
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

9-2018 

Break the dead end of dynamic slicing: localizing data and control Break the dead end of dynamic slicing: localizing data and control 

omission bug omission bug 

Yun LIN 

Jun SUN 
Singapore Management University, junsun@smu.edu.sg 

Lyly TRAN 

Guangdong BAI 

Haijun WANG 

See next page for additional authors 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Programming Languages and Compilers Commons, and the Software Engineering 

Commons 

Citation Citation 
LIN, Yun; SUN, Jun; TRAN, Lyly; BAI, Guangdong; WANG, Haijun; and DONG, Jin Song. Break the dead end 
of dynamic slicing: localizing data and control omission bug. (2018). 33rd ACM/IEEE International 
Conference on Automated Software Engineering (ASE 2018), Corum, Montpellier, France, September 3-7. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4654 

This Conference Paper is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4654&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4654&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Author Author 
Yun LIN, Jun SUN, Lyly TRAN, Guangdong BAI, Haijun WANG, and Jin Song DONG 

This conference paper is available at Institutional Knowledge at Singapore Management University: 
https://ink.library.smu.edu.sg/sis_research/4654 

https://ink.library.smu.edu.sg/sis_research/4654


Break the Dead End of Dynamic Slicing: Localizing Data and
Control Omission Bug

Yun Lin
National University of Singapore,

Singapore

Jun Sun
Singapore University of Technology

and Design, Singapore

Lyly Tran
Singapore University of Technology

and Design, Singapore

Guangdong Bai
Singapore Institute of Technology,

Singapore

Haijun Wang
Nanyang Technological University,

Singapore

Jinsong Dong
National University of Singapore,

Singapore

ABSTRACT

Dynamic slicing is a common way of identifying the root cause
when a program fault is revealed. With the dynamic slicing tech-
nique, the programmers can follow data and control flow along the
program execution trace to the root cause. However, the technique
usually fails to work on omission bugs, i.e., the faults which are
caused by missing executing some code. In many cases, dynamic
slicing over-skips the root cause when an omission bug happens,
leading the debugging process to a dead end. In this work, we con-
duct an empirical study on the omission bugs in the Defects4J bug
repository. Our study shows that (1) omission bugs are prevalent
(46.4%) among all the studied bugs; (2) there are repeating patterns
on causes and fixes of the omission bugs; (3) the patterns of fixing
omission bugs serve as a strong hint to break the slicing dead end.
Based on our findings, we train a neural network model on the
omission bugs in Defects4J repository to recommend where to ap-
proach when slicing can no long work. We conduct an experiment
by applying our approach on 3193 mutated omission bugs which
slicing fails to locate. The results show that our approach outper-
forms random benchmark on breaking the dead end and localizing
the mutated omission bugs (63.8% over 2.8%).

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Maintaining software;

KEYWORDS

debugging, program slice, omission error, empirical study

ACM Reference Format:

Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong
Dong. 2018. Break the Dead End of Dynamic Slicing: Localizing Data and
Control Omission Bug. In Proceedings of the 2018 33rd ACM/IEEE Interna-

tional Conference on Automated Software Engineering (ASE ’18), Septem-

ber 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3238147.3238163

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’18, September 3–7, 2018, Montpellier, France

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00
https://doi.org/10.1145/3238147.3238163

1 INTRODUCTION

A software fault is observed when the defect is propagated from
the root cause through control and data flow. In order to track the
fault back to its root cause, programmers usually need to trace
through incorrect data and control flow to locate the bug. From this
perspective, dynamic slicing is a useful and efficient approach for
debugging. Each time a programmer finds an unexpected step or a
step with variable of incorrect value, he or she can apply dynamic
slicing to locate the step responsible for it.

However, dynamic slicing can only track through the executed
code. It means that it cannot locate bugs caused by missing execut-
ing some code, i.e., the omission bug [35]. When an omission bug
happens, dynamic slicing starts with a step with incorrect data or
control flow and stops at a step where everything is correct, causing
a dead end where slicing can no longer work.

Many research work [12, 20, 25, 28, 35] have been proposed
to enhance dynamic slicing for locating omission bugs. Zhang et
al. [35] first proposed a force-execution technique to include more
results than reported by dynamic slicing. In their approach, they
force the program to exercise the branches of unexecuted code
to expose implicit dependencies among executed and unexecuted
code. Similar to their work, Wang et al. [28] proposed their relevant
slicing algorithm on Java byte code trace, aiming to include the
relevant unexecuted code into the slicing result. In recent years,
Sakuai et al. [25] enhanced Zhang and Wang’s work [28, 35] with
point-to-analysis technique.

However, all the above approaches have an underlying assump-
tion that the unexecuted code exist in the project (i.e., execution
omission) so that they can analyze the source code and alter the
control flow towards them. Such an assumption may not always
hold in practice. Our empirical study (see Section 3) shows that the
miss-executed code in most of omission bugs does not exist in the
project (i.e., code omission).

In this work, we aim to understand omission bugs in a more
fundamental way. We would like to answer the question like how
prevalent the omission bugs are, how they are caused, and whether
they share some patterns guiding us to automate their localization.
To this end, we conduct an empirical study on omission bugs in
Defects4J bug repository. First, we confirm that omission bugs are
prevalent indeed, which accounts for 46.4% of our checked bugs.
Second, we find that the omission bugs caused by incorrect data
and control flow are very different in terms of their causes and
difficulty of being localized. Lastly, we observe that the number of

509



ASE ’18, September 3–7, 2018, Montpellier, France Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong

categories for causes of omission bugs are very limited, which is a
good indication for automating their localization.

Based on our findings, we build a neural networkmodel to predict
where to break the dead end of an omission bug when slicing
can no longer work. We first collect the training data from the
omission bugs in Defects4J repository. Based on the most common
cause of omission bugs, we mutate 3193 omission bugs from 5
open source projects, the result shows that our model can achieve
84.1%, 66.5%, and 50.0% predication accuracy for various omission
bugs (more details at Section 5). Moreover, we conduct a simulated
debugging experiment, which simulates how programmer tracking
incorrect data and control flow through slicing to locate those
mutated omission bugs. Our results show that, equipped with our
prediction model for breaking the dead end of dynamic slicing,
our approach outperforms random benchmark on localizing the
mutated omission bugs (63.8% over 2.8%).

In this paper, we make the following contributions: (1) We con-
duct an empirical study to comprehensively study the omission
bugs in Defects4J repository. We confirm their prevalence, provide
a taxonomy for their causes, and show patterns to potentially guide
the automation of their localization. (2) We build a tool for this
empirical study which can visualize, compare, and apply step-wise
slicing on the buggy and fixed trace for Defects4J bugs. (3) We build
a prediction model for breaking the dead end of omission bug when
slicing can no long work. (4) We conduct a simulated debugging
experiment to confirm the effectiveness of our prediction model.

