sk) in the same block with synchronization on lockP (x);

15 if pattern is any of pattern 9-17 in Table 2 then
16 if lockP (x) does not exist and lockP (y) does not exist then
17 set lockP (x) = l where l is a fresh lock and enclose the two steps of ta in the same block with synchronization on l ;
18 enclose the two steps of tb in the same block with synchronization on l ;

19 else if lockP (x) does not exist then
20 set lockP (x) = lockP (y);
21 enclose the two steps of ta in the same block with synchronization on lockP (y);
22 enclose the two steps of tb in the same block with synchronization on lockP (y);

23 else if lockP (y) does not exist then
24 set lockP (y) = lockP (x);
25 enclose the two steps of ta in the same block with synchronization on lockP (x);
26 enclose the two steps of tb in the same block with synchronization on lockP (x);

27 else

28 set lockP (x) = lockP (y) and and apply the locking policy for every access of x and y ;

1. void test () throws Exception {
2. final D d = new D();
3. Thread d1 = new Thread(){public void run () {d.m1();}};
4. Thread d2 = new Thread(){public void run () {d.m2();}};
5. d1.start(); d2.start();
6. d1.join(); d2.join();
7. if (d.x<1) { assert(false); } //d.x<2
}
class D {
8. int x = 0;
9. void m1() { x++; }
10. void m2() { x*=2; }
}

Figure 3: An example illustrating repairing

adding z = true after oriдin(sj). Intuitively, it is then guaranteed
that oriдin(sj) must be completed before oriдin(si).

To illustrate the difference between these two cases, let us look
at the example shown in Figure 3. Note that line 9 and line 10 both
have two accesses (i.e., one read followed by one write) of variable

class D {
int x = 0; Object obj = new Object();
void m1() { synchronized (obj) {x++;} }
void m2() { synchronized (obj) {x*=2;} }

}

Figure 4: An example repair (case 1) for program in Figure 3

class D {
int x = 0; volatile bool flag = false;
void m1() { x++; flag=true; }
void m2() { if (flag) {x*=2;} }

}

Figure 5: An example repair (case 2) for program in Figure 3

x . Given the assertion at line 7, one failure-inducing pattern which
could be identified is: (d1, l91, {d .x}, ∅), (d2, l102, ∅, {d .x}). Intu-
itively, it means that thread d2 executesm2 first and thread d1 reads
d .x before d2 finishes executing line 10. Since (d1, l91, {d .x}, ∅) is

593

ASE ’18, September 3–7, 2018, Montpellier, France H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, G. Wei

not the last access of d .x by thread d1, applying the above repair-
ing strategy, we fix the program by introducing a fresh lock and
surrounding both line 9 and 10 with a synchronization block. This
is shown in Figure 4.

If we change the condition at line 7 to be the one in the comment
(d .x < 2), one failure-inducing pattern which could be identified
is: (d2, l102, ∅, {d .x}), (d1, l91, {d .x}, ∅), which is an instance of pat-
tern 2 in Table 2. Intuitively, it means that thread d2 executesm2 to
finish first and thread d1 executesm1. Note that the memory access
pattern in the previous paragraph is no longer failure-inducing. The
reason is that the assertion failure will be avoided only if thread
d1 finishes executing line 9 before thread d2 starts executing line
10. In this case, since (d2, l102, ∅, {d .x}) is the last access of d .x by
thread d2, and (d1, l91, {d .x}, ∅) is the first access of d .x by d1, ap-
plying the above repairing strategy, we fix the program as shown in
Figure 5. Note that f laд is declared volatile so as to avoid visibility
issues (due to caching).

The fixes for patterns 4 to 8 are the same, as shown in line 10 to
14 in Algorithm 1. Intuitively, these failure-inducing patterns can
be prevented if we prevent thread tb from executing in between
si and sk . Thus, the idea is to implement a fix such that si and
sk are in the same synchronization block. There are two cases to
fix the bug. If lockP(x) does not exist, i.e., there lacks a locking
policy for x , we introduce a new lock l and enclose si and sk in
the same synchronization block with lock l , and enclose sj with
a synchronization block with lock l as well. Note that by right,
this new locking policy on x must be propagated throughout the
program. If lockP(x) does exist, we apply the same fix using lock
lockP(x) instead.

The fixes for pattern 9 to 17 are also the same. Intuitively, these
patterns can be prevented if we implement a fix such that the two
steps of thread ta and tb in these patterns become atomic. The
remaining question is then which lock to use. Note that because
these patterns are failure-inducing, we would assume that x and
y are related and therefore the locking policy should be such that
lockP(x) = lockP(y). We distinguish four cases on fixing the bug.
If both lockP(x) and lockP(y) are not defined, we use a fresh lock
l to fix the bug. Otherwise, if either lockP(x) or lockP(y) is de-
fined, we use the associated lock to fix the bug. Lastly, if both
lockP(x) and lockP(y) are defined but lockP(x) , lockP(y), we set
lockP(y) to be lockP(x) to fix the bug. These four cases are han-
dled accordingly in Algorithm 1, i.e., line 16-18 handle the case
where no locking policies for x or y exist; line 19-26 handle the
case where one locking policy exists either for x (line 19-22) or
y (line 23-26) but not both, and line 27-28 handle the case where
locking policies exist for both x and y. Note that PFix is designed
to fix concurrency bugs using synchronization blocks instead of
locks (i.e., java.util .concurrent .Locks) as synchronization blocks
are easier to maintain.