2 OMISSION BUG CONCEPTS AND
EXAMPLES

In this section, we define omission bug and showmultiple examples
of them. First, we assume a ground truth version (or fixed version)
of the buggy program so that we know the correctness of its execut-
ing steps. More specifically, given a step on the trace of the buggy
program, we know (1) whether it should happen, and (2) whether
the value of any of its used variables is correct. Such an assumption
can be fulfilled in practice either by requiring programmer’s feed-
back or by comparing the traces of buggy and fixed versions of a
program. In this regard, comparing to the traditional omission error
defined for execution omission (i.e., bug due to missing executing
existing code) [35], we extend the definition from a trace point of
view which includes both execution omission [35] and code omis-
sion (bug due to missing some code). In the following, we note the
kth step on trace π as πk (k ∈ N, k starts at 1).

Definition 1. Data Dependency Path. Let π be a trace and πd
and πr be two steps of π such that r > d . If πd defines a variable var
and πr uses var , and there does not exist a step πk where d < k < r
such that πk defines var , we call the path from πd to πr as a data

dependency path with regard to var , noted as 〈πd ,πu 〉[var ]. In
addition, we call πd as the data dominator of πu .

Definition 2. Data Omission Bug. Given a data dependency

path 〈πd ,πu 〉[var ], if the value of variablevar is incorrect on πu and

correct on πd , then we say that a data omission bug, b, happens. We

call the path 〈πd ,πu 〉[var ] as b’s critical path and variable var as
b’s critical variable.

πl2 πl16... ......
minimum

πl12 ...
Figure 1: Critical Path of Data Omission Bug

Data omission bug indicates the critical variable should have been
redefined before the end of critical path.
Example. Listing 1 shows an example of a data omission bug,
which comes from the 2nd bug of Chart project in Defects4J repos-
itory. The bug is caused by missing assigning values to minimum
and maximum variables in a corner case (line 8–11). From a debug-
ging point of view, the programmer may observe that the value of
minimum variable is unexpected to be Infinity at line 16 and apply
dynamic data slicing to reach line 2 where minimum is initialized.
Figure 1 shows the critical path of such a data omission bug. We
note πln as the step executing line n. In this critical path, the critical
variable is minimum. Moreover, it is a data dependency path starts
from πl2 where minimum is defined and ends at πl16 where minimum
is used, and no step in between πl2 and πl16 redefines minimum.

1 public static Range iterateDomainBounds(...){
2 double minimum = Double.POSITIVE_INFINITY;
3 double maximum = Double.NEGATIVE_INFINITY;
4 ...
5 if (..) {
6 for (...) {
7 for (...) {
8 + if (!Double.isNaN(value)) {
9 + minimum = Math.min(minimum, value);
10 + maximum = Math.max(maximum, value);
11 + }
12 uvalue = getEndXValue(series, item);
13 }
14 }
15 }
16 if (minimum > maximum) {
17 return null;
18 }
19 ...
20 }

Listing 1: Example of Data Omission Bug

Definition 3. Control Dependency Path. Given two steps πc ,
πf such that c < f , πc executing nc and πf executing nf , we call
a path from πc to πf as a control dependency path if nf control-

depended1 on nc , and, there does not exist a step πk (c < k < f )
executing nk and nf control-depends on nk . We denote the condition

of πc as con and the control dependency path as < πc ,πf > (con). In
addition, we call πc as the control dominator of πk .

Definition 4. Control Omission Bug. Given a control depen-

dency path 〈πc ,πk 〉(con), if πk should not happen and πc is correct,
then we say that a control omission bug happens. We call such a

control dependency path 〈πc ,πk 〉(con) as buд’s critical path.

Control omission bug indicates the control flow in between the
critical path should have been altered to avoid the step at its end.
Example. Listing 2 shows an example of a control omission bug,
which comes from the 3rd bug of Math project in Defects4J reposi-
tory. The bug is caused by missing the code to return in a corner
case (line 6–7). From a debugging point of view, the programmer
may observe that line 9 is unexpectedly executed and he can apply
dynamic control slicing to reach line 3 where the condition len !=

1 A more detailed definition on static control dependency can be referenced in [21]

510



Break the Dead End of Dynamic Slicing: Localizing Data and Control Omission Bug ASE ’18, September 3–7, 2018, Montpellier, France

b.len is correctly evaluated to false. The critical path of such a
control omission bug is showed in Figure 2.

1 public double linearCombination(){
2 ...
3 if (len != b.length)
4 throw new DimensionMismatchException(len, b.length);
5 ...
6 +if (len == 1)
7 + return a[0] * b[0];
8 final double[] prodHigh = new double[len];
9 double prodLowSum = 0;
10 ...
11 }

Listing 2: Example of Control Omission Bug

πl3 πl9... ......
len != b.length

πl8 ...
Figure 2: Critical Path of Control Omission Bug

Definition 5. Occur Step and Dead End Step. Let p be the

critical path of a control or data omission bug, b, which starts at πs
and ends at πe , we call πs and πe as the dead end step and occur

step of b respectively.

Definition 6. Break Step. Let b be an omission bug on trace π ,
and the trace after b is fixed be π ′. The break step of b is either (1) a

step before which the fix is applied 2 or (2) an incorrect step in between

the occur step and the dead end step which allows programmers to

apply dynamic slicing for approaching the root cause.

Example. Figure 3 shows an example for the first and second
condition in Definition 6 for Listing 1. In Figure 3, the upper trace
π is buggy, and the lower trace π ′ is obtained from applying the
fix. Each rectangle indicates a trace step and its name πln means
the line number n it visits. The dotted lines represent the matching
relation between two traces, the solid lines represent the data flow,
and the dash lines represent the control flow. In such case, πl12
(the grey rectangle with solid border) is regarded as the break step
according to the first condition, as the fix is applied before this step.

π’l3

πl3 πl12

π’l8 π’l9 π’l10 π’l11 π’l12 π’l16

πl16

... ... ......

... ... ... ...
minimum

minimum

... πl8

Figure 3: Example of Break Step

Now, let us assume that code in line 8–11 of Listing 1 has already
existed in the buggy version (i.e., they are not the fix) and πl3 is still
the data dominator of πl16 with regard to variable minimum because

2 Note that it is possible to have more than one fix options for an omission bug, in
such case, we regard the step before which any possible fix option is applied as the
break step.

Figure 4: Study Setup

line 9 is not executed. As showed in Figure 3, line 8 will be executed
at πl8, which indicates that the condition !Double.isNaN(value)
is evaluated to be false. In such case, πl8 is regarded as the break
step according to the second condition as it allows us to apply
dynamic slicing to further approaching the root cause.

3 EMPIRICAL STUDY

In order to have a thorough understanding of data and control
omission bugs, we conduct an empirical study on Defects4J reposi-
tory [11] with the following research questions:

• RQ1: How prevalent are the omission bugs with regard to
all the bugs in repository.

• RQ2:What are the main reasons for omission bugs in repos-
itory?

3.1 Study Setup – Identifying Omission Bugs

Figure 4 shows how we process each Defects4J bug in our empirical
study. Defects4J repository describes each bug by its buggy version,
its fixed version, and the test cases which fail in the buggy version
and pass in the fixed version. Given a Defects4J bug and its failing
test case, we first collect the trace of its buggy version and that
of its fixed version (Step 1). Then, we leverage a trace matching
technique to align the steps between the buggy trace and the fixed
trace (Step 2). With the reference to the fixed trace, as indicated by
the matching results, we can know each step on the buggy trace
is either correct or incorrect from data (reading wrong variables)
or control (should not happen) point of view. Then, we simulate
programmers’ debugging process on the buggy trace (Step 3). More
specifically, starting from the end of the buggy trace where the
fault is revealed, we continuously conduct dynamic data slicing (if
a step reads incorrect variable) and dynamic control slicing (if a
step should not happen). After the debugging process stops and
the root cause cannot be located in such a manner, we know the
dynamic slicing comes to a dead end and it is an omission bug.

3.1.1 Trace Collection and Matching. When collecting the program
trace, we not only sequentially collect the executed statements, we
also build the data and control dependencies for the trace steps. We
improved Zhang’s control-flow based trace matching algorithm [30,
35] to make it work on two traces with different source code. Our
improvement is tomatch trace stepswith regard to the code changes.
For example, if a if keyword is modified to a while, the steps
influenced by the if-condition should be matched to steps in the
first iteration of the while-loop. Based on the matching result, each
step on the buggy trace, whose source code is not modified, can fall
into either of the following categories:

511



ASE ’18, September 3–7, 2018, Montpellier, France Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong

Algorithm 1: Debugging Simulation

Input :a fault-revealing step stepf on the buggy trace
Output :a critical path pathc

1 stepd , stepprev ← stepf ;

2 while stepd is not correct and stepd .source is not fixed do

3 stepprev ← stepd ;

4 if stepd is data incorrect then

5 var ← incorrect variable on stepd ;

6 stepd ← data_dom(stepd , var );

7 else if stepd is control incorrect then

8 stepd ← control_dom(stepd );

9 end

10 if stepd is correct then

11 if stepprev is data incorrect then

12 var ← incorrect variable on stepprev ;

13 return < stepd , stepprev >[var ];

14 else if stepprev is control incorrect then

15 con ← conditional expression on stepd ;

16 return < stepd , stepprev >(con);

17 end

18 else

19 return null ; // stepd .source is fixed

20 end

• correct: the step can be matched with a step on the fixed
trace and all its read variables has the same value as its
matched step.

• data incorrect: the step can be matched with a step on the
fixed trace and some of its read variable has different value
from that of its matched step.

• control incorrect: the step cannot be matched with any
step on the fixed trace.

3.1.2 Debugging Simulation. Algorithm 1 depicts how our debug-
ging simulation process identify omission bug. In the debugging
process, we continuously apply dynamic data or control slicing on
the buggy trace until the process goes into a dead end or finds the
root cause. We consider the bug is an omission bug in the former
case.

In Algorithm 1, we start the simulated debugging at the end of
the buggy trace, which is where the fault is revealed. If the work-
ing step (stepd ) is data incorrect, we find its data dominator (see
Definition 2) by dynamic data slicing (line 4–6). If the working step
is control incorrect, we find its control dominator (see Definition 3)
by dynamic control slicing (line 7–8). The process continues until
the working step is correct (i.e., dead end) or the source code is
modified as a fix (line 2). In the former case, we consider an omis-
sion bug happens. We record the critical path (see Definition 2 and
4) as either 〈stepd , stepprev 〉[var ] or 〈stepd , stepprev 〉(con) for the
omission bug (line 10–17).

3.2 Implementation

We build an Eclipse plugin called Tregression to visualize the bugs
in Defects4J repository. A snapshot and demo video of our tool
is available on its Github website [1]. In our tool, we visualize
the buggy trace and its fixed trace on left and right panel. Users
can click the step on either trace to (1) check its read and written

Table 1: Overview of Omission Bug Prevalence

Simulation Result
Project

Total
Chart Closure LangMathMockito Time

Omission

bugs

Control 7 5 24 16 8 6 67
Data 5 12 9 12 2 4 43

Localizable

bugs
14 7 27 44 20 15 127

Discarded

bugs

Non-

deterministic
0 13 1 0 1 1 16

Not applicable

for slicing
0 17 3 2 7 1 30

Over-long

trace
0 79 1 32 0 0 112

Total 26 133 65 106 38 27 395

variables, (2) compare its corresponding step on the other trace,
and (3) compare the code before and after the fix. Moreover, users
can apply dynamic data and control slicing operation on each step.

3.3 Study Result

3.3.1 RQ1: Omission Bug Prevalence. Table 1 shows an overview
of omission bugs in Defects4J repository.

First, 237 out of 395 bugs are applicable for this study. We discard
158 bugs because of the following three reasons: (1) the bug is a
non-deterministic program (our trace matching algorithm requires
stable trace to replay the bug), (2) the buggy trace only contain
correct step, or (3) either the buggy trace or the fixed trace is over-
long (i.e., over 100K steps). We justify discarding the bugs due to
the second and third reason as follows.

As for the second reason, Listing 3 shows an example, which is
the simplified version of the 18th bug of Time project in Defects4J
repository. In this bug, the buggy versionmiss enclosing the method
invocation iGregorianChronology.getDateTimeMillis() with
try-catch block. It results in the termination of buggy version with
an exception at line 4. In contrast, the fixed version does not termi-
nate at line 4 and continue its execution to line 6. As a result, every
step in buggy trace is correct except that the trace misses some steps
(for catching the exception). In this case, our simulated debugging
approach is not applicable as the slicing technique cannot work.
Moreover, such bugs are also not our interested omission bugs.

1 public long getDateTimeMillis(...) {
2 ...
3 + try{
4 instant = iGregorianChronology.getDateTimeMillis
5 (year, monthOfYear, ...)
6 + }catch (IllegalFieldValueException ex) {
7 + ...
8 + }
9 ...
10 }

Listing 3: Example of the Bug Unapplicable for Slicing

As for the third reason, we discard the bug with trace length
over 100K for the limited scalability of existing Java trace collection
tool [16]. We will discuss more about this issue in Section 3.4.

Of the 237 bugs we studied, 110 bugs (46.4%) are reported as omis-
sion bugs by Algorithm 1, i.e., tracking incorrect data and control
cannot lead to the root cause. Of all the omission bugs we detected,
the control omission bugs account for 60.9% (67/110) and the data

512



Break the Dead End of Dynamic Slicing: Localizing Data and Control Omission Bug ASE ’18, September 3–7, 2018, Montpellier, France

(a) Control Omission Bug (b) Data Omission Bug

Figure 5: Critical Path Length

(a) Control Omission Bug (b) Data Omission Bug

Figure 6: Over-skipped Step Number

omission bugs account for 39.1% (43/110). Thus, we conclude that:

Omission bug is prevalent among all the Defects4J repository,
and control omission bugs are of comparable proportion as data
omission bugs.