3.4 Step 4: Fix the Fixed Program

After the last step, we have applied a fix according to the failure-
inducing memory-access pattern and transformed the program to
get a “fixed” version. Next, we apply a further step to fix the “fixed”
program. This step has two main goals. One is to propagate the
updated locking policy throughout the program. The other is to

make sure the transformed program is not only compilable but also
efficient (e.g., without redundant locking).

To propagate the updated locking policy, for each shared variable
x , we analyze the program systematically to identify part of the
program which accesses x . For each access, we analyze whether
the access is guarded by a lock by monitoring what are the locks
which are held (and not released) before executing that part of
the program in all the test executions. Let the set of locks held be
denoted as L. We then check whether L includes lockP(x), which is
the lock for guarding x according to the identified locking policy. If
it is, we do nothing. Otherwise, we introduce a synchronized block
to enclose the part of the program with a lock object lockP(x). This
way, wemake sure the locking policy is systematically implemented
throughout the program. Note that because our implementation
is based on dynamic analysis, we will not propagate the locking
policy to the part of the program which is never executed in the
test executions.

As demonstrated in Section 2, we may not always be able to
apply the fix according to Algorithm 1. For instance, two statements
which we would like enclose in the same synchronized block may
be scattered in two very different parts of the program. We thus
apply an approach similar to [32] to make sure the fixed program
is syntactically correct. That is, we use Eclipse AST to check the
scope of each synchronization block. If we find that the added
synchronization crosses the original block of statements in the
program, i.e., if statement, for loop and while loop, we adjust the
scope of the added synchronization block so that it can include
the entire block of statements. If we need to add synchronization
blocks in two different functions, we first use Soot to identify the
call function, and then find the right place to add synchronization
so that the two statements are in the same block. In order to avoid
redundant locking, if we find that the added synchronization block
is in a constructor function, we discard the added synchronization.

3.5 Step 5: Test the Fixed Program

As the last step, we test the fixed program by using JPF to run the
fixed program 100 times. We repeat the fixing process if there are
errors occur during the testing. The number 100 is chosen based on
our experience that a program found to have errors during manual
inspections can almost consistently expose errors by executing 100
times with JPF random scheduling.

3.6 Overall Algorithm

The overall algorithm of our approach is shown in Algorithm 2.
Given a buggy program and a test case, we run the test case many
times in order to obtain a set of concrete test executions. In our
implementation, we use Java Pathfinder to generate different sched-
uling. Next, we run the state-of-the-art approach Unicorn [42] to
obtain a ranked list of potential failure-inducing memory access
patterns (line 3). Then we infer locking policies dynamically as
discussed above (line 5). After the locking policy is obtained, we
fix the concurrency bug based on our fixing algorithm shown in
Algorithm 1 (line 6). After applying the fixing, we apply step 4 to
fix the fixed program. Lastly, we test the fixed program (i.e., run
the program 100 times with the help of Java Pathfinder) to check
whether the bug is indeed fixed (line 8). If all the 100 test executions

594

PFix: Fixing Concurrency Bugs Based on Memory Access Patterns ASE ’18, September 3–7, 2018, Montpellier, France

Algorithm 2: Overall Algorithm
input : a buggy program and a test case
output : a fixed program

1 while true do
2 test the buggy program to obtain a set of test executions;
3 obtain a ranked list of failure-inducing pattern P (Step 1);
4 select (and remove) the most suspicious pattern p ;
5 identify locking policy lockP for p (Step 2);
6 f ix (p, lockP) (Step 3);
7 fix the “fixed” program (Step 4);
8 test the fixed program (Step 5);
9 if no failure is generated then

10 break;

Figure 6: The overall structure of PFix

pass, we conclude that the bug is fixed and the algorithm termi-
nates (line 10). If there are still failures observed during the test
executions, we repeat the above process.

4 IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation details of PFix and
the evaluation results.

4.1 Implementation

The proposed method has been implemented in a self-contained
toolkit called PFix. PFix has a total of 4895 line of codes and the
source code is available online at [4]. The overall structure of
PFix is shown in Figure 6. PFix is implemented based on Java
Pathfinder [19], Soot [6], Eclipse AST [3] and Unicorn [42]. PFix
utilizes Java Pathfinder and Unicorn to automatically detect shared
variables among multiple threads, and provides shared memory
access information at run time in step 1. Unicorn is used to automat-
ically identify a ranked list of suspicious memory-access patterns.
Based on the patterns that is obtained from step 1, PFix identifies
the corresponding locking policies based on Java Pathfinder and
Unicorn in step 2. Then PFix implements our fixing method by uti-
lizing Soot and Eclipse AST. Soot is a Java optimization framework.
In this work, we use it to obtain the function call graph of a given
program. The function call graph is necessary in our approach to

handle cases in which statements of a memory-access pattern are
in different functions. In such a case, a call graph generated by
Soot, which allows us to identify the right scope for introducing
synchronized block. Eclipse AST, a part of Eclipse JDT is used to
analyze the program syntactically, find the location that the fix
patch should be inserted and then fine-tune the patch if the added
patch results in compilation errors. In the last step, PFix tests the
fixed program using Java Pathfinder, Eclipse AST and Unicorn.