Moreover, we further investigate the critical path length and
over-skipped step number (i.e., distance between the break step
and the dead end step, see Definition 6) for each omission bug.
Critical path length indicates the worst effort for a programmer
to manually break the dead end of an omission bug. In contrast,
over-skipped step number indicates the effort to break the dead end
of an omission bug if a programmer sequentially check through
the trace from the dead end step. Figure 5 and Figure 6 show the
distribution of critical path length and over-skipped step number
of control and data omission bugs respectively.

In both figures, we can observe that control omission bugs show
different characteristics from data omission bugs. First, both the
average critical path length and the average over-skipped step
number in control omission bugs are smaller than that in data
omission bug. More specifically, average critical path length of
control omission bugs is 138.9 and that of data omission bugs is
1095.5, in contrast, average over-skipped step number of control
omission bugs is 32.2 and that of data omission bugs is 432.2. Second,
as showed in Figure 6b, one data omission bug has the phenomenon
of “under-skip”, that is, the root cause happens before the dead end
step.

In summary, we conclude that:

In general, data omission bugs are harder to be localized than
control omission bugs. Moreover, seldom as it is, the root cause
of the bug may happen before the dead end step in data omission
bugs.

3.3.2 RQ2: Omission Bugs Taxonomy. For those 110 bugs, we fur-
ther studied how those omission is fixed in Defects4J repository.

Control Omission Bugs Taxonomy. From a syntactic point of view,
we summarize 5 categories of control omission bugs, i.e., missing
if-block, missing if-throw, invoking different method, missing try-
catch block, and passing wrong parameter.
Missing if-block. A condition is missed in the code. This category
includes missing if, for, while condition. Note that their block
bodies do not include throw statement.
Missing if-throw. A condition is missed in the code. This category
includes missing if, for, while condition and their block bodies
include throw statement.
Invoking incorrect method. The control flow is unexpectedly
altered by calling an incorrect method. Thus, all the follow-up
steps incurred by that method invocation are control incorrect. A
typical scenario is the misuse of polymorphism, for example, the
programmer forget to override a method in the superclass.
Missing try-catch block. Try-catch block can be considered as
an alternative of if-else-block. Missing a try-catch block can lead
program to crash out of unexpected exception. As an example in
Listing 4 (from the 83th bug of Mockito project), the buggy program
is unexpectedly terminated in line 3 out of a CmdLineException.

1 public int parseArguments(Parameters params){
2 ...
3 - String param = params.getParameter(0);
4 + String param = null;
5 + try {
6 + param = params.getParameter(0);
7 + } catch (CmdLineException e) {}
8 }

Listing 4: Example of Missing Try-Catch Block

Passing wrong parameter. For such a category, an expected ex-
ception does not happen because of passing wrong parameter dur-
ing a method invocation. Listing 5 shows an example (from 4th
bug of Time project), the program is not supposed to run into line
10 as an expected exception is supposed to happen at line 7. Trac-
ing through dynamic control flow leads to line 3, which causes an
omission bug.

1 public Partial with(...){
2 ...
3 if(...){
4 return;
5 }
6 ...
7 - Partial newPartial = new Partial(iChronology, newTypes, newValues);
8 + Partial newPartial = new Partial(newTypes, newValues, iChronology);
9 ...
10 return newPartial;
11 }

Listing 5: Example of Passing Wrong Parameter

Strictly, missing if-throw is a special case of missing if-block, we
make them exclusive as the follow reasons. From the perspective
of occur step (see Definition 5, i.e., where the fault is revealed)
and where is the root cause, we divide the influence of a control

513



ASE ’18, September 3–7, 2018, Montpellier, France Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong

omission bug into intra-method and inter-method. If both occur
step and root cause are within a method, we regard the influence
as intra-method, otherwise, we regard it as inter-method. The in-
fluence of missing if-block is intra-method, while that of missing
if-throw is sometimes inter-method. For example, line 8 in Listing 6
is unexpectedly executed because guess() method (line 7) misses
a if-throw inside its method body. In such case, where the fault is
revealed (i.e., occur step) is not within the same method of the root
cause, we regard its influence is inter-method.

1 public void testMath844(...){
2 ...
3 if(...){
4 return;
5 }
6 ...
7 guesser.guess();
8 }

Listing 6: Example of If-Throw

0
5

10
15
20
25
30
35
40
45
50

missing if-
block

missing if-
throw

invoke
different
method

missing try-
catch block

pass wrong
parameter

Figure 7: Solution for Control Omission Bug

Figure 7 shows the distribution of all these categories. We can
see that the majority of control omission bug is caused by missing
if-block and missing if-throw while the rest ones are the minority.

Data Omission Bugs Taxonomy. Still from a syntactic point of
view, we summarize 4 categories of solution for data omission bugs,
i.e., missing assignment, incorrect evaluated condition, incorrect
condition, invoking new method, and missing if-block. It is straight-
forward to see how missing an assignment leads to a data omission
bug. Thus, we explains other three categories.

1 private Cluster<T> getNearestCluster(...) {
2 ...
3 Cluster<T> minCluster = null;
4 for (Cluster<T> c : clusters) {
5 double distance = point.distanceFrom(c.getCenter());
6 if (distance < minDistance) {
7 minDistance = distance;
8 minCluster = c;
9 }
10 }
11 return minCluster;
12 }

Listing 7: Example of Incorrect Evaluated Condition

Incorrect evaluated condition. Incorrect evaluated condition al-
ters the control flow to avoid the redefinition of the critical variable
(see Definition 2). Listing 7 shows an example (from the 79th bug
of Math project). The value of variable minCluster at line 11 is

null, which is caused by the fact that the condition distance <
minDistance (line 6) never been true and line 8 is never executed.
Incorrect condition. Different from incorrect evaluated condition,
incorrect condition avoids the redefinition of the critical variable
because of incorrect boolean expression in code. Listing 8 shows
an example (from the 43th bug of Math project). The value vari-
able (line 5) is not incremented due to incorrect comparison for
varianceImpl and variance in code.

1 public void addValue(...){
2 ...
3 -if (!(varianceImpl instanceof Variance))
4 +if (varianceImpl != variance)
5 varianceImpl.increment(value);
6 ...
7 }

Listing 8: Example of Incorrect Condition

Miss invoking method.Miss invoking method can be regarded
as a special case of missing assignment. The difference lies in that
the new method is usually the library method which assigns a field
inside a library class. For example, the invocation of java.util.-
Calendar.getTime() sets its fields[0] field.

0

2

4

6

8

10

12

14

16

18

missing
assignment

incorrect
evaluated
condition

incorrect
condition

invoking new
method

Figure 8: Data Omission Bug Cateogry

Figure 8 shows the distribution of all these categories. Compared
to Figure 7, the distribution of categories of data omission bug is
more even in the four categories.