4.2 Evaluation Settings

Our evaluation subjects include concurrency bugs in Java pro-
grams from multiple existing benchmarks, including the SIR repos-
itory [15, 21], Pecan’s benchmark programs [1] and JaConTeBe [2].
Note that due to limitations of Java Pathfinder (unable to execute
large Java programs), we are not able to apply PFix to all the concur-
rency bugs in the benchmarks. In total, we successfully applied PFix
to 23 concurrency bugs to test our fixing method. The programs
are chosen based on the following reasons. Firstly, our method
focuses on fixing concurrency bugs in Java. Therefore, we target
programs which are written in Java and are known to have con-
currency bugs. Secondly, our approach adopts Java Pathfinder for
bug localization and repair. We thus focus on programs which Java
Pathfinder can handle2. Information on these concurrency bugs are
summarized in Table 3. The actual programs are available in our
Github repository [5].

In the following, we evaluate PFix in term of its effectiveness and
efficiency. All our experiment results are obtained on a computer
with 3.40GHz CPU, 16 GB memory. We use Windows 10 and JDK
1.8. For each concurrency bug, we first run Java Pathfinder 100
times to obtain test executions (which include both failing ones and
passing ones). Unicorn [42] is then executed 100 times to obtain
memory-access patterns in the test executions. Afterwards, we
apply our approach for fixing the bug as discussed in Algorithm 1
based on the most suspicious pattern. After fixing the bug, we run
Java Pathfinder 100 times in order to determine whether the bug
has been fixed. In addition, we run random testing 100 times on
the fixed program in order to further test it. If no bug is reported,
we conjecture that the bug has been fixed. Otherwise, we obtain
suspicious patterns and repeat our approach until either we fix the
program or run out of suspicious patterns. For each fixed program,
we thenmanually inspect whether the bug is truly fixed.We take the
original fix as a reference to check whether PFix fixes the program
correctly.

4.3 Evaluation Results

The evaluation results are shown in Table 3. The first three columns
show the name of the programs, the number lines of the native code
(excluding the invoked library) and the bug type (e.g., atomicity
violation, data race, consistency bug)3. Columns 4 to 7 show the
evaluation results with PFix, including the time (in seconds) used
to identify the potential failure-inducing memory access patterns,
the time used to fix the bug, the number of locks added in order to

2In the future, we plan to replace Java pathfinder with an approach based on code
instrumentation so that our approach is more scalable.
3We use “unknown” to indicate that the root cause of the bug is complicated and it is
hard to classify it into existing types

595

ASE ’18, September 3–7, 2018, Montpellier, France H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, G. Wei

Table 3: Evaluation Results: time is measured in seconds

program name #line type PFix Grail
time for patterns time fixing #lock fix status time fixing (s) #lock fix status

account 102 atomicity violation 22.7 238.75 1 success 3709 5 success
accountsubtype 138 atomicity violation 29.4 21.4 1 success 490 4 success

airline 51 atomicity violation 8.35 16.2 1 success NA NA NA

alarmclock 206 unknown 10.75 113.75 NA fail NA NA NA

atmoerror 48 data race 7.3 5.95 1 success 146 1 fail
buggyprogram 258 atomicity violation 9.45 33.55 2 success 143 1 fail
checkfield 41 atomicity violation 7.15 9.8 2 success NA NA NA

consisitency 28 consistency bug 6.75 9.95 1 success NA NA NA

critical 56 atomicity violation 15.4 14.1 2 success 137 2 fail
datarace 90 data race 8.1 51.15 1 success 152 NA fail
even 49 atomicity violation 7.25 91.15 1 success 155 1 fail

hashcodetest 1,258 atomicity violation 8.45 7.45 1 success 178 2 fail
linkedlist 204 atomicity violation 7.95 35.25 1 success 149 NA fail
log4j 18,799 atomicity violation 22.9 20.35 1 success NA NA NA

mergesort 270 unknown 17.95 204.7 NA fail 630 6 fail
pingpong 130 data race 25.2 23.05 1 success NA NA NA

pool 1,815 unknown 10.95 248.05 NA fail NA NA NA

ProducerConsumer 144 unknown 16 108.2 NA fail 221 1 fail
reorder2 135 consistency bug 7.7 11.9 1 success NA NA NA

store 44 atomicity violation 7.2 5.85 1 success NA NA NA

stringbuffer 416 atomicity violation 7 22.2 1 success 172 NA fail
wrongLock 73 atomicity violation 7.15 5.9 1 success 156 3 success
wrongLock2 36 data race 7.3 16.4 1 success 146 1 fail

fix the bug and the fixing status (success or fail). For each fix, we
manually check whether the fix is correct or not. The data shows
that PFix is able to fix 19 out of 23 in the benchmark. There are
four cases where our method is not able to (completely) fix the bug.
We analyze them one by one in the following.

In the case of the ProducerConsumer program, the original pro-
gram tries to guard a static shared variable with a lock on this
object. Such a locking policy is problematic as there are multiple
instances of the class in the program and different threads lock on
different this objects before accessing the static variable, which is
as good as no locking at all. PFix is able to detect this ill-formed
locking policy and successfully fix it using a shared lock. However,
there is a further issue in the program. That is, if the consumer
threads are very fast, there will be one producer thread waiting
forever. The reason for this issue is that the main method proceeds
to check the result (i.e., an assertion) without waiting for all pro-
ducers to finish. Although it is possible for PFix to find the relevant
failure-inducing memory-access pattern for this issue and fix it
through line 8 in Algorithm 1, PFix times out without success. For
the case of the alarmclock program and the pool program, we man-
ually analyse the source code and found that PFix failed to find
the real failure-inducing memory-access pattern. This is possible
since the test executions are randomly generated and thus the right
failure-inducing pattern may not always be the most suspicious.
For the mergesort program, the identified pattern is composed of
statements from multiple classes. PFix fixed the program by intro-
ducing a shared static object and adding a synchronized block for
each statement in the pattern, which unfortunately introduced a
deadlock. In general, it is possible to introduce deadlocks as PFix

sometimes introduces additional synchronization. Such problems
can be solved using existing approaches on fixing deadlocks [9],
which we leave as future work.

For a baseline comparison, we apply Grail [34], which is the state-
of-the-art concurrency bug fixing tool for Java programs, on the
same set of benchmarks. We remark that other previously reported
tools are either not maintained or target different programming
languages (e.g., AFix [25], AXIS [35] and CFix [26]). Furthermore, it
has been reported in [34] that Grail is stricter better than AFix and
AXIS over a set of benchmarks. The results of Grail are shown in
the last three columns of Table 3. Grail is built based on Pecan [20],
which is a tool for detecting general access anomalies (AAs) in con-
current programs. AAs are similar to the memory-access patterns.
Pecan generates AAs of length 2 to 4. Our inspection of Grail’s
source code shows that Grail is designed to only fix programs with
length 3 AAs (i.e., atomicity violation)4. Among all the 23 programs
in our benchmark, only 4 programs, i.e., account, accountsubtype,
wrongLock and buggyprogram result in AAs of length 3. In order
to run more programs with Grail, we then manually modify the
output of Pecan so that the generated AAs have length of 3. Note
that the AAs are modified in a way such that the cause of the bug
in the original AA is not tampered. After the modification, Grail
successfully runs on 14 benchmarks. The other 9 programs that
cannot be executed by Grail are markedNA in the third last column
of Table 3.

Out of the 14 buggy programs, Grail is able to generate fixes for
11 of them. Our manual inspection, however, shows that only 3 of

4We tried our best to contact the authors of Grail and got no response.

596

PFix: Fixing Concurrency Bugs Based on Memory Access Patterns ASE ’18, September 3–7, 2018, Montpellier, France

them are correct. In the following, we investigate why Grail fails
on many of the benchmarks.

• Grail is unable to fix bugs which are across multiple classes or
methods.We encounter such situations in programs linkedlist,
datarace and stringbuffer where errors are reported by Grail
during the fixing process.

• Grail sometimes fails to identify the correct scope for adding
locks. As a result, bugs remain after the fix. This happens
for programs even and critical.

• Grail has several implementation issues. For instance, if one
AA contains multiple statements at the same line, the fixing
codes may overwrite each other. This happens for program
wrongLock2, buggyprogram, and atmoerror. The result is a
program which has a statement for lock release with no
matching lock acquire statement. In case of hashcodetest, the
fix inserts two lock acquire operations but only one lock
release operation, which results in a deadlock.

• Lastly, Grail may generate run time exceptions when they
are applied to fix certain programs, e.g., program datarace.

There are 4 programs, i.e., alarmclock,mergesort, ProducerConsumer
and pool, that neither PFix nor Grail can fix. All the bugs that can
be fixed by Grail are fixed by PFix.

In terms of efficiency, PFix is more efficient. Its execution time
ranges from a few seconds to a fewminutes, whereas Grail is slower
in most cases. For some cases like the program account, Grail takes
10 times more execution time than PFix. The reason may be because
Grail needs to conduct constraint solving during bug fixing, which
is very time consuming. Furthermore notice that in most cases, PFix
generates a fix which uses less locks than Grail. For all benchmark
programs, PFix introduces at most 2 locks whereas Grail generates
as many as 6 locks. The reason is that PFix is designed to fix the
bug based on the intended locking policy (i.e., using existing locks
unless a locking policy is missing for some variables). Introducing
excessive locks potentially makes the fix hard to comprehend and
increases the likelihood of introducing deadlocks.

4.4 Threats to Validity

In the following, we discuss the threats to validity in our experi-
ments. Firstly, PFix is implemented based on Java Pathfinder. As
a result, we are not able to evaluate our approach with very large
Java programs. While Java Pathfinder provides a good platform for
implementing our approach (e.g., for identifying shared variables
and obtaining status of locks), our method is not restricted to Java
Pathfinder. In the future, we plan to mitigate our implementation
entirely to be based on Soot and Eclipse AST, which hopefully will
enable us to handle larger programs.