In summary, we conclude that:

In general, there are lots of syntactic means to alter data and
control flow to create omission bugs. However, from an empirical
point of view, the omission bugs are caused by only a limited
number of syntactic reasons.

3.4 Threats to Validity

The major threat to validity in this empirical study is that we miss
the bugs with trace length over 100K. The reason is that the state-of-
the-art trace recoding techniques [16] do not scale well for building
very large Java trace model, including the read/written (library)
variables of each trace step and the data and control dominance
relationships among trace steps. From this point, we may miss some
omission bug categories in those large traces. In the future, we aim
to build a more scalable trace recording technique to generalize
our findings. The other threat is that the “fix version” (i.e., ground
truth) of each omission bug is unique in this study. In the future,

514



Break the Dead End of Dynamic Slicing: Localizing Data and Control Omission Bug ASE ’18, September 3–7, 2018, Montpellier, France

we need to conduct more study to compare the break steps when
multiple fix options exist for an omission bug.

4 APPROACH

As our empirical study indicates strong patterns to escape the dead
end of omission bugs, we propose to localize an omission bug in
a data-driven manner. In this section, we design a technique for
assisting slicing-based debugging. More specifically, we assume that
programmers can debug a software fault by providing their feedback
(e.g., data or control incorrect) on trace steps and using slicing to
gradually approach the root cause. When the dead end caused by
omission bug happens, i.e., given a data or control dependency path
starting from step πs and ending by step πe , and πe is incorrect
while πs is correct, we aims to recommend a trace step in between
πs and πe ,

• where the critical variable should have been assigned for the
data omission bug, or

• where control flow should be altered to avoid the unexpected
step for the control omission bug.

By observing the omission bugs in Defects4J repository, we first
manually feature engineer these bugs for predicting break steps
of omission bugs. More specifically, the prediction model takes
input as the features of the critical path of an omission bug and an
arbitrary trace step and, outputs the probability of the step to serve
as the break step. To this end, we choose neural network to conduct
the predication for its rich expressiveness over other classification
models such as Naive Bayes [7] and SVM [10]. We train the neural
network model with the omission bugs in Defects4J repository,
and test the model with our mutated omission bugs. We mutate
the omission bugs with regard to the omission bug taxonomy (see
Section 3.3.2) so that the mutated omission bugs are close to real
ones. Our aim is to build a model which can fit well in real omission
bugs and generalize well in mutated the omission bugs.

4.1 Feature Engineering

In this section, we introduce the common features shared by control
and data omission bug as well as their specific features.

4.1.1 Common Features. Given a trace step s , and an omission bug
b, the common features include the length of critical path and the
syntactic features of the occur step, dead end step, the trace step s ,
and their contexts. The syntactic feature of a step s describes the
encoding of the minimum AST node containing the source line of
s . The encoding is represented by a vector of boolean variables.
Encoding AST Node.We first categorizing AST node types into
a taxonomy tree with regard to their similarity with each other. In
our implementation for Java programming language, we refer to
Eclipse Java AST document [27] for building the taxonomy tree for
all the Java AST node types. A simplified tree is shown in Figure 9.
In Figure 9, under the top virtual nodes, there are totally 11 nodes in
the second layer, representing abstract AST node such as variable
declaration and expression. The third layer has 92 nodes each of
which represents a concrete AST node such as single variable decla-
ration and field access. Thus, we encode a AST node with a vector
with length of 103 (11+92), each dimension represents a concrete
node in the third layer or an abstract node in the second layer. Any

expressionvariable declaration

single variable 
declaration

field access

...
... ...

variable 
declaration 
fragment

assignment

Figure 9: Simplified Java Taxonomy Tree Example

AST node must fall in either of the nodes in the third layer (con-
crete nodes) along with its parent in the taxonomy tree. Therefore,
the corresponding two dimensions are set to 1 and all the other
dimensions are set to 0. The idea of using hierarchical structure
allows similar AST nodes (e.g., assignment and field access) to share
training results.
Encoding Syntax of Trace Step. For a trace step s , we concern
6 AST nodes. They are the AST nodes for s , occur step, dead end
step, as well as each of their AST parents in the code (readers may
refer to Figure 10 as the parent-child relationship in AST). The AST
parent indicates the context information. For example the occur
step (line 11) in Listing 7, we care about both the AST node type of
line 11 (i.e., return statement) and the AST node type of its context
(i.e., method declaration).

In summary, the common features concatenate all the above
features and vectors, and have 1 + 6×(11+92) = 619 dimensions.

4.1.2 Specific Features for Control Omission Bugs. For control omis-
sion bug, we use AST walk and split data/control dependency to
embed the specific features of a trace step.
ASTWalk. Given an omission bug b whose occur step πo and dead
end step πd , and let πk be a step between πo and πd , AST walk
indicates the syntactic proximity from the source code of πk to that
of πo . From the perspective of AST traverse, the walk consists of
three directions, i.e., up, right, and down, in terms of AST of the
code. Taking the code in in Listing 7 as example, the occur step
happens at line 11 and the break step is at line 6. The AST walk
from line 11 to line 6 is showed in Figure 10. In Figure 10, each node
represents an AST node, its number indicates the line number in
Listing 7, and arrows represents the walk direction. We can see that
the walk from line 11 to line 6 takes 0 ups, 1 rights, and 2 downs.

4

4for expression 4

11

return statement
1
method declaration

for body

for statement

5 6assignment if statement

Figure 10: AST Walk Example

515



ASE ’18, September 3–7, 2018, Montpellier, France Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong

Split Data and Control Dependencies. The break step of a con-
trol omission bug must lie in between the dead end step πc and
occur step πk . Thus, looking for such a break step is similar to look-
ing for a step s which can split the code so that 〈πc , s〉 is allowed
while 〈s,πk 〉 is to be avoided. Thus, we take the number of data and
control dependencies between 〈πc , s〉 and 〈s,πk 〉 as two features.

4.1.3 Specific Features for Data Omission Bugs. For data omission
bug (let its critical path be 〈πd ,πu 〉[var ]), we introduce critical
conditional step and variable similarities to embed the features of a
trace step.
Critical Conditional Step. The critical conditional steps are the
trace steps on π where a conditional expression is evaluated and
the negation of its value can lead to the execution of redefiningvar .
Such a feature is a boolean value, i.e., a trace step is either a critical
conditional step or not.
Read and Written Variable Similarity. Given a trace step s , we
define features tomeasure how similar its read andwritten variables
to the critical variable var . Based on the variable type (i.e., field or
local variable), we use different number of dimensions to describe
similarity features. If a variable varc is of different type with var ,
all its similarity dimensions are 0, otherwise, we use the following
rules to create a vector for varc :

• Field: If the critical variable is a field, we have a vector of four
boolean dimensions, i.e., (1) whether varc shares the same
parent (object using varc as its field) with var , (2) whether
the parent ofvarc has the same data type withvar (e.g., both
of them are fields in Calendar data type), (3) whether varc
is of the same data type with varc , and (4) whether varc is
of the same name with var .