Secondly, in step 1 of our approach, we rely on existing approach
to identify a ranked list of failure-inducing memory access patterns.
Such ranking is based on simple statistical measurements and thus
may not be accurate. Although the most suspicious pattern is usu-
ally the correct one in our experiments with the 23 benchmark
programs, in general there is no guarantee that the real failure-
inducing pattern will be the most suspicious. Furthermore, there
may be multiple failure-inducing memory-access patterns. Differ-
ent patterns might lead to different fixes, some of which may be
better than others.

Thirdly, in step 4 of our approach, we verify the fixed program
with random testing. Although we test for 100 times, it is possible
that there are still concurrency bugs that are not revealed. There-
fore, we manually inspect the fix to determine its validity in our
experiments. This problem can be potentially solved by adopting
approaches like symbolic execution or model checking.

Lastly, PFix potentially introduces deadlocks (e.g., the account
program) and/or performance overhead. This is particularly the
case when PFix generates multiple fixes after repeating the fixing
process a few times. This problem can be potentially solved by
applying existing approaches on fixing deadlocks (e.g., [9, 53]) to
the fixed programs.

5 RELATEDWORK

Our approach is inspired and related to mainly three groups of
existing work, i.e., fault detection and localization, memory access
pattern analysis and most importantly, concurrency bug fixing. We
review them below.

Concurrency Bug Fixing. Our work is closely related to the line
of work on fixing concurrency bug. Different approaches have
been proposed to fix concurrency bugs effectively and efficiently.
There are many proposals to fix concurrency bugs by eliminating
erroneous interleaving patterns, e.g., [22, 25, 26, 35]. In particular,
Huang et al. [22] proposed to fix concurrency bugs by inserting
synchronization. Bradbury et al. [8], inspired by the use of genetic
programming in sequential software debugging, proposes to apply
genetic programming to fix concurrency bugs.

There are a few approaches for fixing atomicity violation bugs.
AFix [25] takes the CTrigger’s [41] output as input and adds a mu-
tex lock to the program to fix concurrency bugs. AFix also modifies
CTrigger to output all possible combinations of atomicity-violation
triples and the complete call stack for each atomicity-violation re-
lated statements. It collects each bug report patch and statically
identifies patches that can be merged or optimized to improve
performance or readability (e.g., by removing redundant patches
and merging patches). On the basis of AFix, CFix [26] fixes con-
currency bugs due to order violation. By adding synchronization,
CFix enforces all A-B or first A-B order relationships to fix or-
der violation. CFix also enforces mutual exclusion with the same
method. Axis [35], similar to AFix, fixes atomicity violations by
adding mutual exclusion locks and synchronization measures. Axis
additionally takes efforts to reduce the possibility of introducing
deadlocks. Axis abstracts the source program into Petri net [49] us-
ing the supervisory control theory, i.e., Supervision Based on Place
Invariants (SBPI) [24], which turns the problem of program repair
into a constraint solving problem. AlphaFixer [11] specializes in fix-
ing atomicity violations, it summarizes previous approaches based
on locking. By analyzing the lock acquisitions, AlphaFixer fine-
tunes the locking so that it is possible to reduce the introduction of
deadlocks.

In the name of generating high quality patches, Liu et al. [32]
proposed HFix, which designs fix strategies guided by a survey of 77
manual patches of real-world concurrency bugs. In addition to using
mutex locks, HFix can also use the create and join operations of
threads, while modifying the original locks to achieve the purpose
of fix. Grail [34] fixes concurrency bugs by adding locks in ways

597

ASE ’18, September 3–7, 2018, Montpellier, France H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, G. Wei

similar to AFix and Axis. Compared to AFix, Grail additionally takes
measures for deadlock-freedom. Grail builds a Petri net analysis
model of the buggy program. The model is context-aware and
considers lock alias by adding constraints to the Petri net model.
Compared to Axis, Grail guarantees at least the same concurrency
level if not higher. Grail can be time consuming due to the use of
constraint solving. Besides, Grail fails to consider related variables,
and thus cannot fix multi-variable bugs.

Although a lot of work has been proposed on concurrency bug
fixing, there is still room for improvement (as demonstrated in our
experiments). Our approach distinguishes itself from the above
work in multiple ways. Firstly, our fixing is based on memory ac-
cess patterns, which is the root cause of the concurrency bugs. It
helps us accurately identify the statements which cause the bug.
Although some existing approaches like AFix and CFix use pat-
terns like (p, c, r), which are similar to some of our memory-access
patterns, their approaches are limited to only a few patterns. In
comparison, our set of patterns are shown to be complete [50]. Sec-
ondly, our work fixes concurrency bugs based on inferred locking
policy which allows us to systematically fix bugs throughout the
program as well as fixing bugs which involve multiple variables
(which are not considered by existing tools). Thirdly, PFix is more
comprehensive. For instance, AFix and AlphaFixer focus on fixing
atomicity violations, whereas Grail cannot fix multi-variable bugs.
PFix is able to fix order violations, atomic violations, data races,
which involve multiple variables.