• Local Variable: If the critical variable is a local variable,
we have have a vector of two boolean dimensions, i.e., (1)
whether varc is of the same data type with varc , and (2)
whether varc is of the same name with var .

Note that a step may read or write multiple variables, each of
which can be represented by a vector of k dimensions (e.g., k is 4
if the variable is a field and 2 if the variable is a local variable). In
such case, we select the most similar read (written) variable vector
as the read (written) variable similarity vector for s .

4.2 Neural Network Structure

Figure 11 shows our neural network structure, which has 1 input
layer, 1 hidden layer, and 1 output layer. Different from traditional
fully connected network, the number of neurons in the hidden layer
corresponds to the number of “groups” in input features. For ex-
ample, the three dimensions in AST walk corresponds to a neuron
in the hidden layer (Group1 in Figure 11), and the last 103 dimen-
sions of AST node encoding (Group9 in Figure 11) corresponds to
another. Therefore, the network structures for control, field, and
local variable omission bugs are different from each other.

We design such a network not only for predicting, but for in-
terpretation as well. With such a network, the weight on each
edge from hidden layer to output layer indicates the significance
of each group to the final probability and the weight on each edge
from input layer to hidden layer indicates the significance of each
dimension to its group.

...
...

...

...
probability 
neuron

Group1: 
AST Walk

Group9: 
Occur Step 
Syntax 
Embedding

Figure 11: Neural Network Structure

In this work, we use cross-entropy loss function to evaluate our
model during the model training. We use ReLu activation function
for hidden layer and Sigmoid activation function for output layer.

5 EVALUATION

We conduct our evaluation to answer the following two research
questions:

• RQ1: Whether our model can predict the break steps for
omission bugs accurately?

• RQ2: Enhanced dynamic slicing with our model, can we
localize the omission bugs efficiently?

5.1 Training Evaluation

With the findings of our empirical study, we define five types of
mutations, i.e., remove an assignment, remove a if-condition (i.e.,
make the if-body always be executed), negate a if-condition, remove
a if-throw, and remove the whole if-block. These fivemutation types
cover the majority of causes described in Section 3.3.2, and they
are effective to cause omission bugs. We conduct the mutation
on 5 Java open source projects, as showed in Table 2. The valid
mutation means the mutations successfully kill the test case and
cause omission bugs.

Table 2: Mutated Project Overview

Project Version LOC #Valid Mutation

Aapache-math 2.2 97449 186
Apache-lang 3.5 73423 1099
Jfreechart 1.2.0 148852 1457
Apache-collections 3.2.2 56134 373
Apache-cli 1.3.1 6552 78

Learning Settings. Given the inputs and network structure are
different for learning control omission bug, field omission bug, and
local variable omission bug, we tune their model with different
parameters, as showed in Table 3. We decide the parameters by
empirical trials. Note that the training process of the neural network
is a process to iteratively decrease the loss value of cross entropy
loss function. In this experiment, we use loss threshold instead of
iteration number to decide when the learning process stops. That
is, once the loss value is below the threshold, the learning process
stops. We also attach random seed for repeating our approach.
Learning Effect. Table 4 shows our learning effect on control,
field, and local variable omission bug (i.e., COB, FOB, and LVOB

516



Break the Dead End of Dynamic Slicing: Localizing Data and Control Omission Bug ASE ’18, September 3–7, 2018, Montpellier, France

Table 3: Parameter Setting

omission bug\parameter Learning Rate Threshold Random Seed

Control Omission Bug 0.05 0.4 18
Field Omission Bug 0.1 0.65 20
Local Variable Omission Bug 0.05 0.5 0

in Table 4). We compare learning effect in terms of true positive
rate (TP Rate), true negative rate (TN Rate), and total accuracy. In
general, our model achieve acceptable performance on control and
local variable omission bugs. However, the model does not perform
well on field omission bugs. Our observation indicates that the
difference between field omission bugs is much larger than control
and local variable omission bugs. In Table 4, the model achieves
poor true positive ratio (27.3%) and good true negative ratio (76.5%)
on training set but the situation reverses on testing set, or mutation
set. It indicates that the data distribution of field omission fluctuates
more than the other two omission bugs. Furthermore, we investi-
gate into these omission bugs and find that, the influence of field
omission bugs is usually inter-method while that of control omis-
sion bugs and local variable omission bugs is usually intra-method.
As a result, field assignment can happen almost anywhere along
the trace, which is more random than local variable assignment.

Table 4: Learning Effect

Omission Bug COB FOB LVOB

Training

TP Rate 74.2% 27.3% 77.8%
TN Rate 88.5% 76.5% 77.1%
Total 84.3% 51.9% 76.0%

Testing

TP Rate 87.1% 82.4% 57.5%
TN Rate 81.0% 49.4% 68.0%
Total 84.1% 50.0% 66.5%

Feature Significance. As mentioned in Section 4.2, our neural net-
work structure is also designed for interpretation to understand how
significant a feature is. The larger the absolute value a weight has,
the more influence it has on the predication result. The sign indi-
cates its positive or negative impact on the result. Table 5 shows the
weights for various omission bugs. For example, control omission
is more influenced by the feature of AST walk as well as syntactic
feature of occur step and dead end step. For the weight of AST
walk, i.e, -0.68, it indicates that the break step usually appears in
small walk from the occur step. Similarly, the weight 1.17 indicates
that being a critical conditional step is a strong indicator for being
a break step for a local variable omission bug. For syntactic fea-
tures, they indicate that the AST node type with larger (e.g., 0.62)
or smaller (-0.62) index usually has stronger influence on the result.
Given the limit of paper space, readers can refer to our website [2]
for our indexing for AST node.

5.2 Simulated Debugging Experiment

Based on our prediction model, we enhance the our simulated
debugging algorithm (Algorithm 1) by suggesting breaker steps
with our model. Algorithm 2 describes our enhanced debugging
simulation algorithm. The algorithm takes three inputs, a fault-
revealing step, the number of break steps we can recommend for
an omission bug, and a work list that we keep other suggested
breakers.

Algorithm 2: Enhanced Debugging Simulation

Input :a fault-revealing step stepf on the buggy trace, breaker
number l imit , a stack for breaker steps worklist

Output :whether the find is found

1 stepstop ← or iдinal_simulated_debuддinд(stepf );

2 if stepd is the root cause then

3 return true;

4 end

5 omission_buд ← дet_omission_buд(stepstop );

6 breakers ← r ecommend_breakers(omission_buд, l imit );

7 for breaker ∈ breakers do

8 worklist .push(breaker )

9 end

10 while worklist is not empty do

11 breaker ← worklist .pop();

12 enhanced_debuддinд_simulation(breaker, worklist )

13 end

14 if stack is empty then

15 return false

16 end

In Algorithm 2, when we detect an omission bug (line 5) by the
process described in Algorithm 1 (line 1, i.e., dynamic slicing), we
get recommended break steps and keep them in the work list (line
5–6). Then, we retrieve a break step from the work list and restart
debugging from the step in the same way (the recursive call in line
12). The algorithm stops either because we localize the root cause
or the work list is empty.