Memory-access Patterns Analysis. The idea of analyzing memory-
access patterns to understand/detect bugs has been explored in
multiple settings. In [37], Lu et al. presented a tool named AVIO and
an empirical study on root cause of 74 real-world concurrency bugs.
AVIO focuses on detecting bugs caused by single-variable atomicity
violations, i.e., one particular memory-access pattern. Falcon [43]
takes multiple test executions as input and computes statistical
measurement for memory-access patterns related to atomicity and
order violations. It then ranks the patterns according to the measure,
i.e., the suspiciousness score. Griffin [40] groups multiple patterns
which are found to be related to a bug. It also provides bug graphs to
help understand the root cause of the bug. Xu et al. [54] presented
an algorithm to identify erroneous event patterns from a failed
execution. It first finds the erroneous switch points and then deter-
mines the patterns related to this erroneous switch point, which
can help users localize the bugs. Unicorn [42] is the first to unify the
use of pattern detection and sequencing to locate non-deadlock con-
currency bugs. It dynamically collects memory access information
and is extended to detect both single-variable and multi-variable
concurrency bugs based on Falcon’s single-variable concurrency
bugs detection. Our approach takes fault related information in
the form of memory access patterns as input and generates fixes
accordingly.

Fault Detection and Localization. Our work is related to the line
of work on fault detection and localization. Extensive research
has been conducted on localizing bugs with different strategies.
Among them, quite a number are designed for sequential pro-
grams [17, 18, 27, 30, 31, 39, 44, 47, 51, 52]. These methods collect
and analyze runtime information of statements or predicates. They
report the suspicious statements or predicates as final results. There

have been a number of proposals on fault localization for multi-
threaded bugs in recent years [7, 23, 36, 38]. CSight [7] generates a
communicating finite state machine (CFSM) model by mining pro-
gram execution logs. Lazy-CSeq [23] works with context-bounded
model checking and supports deadlock detection for concurrent
C programs. Recon [38] provides information related to bug root
causes by showing the scheduling of a test execution. Recon ac-
quires short fragments of inter-thread communications near the
bug root causes, and then applies machine learning techniques to
identify the bug-related fragments. RaceMob [28] combines static
and dynamic bug detection. During the static phase, it uses a static
data race detector to find potential data races. Then RaceMob dy-
namically validates the suspicious data races and updates a list of
data races to developers. Similarly, IteRace [46] is also presented
for race detection. However, IteRace conducts static race detection
in Java parallel loops. There are several approaches [14, 23, 41, 56]
try to expose concurrent bugs by inserting random disturbances
when concurrent programs are accessing shared memory and syn-
chronizing, or controling the thread scheduling. These methods
aim to increase the probability of triggering the rare interleaving
executionswith the assumption that bugsmay be hidden in those ex-
ecutions. However, inserting random delay disturbance may cause
high performance overhead. Several techniques, such as model
checking [16, 19] use Java Pathfinder to find concurrency bugs. In
this work, we apply Java Pathfinder to precisely control thread
scheduling. It leverages controlled executions to check whether
certain patterns are relevant.

6 CONCLUSION

In this work, we propose an approach to automatically fix concur-
rency bugs. Our key idea is to systematically fix concurrency bugs
by inferring locking policies from failure inducing memory-access
patterns. We fix the program by implementing the locking policy
systematically and consistently so that the failure inducingmemory-
access patterns are made impossible. We have implemented our
approach in a toolkit called PFix which targets Java programs. We
applied PFix to a set of 23 concurrency bugs (which range from
dozens of LOC to thousands of LOC) and are able to automatically
fix 19 of them. For future work, with the encouraging results in this
work, we aim to re-implement PFix so that it can be applied for a
variety of real-world programs.

ACKNOWLEDGMENTS

This work is partially funded by projects 61202030, 71502125 from
National Natural Science Foundation of China, project T2MOE1704
from Ministry of Education, Singapore and Special Program of
Artificial Intelligence of Tianjin Municipal Science and Technology
Commission (No.:569 17ZXRGGX00150), and CERNET innovation
project (NO.: NGII20170616).

REFERENCES

[1] 2011. The Pecan Benchmarks. http://www.cse.ust.hk/prism/pecan/#Experiment
[2] 2016. JaConTeBe Object Biography. http://sir.unl.edu/portal/bios/JaConTeBe.php
[3] 2018. Abstract Syntax Tree. http://www.eclipse.org/articles/article.php?file=

Article-JavaCodeManipulation_AST/index.html
[4] 2018. The Fix page. https://github.com/PFixConcurrency/Fix
[5] 2018. The FixExamples page. https://github.com/PFixConcurrency/FixExamples
[6] 2018. The Soot GitHub Project. https://github.com/Sable/soot

598

http://www.cse.ust.hk/prism/pecan/#Experiment
http://sir.unl.edu/portal/bios/JaConTeBe.php
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
http://www.eclipse.org/articles/article.php?file=Article-JavaCodeManipulation_AST/index.html
https://github.com/PFixConcurrency/Fix
https://github.com/PFixConcurrency/FixExamples
https://github.com/Sable/soot

PFix: Fixing Concurrency Bugs Based on Memory Access Patterns ASE ’18, September 3–7, 2018, Montpellier, France

[7] Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy.
2014. Inferring Models of Concurrent Systems from Logs of Their Behavior with
CSight. In Proceedings of the 36th International Conference on Software Engineering.
ACM, 468–479.