In this experiment, we take a random recommender as our bench-
mark. The random recommender indicates the performance of omis-
sion bug localization if the simulated programmer choose a random
step as the break step. We deem our approach as ineffective if its
performance is comparable to that of the random recommender. We
compare our approach with the benchmark by setting the number
of recommended break steps to 1, 3, and 5. That is, we recommend
top-1, top-3, and top-5 breakers in our prediction model while 1, 3,
and 5 random steps as breakers for benchmark (line 6). We run our
approach and random recommender on all the mutated omission
bugs from open source projects, Table 6 shows the results. Table 6
shows that our approach outperforms benchmark in all options on
all types of omission bugs. With regard to Table 4, the performance
of bug localization is highly relevant to model prediction accuracy.
Based on our prediction model, we can accurately localize the con-
trol omission bugs even with top-1 option. Moreover, Table 6 also
indicates that field omission bugs is the most difficult omission bug
to localize. Noteworthy, though our model does not perform well
for field omission bugs, we still improve the performance of the
benchmark significantly.

In summary, our evaluation shows that (1) our approach can
work well to localize certain specific omission bug such as control
and local variable omission bugs, (2) combined with our predic-
tion model, we can break the dead end of slicing and localize the
omission bug more efficiently.

5.3 Threats to Validity

One major threat is that we use simulated debugging experiment to
imitate how human programmer debug their code. It is essential to

517



ASE ’18, September 3–7, 2018, Montpellier, France Yun Lin, Jun Sun, Lyly Tran, Guangdong Bai, Haijun Wang, and Jinsong Dong

Table 5: Feature Significance

Omission Bug
AST

Walk

Split

Dep

Critical

Conditional

Step

Read

Var Sim

Written

Var Sim

Critical

Path

Length

Step

Syntax

Step

Context

Occur Step

Syntax

Occur Step

Context

Dead End

Step Syntax

Dead End

Step Context

Control Omission Bug -0.68 -0.04 / / / -0.01 0.4 -0.67 -0.08 0.34 0.62 -0.62
Field Omission Bug / / 0.038 0.24 0.69 -0.018 0.94 0.46 -0.32 0.56 -2.2 -0.03
Local Variable
Omission Bug

/ / 1.17 -0.87 0.42 0.93 -0.68 0.71 -0.29 -1.0 0.44 -0.1

Table 6: Simulation Result

Omission Bug
top-1 top-3 top-5
Model
Breaker

Random
Breaker

Model
Breaker

Random
Breaker

Model
Breaker

Random
Breaker

Control

Omission Bug
94.6% 10.2% 98.4% 19.2% 99.5% 23.7%

Field

Omission Bug
34.8% 2.5% 53.3% 7.3% 59.1% 10.2%

Local Variable

Omission Bug
50.9% 14.2% 72.5% 30.0% 82.2% 38.0%

Total 63.8% 8.2% 76.6% 16.9% 81.1% 21.5%

deliver a tool and collect the feedback of human programmer. In our
future work, we will conduct a controlled user study on how our
tool integrated with learned model can help human programmer in
the process of debugging. The other threat is the limited number
of mutation types for generating mutated bugs. We choose those
mutation type based on the finding of our empirical study. The
experiment shows that these mutations can generate omission bugs
in a much more efficient way than traditional mutation such as
changing operator and numbers. Nevertheless, more experiments
are necessary to generalize our findings with more dynamic types
of mutation.

6 RELATEDWORK

OmissionErrorResearch.Many researchwork [12, 20, 25, 28, 35]
have pointed out that dynamic slicing cannot be used to localize the
code “should have been” executed. To overcome the shortcoming of
the slicing technique, Zhang et al. [35] proposed a force-execution
technique and Wang et al. [28] proposed their relevant slicing algo-
rithm to this end. Moreover, Qi et al. [20] proposed a solver-based
approach to localize the regression bug. By comparing the correct
version of the program, their approach can infer code omission error
by encoding the buggy program, the correct program, and the test
case into a satisfiability problem. In recent years, Sakuai et al. [25]
enhanced Zhang and Wang’s work [28, 35] with point-to-analysis.

All the above techniques have the assumption that the omitted
code exists in the project so that they can analyze the program to
lead the control flow to code that should have been executed. How-
ever, our empirical study shows that their techniques only solve a
small portion of the whole omission bugs, i.e., data omission bugs
under the category of incorrect evaluated condition and incorrect
condition. Based on our study findings, we proposed a data-driven
approach to train the model to handle omission bugs in a more
comprehensive way.
Record and Replay for Debugging.Our approach is an enhance-
ment for record and replay debugging, or time-travelling debug-
ging [5, 13–15, 18, 19, 24, 31]. Such a technique allows the program-
mers to build a data causality chain to localize the root cause [18, 19,

31]. Moreover, based on the recorded trace, different queries can be
used to localize trace steps. For example, Ressia et al. [24] proposed
an approach which can track steps by specific object instance.

The most relevant techniques are Whyline proposed by Ko et
al. [13–15] andMicrobat proposed by Lin et al. [16].Whyline allows
user to select auto-generated questions, including why or why not
question on program output as well as the recorded program trace
and suggest the trace step based on slicing. Microbat asks four
types of user feedback to suggest suspicious trace step and it can
further learn these feedbacks to speed up reasoning the root cause.
Our approach is complementary to both techniques to improve the
localization of omission bugs.
Delta Debugging and Statistical Fault Localization. An impor-
tant branch of debugging research is delta debugging [6, 9, 17, 20, 32–
34] and statistical fault localization [3, 4, 8, 23, 26, 29]. Zeller et
al. [32] first proposed the concept of delta debugging and apply
it on regression testing. Then, the technique is soon to be refined
by Misherghi et al. [17] to improve the result and the concept is
soon applied to simplify test cases [34], isolate bug-causing vari-
able [6, 33], and etc. We regard statistical fault localization as a
special case of delta debugging, which are used to locate bugs by
comparing a set of passed and failed test cases. The more time
executed by failed test cases, a more suspicious a line of code is,
and vice versa. Many metrics haven proposed to refine the statis-
tical fault localization [3, 22, 29] An overview of spectrum-based
techniques can be checked in [4].

All the above approaches need a reference to infer where the
bug lies. Similar to existing debugging technique, we first use the
correct version of program as a reference to look for omission bugs.
However, by learning through a large number of bug corpus, we
can localize the omission bug without any reference.