[8] Jeremy S Bradbury and Kevin Jalbert. 2010. Automatic repair of concurrency
bugs. In International symposium on search based software engineeringâĂŤfast
abstracts. 1–2.

[9] Yan Cai and Lingwei Cao. 2016. Fixing deadlocks via lock pre-acquisitions. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
2016, Austin, TX, USA, May 14-22, 2016. 1109–1120.

[10] Yan Cai, Lingwei Cao, and Jing Zhao. 2017. Adaptively generating high quality
fixes for atomicity violations. In Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September
4-8, 2017. 303–314.

[11] Y. Cai, L. Cao, and J Zhao. 2017. Adaptively generating high quality fixes for
atomicity violations. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (2017), 303–314.

[12] Yan Cai and W. K Chan. 2012. MagicFuzzer: scalable deadlock detection for large-
scale applications. In International Conference on Software Engineering. 606–616.

[13] Yan Cai, Jian Zhang, Lingwei Cao, and Jian Liu. 2016. A deployable sampling
strategy for data race detection. In Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA,
USA, November 13-18, 2016. 810–821. https://doi.org/10.1145/2950290.2950310

[14] Lee Chew and David Lie. 2010. Kivati: fast detection and prevention of atomic-
ity violations. In European Conference on Computer Systems, Proceedings of the
European Conference on Computer Systems, EUROSYS 2010, Paris, France, April.
307–320.

[15] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting Con-
trolled Experimentation with Testing Techniques: An Infrastructure and its Po-
tential Impact. Empirical Software Engineering 10, 4 (2005), 405–435.

[16] Patrice Godefroid. 1997. Model checking for programming languages using
VeriSoft. In ACM Sigplan-Sigact Symposium on Principles of Programming Lan-
guages. 174–186.

[17] Dan Hao, Tao Xie, Lu Zhang, Xiaoyin Wang, Jiasu Sun, and Hong Mei. 2010. Test
Input Reduction for Result Inspection to Facilitate Fault Localization. Automated
Software Engineering Journal 17, 1 (March 2010), 5–31.

[18] Dan Hao, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. 2009. Interactive Fault
Localization Using Test Information. Journal of Computer Science and Technology
24, 5 (2009), 962–974.

[19] Klaus Havelund and Thomas Pressburger. 2000. Model checking JAVA programs
using JAVA PathFinder. International Journal on Software Tools for Technology
Transfer 2, 4 (2000), 366–381.

[20] Jeff Huang and Zhang C. 2011. Persuasive prediction of concurrency access
anomalies[C]. International Symposium on Software Testing and Analysis (2011),
144–154.

[21] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Pre-
dictive Race Detection with Control Flow Abstraction. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
337–348.

[22] Jeff Huang and Charles Zhang. 2012. Execution privatization for scheduler-
oblivious concurrent programs. In ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications. 737–752.

[23] Omar Inverso, Truc L Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro
Parlato. 2015. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-
threaded C-Programs. Automated Software Engineering (2015), 807–812.

[24] Antsaklis P J Iordache M V. 2006. Supervision Based on Place Invariants: A
Survey. Discrete Event Dynamic Systems (2006), 451–492.

[25] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
atomicity-violation fixing. Acm Sigplan Notices 46 (2011), 389–400.

[26] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. 2012. Auto-
mated concurrency-bug fixing. In Usenix Conference on Operating Systems Design
and Implementation. 221–236.

[27] James A. Jones andMary Jean Harrold. 2005. Empirical evaluation of the tarantula
automatic fault-localization technique. In Ieee/acm International Conference on
Automated Software Engineering. 273–282.

[28] Baris Kasikci, Cristian Zamfir, and George Candea. 2013. RaceMob: Crowdsourced
data race detection. In Twenty-Fourth ACM Symposium on Operating Systems
Principles. 406–422.

[29] Sepideh Khoshnood, Markus Kusano, and Chao Wang. 2015. ConcBugAssist:
Constraint solving for diagnosis and repair of concurrency bugs. In Proceedings
of the 2015 International Symposium on Software Testing and Analysis. ACM,
165–176.

[30] Xiangyu Li, Marcelo DâĂŹAmorim, and Alessandro Orso. 2016. Iterative User-
Driven Fault Localization. In Hardware and Software: Verification and Testing:
12th International Haifa Verification Conference, HVC 2016, Haifa, Israel, November
14-17, 2016, Proceedings.

[31] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and Michael I Jordan. 2005.
Scalable statistical bug isolation. In ACM Sigplan Conference on Programming

Language Design and Implementation. 15–26.
[32] Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and Generating

High Quality Patches for Concurrency Bugs. In The International Symposium on
the Foundations of Software Engineering.

[33] P. Liu, J. Dolby, and C. Zhang. 2013. Finding incorrect compositions of atomicity.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(2013), 158–168.

[34] Peng Liu, Omer Tripp, and Charles Zhang. 2014. Grail: context-aware fixing
of concurrency bugs. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 318–329.

[35] Peng Liu and Charles Zhang. 2012. Axis: Automatically fixing atomicity viola-
tions through solving control constraints. In Proceedings of the 34th international
conference on software engineering. IEEE Press, 299–309.

[36] Shuang Liu, Guangdong Bai, Jun Sun, and Jin Song Dong. 2016. Towards Using
Concurrent Java API Correctly. In Engineering of Complex Computer Systems
(ICECCS), 2016 21st International Conference on. IEEE, 219–222.

[37] S. Lu, Soyeon Park, and Yuanyuan Zhou. 2011. Detecting Concurrency Bugs from
the Perspectives of Synchronization Intentions. IEEE Transactions on Parallel &
Distributed Systems 23 (2011), 1060–1072.

[38] Brandon Lucia, Benjamin P. Wood, and Luis Ceze. 2011. Isolating and understand-
ing concurrency errors using reconstructed execution fragments. Acm Sigplan
Notices 46 (2011), 378–388.

[39] Frolin S. Ocariza Jr., Karthik Pattabiraman, and Ali Mesbah. 2012. AutoFLox: An
Automatic Fault Localizer for Client-Side JavaScript. In Proceedings of the 2012
IEEE Fifth International Conference on Software Testing, Verification and Validation.
IEEE Computer Society, Washington, DC, USA, 31–40.

[40] Sangmin Park, Mary Jean Harrold, and Richard Vuduc. 2013. Griffin: grouping
suspicious memory-access patterns to improve understanding of concurrency
bugs. In ACM SIGSOFT International Symposium on Software Testing and Analysis.
134–144.

[41] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: exposing atomicity
violation bugs from their hiding places. Acm Sigplan Notices 44 (2009), 25–36.

[42] Sangmin Park, Richard Vuduc, and Mary Jean Harrold. 2012. A unified approach
for localizing non-deadlock concurrency bugs. In 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation. IEEE, 51–60.

[43] Sangmin Park, RichardWVuduc, andMary Jean Harrold. 2010. Falcon: fault local-
ization in concurrent programs. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1. ACM, 245–254.

[44] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the International Conference on Software Engineering
(ICSE).

[45] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. 2005. Java Concurrency in Practice. Addison-Wesley Professional.

[46] Cosmin Radoi and Danny Dig. 2015. Effective Techniques for Static Race De-
tection in Java Parallel Loops. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 4 (September 2015), 24:1–24:30.

[47] Abreu Rui, Peter Zoeteweij, and Arjan J. C. VanGemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - Mutation, 2007. Taicpart-Mutation. 89–98.

[48] K. Sen. 2008. Race directed random testing of concurrent programs. ACM Sigplan
Notices 43, 6 (2008), 11–21.

[49] Murata T. 1989. Petri nets: Properties, analysis and applications. Proc IEEE (1989),
541–580.

[50] Mandana Vaziri, Frank Tip, and Julian Dolby. 2006. Associating Synchronization
Constraints with Data in an Object-oriented Language. In Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 334–345.

[51] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the Use-
fulness of IR-based Fault Localization Techniques. In Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM, New York, NY,
USA, 1–11.

[52] Shaowei Wang, David Lo, Lingxiao Jiang, Lucia, and Hoong Chuin Lau. 2011.
Search-based Fault Localization. In Proceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering. IEEE Computer Society,
556–559.

[53] Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S Mahlke. 2009. The theory of
deadlock avoidance via discrete control. In ACM SIGPLAN Notices 44, 1 (2009),
252–263.

[54] Jing Xu, Yu Lei, Richard Carver, and David Kung. 2013. Dynamic Approach to
Isolating Erroneous Event Patterns in Concurrent Program Executions. Springer
Berlin Heidelberg, 97–109.

[55] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. 2011. How Do Fixes Become Bugs?. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering. 26–36.

[56] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple:
A coverage-driven testing tool for multithreaded programs. Acm Sigplan Notices

599

https://doi.org/10.1145/2950290.2950310

ASE ’18, September 3–7, 2018, Montpellier, France H. Lin, Z. Wang, S. Liu, J. Sun, D. Zhang, G. Wei

47 (2012), 485–502.
[57] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin,

Shan Lu, and Thomas Reps. 2011. ConSeq: detecting concurrency bugs through

sequential errors. Architectural Support for Programming Languages and Operating
Systems 46, 3 (2011), 251–264.

600

	PFix: Fixing concurrency bugs based on memory access patterns
	Citation
	Author

	Abstract
	1 Introduction
	2 Motivating Example
	3 Details of the Approach
	3.1 Step 1: Identify Memory Access Patterns
	3.2 Step 2: Identify Locking Policy
	3.3 Step 3: Fix Bugs
	3.4 Step 4: Fix the Fixed Program
	3.5 Step 5: Test the Fixed Program
	3.6 Overall Algorithm

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Evaluation Settings
	4.3 Evaluation Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