7 CONCLUSION

In this work, we comprehensively studied omission bugs in De-
fects4J repository and provide a taxonomy on how they can be
caused from a syntactic point of view. Based on the findings in our
empirical study, we build a deep learning model to predict the break
steps of both control and data omission bugs. In the future, we will
generalize our study on more bugs with longer traces and further
improve the precision our prediction on break steps.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable comments
and suggestions. This research is supported by the National Re-
search Foundation, Singapore (No. NRF2015NCR-NCR003-003).

518



Break the Dead End of Dynamic Slicing: Localizing Data and Control Omission Bug ASE ’18, September 3–7, 2018, Montpellier, France

REFERENCES
[1] [n. d.]. Tregression Github Website. https://github.com/llmhyy/tregression. ([n.

d.]). Accessed Feb 2, 2018.
[2] 2018. Slice Breaker Website for ASE submission. https://sites.google.com/view/

slicebreaker/home. (2018).
[3] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-Based

Multiple Fault Localization. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering. 88–99.

[4] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J.C. van Gemund. 2009. A
practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780 – 1792.

[5] Earl T. Barr and Mark Marron. 2014. Tardis: Affordable Time-Travel Debugging in
Managed Runtimes. Technical Report. http://research.microsoft.com/apps/pubs/
default.aspx?id=212395

[6] Holger Cleve and Andreas Zeller. 2005. Locating Causes of Program Failures. In
Proceedings of the 27th International Conference on Software Engineering. 342–351.

[7] Nir Friedman, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian Network
Classifiers. Mach. Learn. 29, 2-3 (Nov. 1997), 131–163. https://doi.org/10.1023/A:
1007465528199

[8] L. Gong, D. Lo, L. Jiang, and H. Zhang. 2012. Interactive fault localization
leveraging simple user feedback. In IEEE International Conference on Software
Maintenance. 67–76.

[9] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. 2005. Locating
Faulty Code Using Failure-inducing Chops. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. 263–272.

[10] Marti A. Hearst. 1998. Support Vector Machines. IEEE Intelligent Systems 13, 4
(July 1998), 18–28. https://doi.org/10.1109/5254.708428

[11] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM,NewYork, NY, USA, 437–440. https://doi.org/10.1145/2610384.
2628055

[12] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions About Program Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’04). ACM, New
York, NY, USA, 151–158. https://doi.org/10.1145/985692.985712

[13] Andrew J. Ko and Brad A. Myers. 2004. Designing the Whyline: A Debugging
Interface for Asking Questions About Program Behavior. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 151–158.

[14] Andrew J. Ko and Brad A. Myers. 2008. Debugging Reinvented: Asking and
AnsweringWhy andWhy Not Questions About Program Behavior. In Proceedings
of the 30th International Conference on Software Engineering. 301–310.

[15] Andrew J. Ko and Brad A. Myers. 2009. Finding Causes of Program Output with
the Java Whyline. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1569–1578.

[16] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jinsong Dong. 2017. Feedback-
based Debugging. In Proceedings of the 39th International Conference on Software
Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 393–403. https://doi.
org/10.1109/ICSE.2017.43

[17] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debugging.
In Proceedings of the 28th International Conference on Software Engineering. 142–
151.

[18] G. Pothier and ÃĽ Tanter. 2009. Back to the Future: Omniscient Debugging. IEEE
Software 26, 6 (2009), 78–85.

[19] Guillaume Pothier and Éric Tanter. 2011. Summarized Trace Indexing and Query-
ing for Scalable Back-in-time Debugging. In Proceedings of the 25th European
Conference on Object-oriented Programming. 558–582.

[20] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2009. Darwin:
An Approach for Debugging Evolving Programs. In Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering. 33–42.

[21] Venkatesh Prasad Ranganath, Torben Amtoft, Anindya Banerjee, John Hatcliff,
and Matthew B. Dwyer. 2007. A New Foundation for Control Dependence and
Slicing for Modern Program Structures. ACM Trans. Program. Lang. Syst. 29, 5,
Article 27 (Aug. 2007). https://doi.org/10.1145/1275497.1275502

[22] Manos Renieris and Steven P. Reiss. 2003. Fault Localization With Nearest Neigh-
bor Queries.. In Proceedings of International Conference on Automated Software
Engineering. 30–39.

[23] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. 1997. The Use of
Program Profiling for Software Maintenance with Applications to the Year 2000
Problem. In Proceedings of the 6th European SOFTWARE ENGINEERING Conference
Held Jointly with the 5th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 432–449.

[24] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. 2012. Object-centric Debug-
ging. In Proceedings of the 34th International Conference on Software Engineering.
485–495.

[25] Kouhei Sakurai and Hidehiko Masuhara. 2015. The Omission Finder for De-
bugging What-should-have-happened Bugs in Object-oriented Programs. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC ’15).
ACM, New York, NY, USA, 1962–1969. https://doi.org/10.1145/2695664.2695735

[26] R. Santelices, J. A. Jones, Yanbing Yu, and M. J. Harrold. 2009. Lightweight fault-
localization using multiple coverage types. In Proceedings of 31st International
Conference on Software Engineering. 56–66.

[27] Olivier Thomann Thomas Kuhn, Eye Media GmbH. [n. d.]. Ab-
stract Syntax Tree. http://www.eclipse.org/articles/article.php?file=
Article-JavaCodeManipulation_AST/index.html. ([n. d.]).

[28] Tao Wang and Abhik Roychoudhury. 2008. Dynamic Slicing on Java Bytecode
Traces. ACM Trans. Program. Lang. Syst. 30, 2, Article 10 (March 2008), 49 pages.
https://doi.org/10.1145/1330017.1330021

[29] Xinming Wang, S. C. Cheung, W. K. Chan, and Zhenyu Zhang. 2009. Taming Co-
incidental Correctness: Coverage Refinement with Context Patterns to Improve
Fault Localization. In Proceedings of the 31st International Conference on Software
Engineering. 45–55.

[30] Bin Xin, William N. Sumner, and Xiangyu Zhang. 2008. Efficient Program Execu-
tion Indexing. In Proceedings of the 29th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’08). ACM, New York, NY, USA,
238–248. https://doi.org/10.1145/1375581.1375611

[31] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. SherLog: Error Diagnosis by Connecting Clues from Run-time
Logs. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems. 143–154.

[32] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Proceedings of the 7th European Software Engineering Conference Held Jointly
with the 7th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 253–267.

[33] Andreas Zeller. 2002. Isolating Cause-effect Chains from Computer Programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering. 1–10.

[34] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Transaction on Software Engineering 28, 2 (2002), 183–200.

[35] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv Gupta. 2007. Towards
Locating Execution Omission Errors. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07).
ACM, New York, NY, USA, 415–424. https://doi.org/10.1145/1250734.1250782

519


	Break the dead end of dynamic slicing: localizing data and control omission bug
	Citation
	Author

	Break the Dead End of Dynamic Slicing: Localizing Data and Control Omission Bug

