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On the Sequential Massart Algorithm
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Abstract. Several schemes have been provided in Statistical Model
Checking (SMC) for the estimation of property occurrence based on
predefined confidence and absolute or relative error. Simulations might
be however costly if many samples are required and the usual algo-
rithms implemented in statistical model checkers tend to be conservative.
Bayesian and rare event techniques can be used to reduce the sample size
but they can not be applied without prerequisite or knowledge about the
system under scrutiny. Recently, sequential algorithms based on Monte
Carlo estimations and Massart bounds have been proposed to reduce
the sample size while providing guarantees on error bounds which has
been shown to outperform alternative frequentist approaches [15]. In this
work, we discuss some features regarding the distribution and the opti-
misation of these algorithms.

1 Introduction

Statistical Model Checking (SMC) [22] is a formal verification method used to
estimate quantitative properties of probabilistic systems by simulations sam-
pled from an executable model of the system. Unlike other probabilistic Model
Checking techniques, the results are not exact but given within predefined pre-
cision and confidence bounds that rely in general on the Monte Carlo method
[5,18]. An important issue is to design algorithms that provide enough statistical
evidence about the probabilistic occurrence of properties.

SMC was initially proposed to address the problem of verifying whether a
property probability exceeds a threshold or not. This problem can be solved by
using the sequential probability ratio test in hypothesis testing [21,22]. Other
issues have been considered since, notably the estimation of the probability that
a system property holds. In spite of similarities, the two problems are different
and in what follows, we focus on the estimation problem. The need of rigorous
sampling schemes have been addressed from the early days of SMC [10,22] to
the more recent [8,9,15] just to cite a few. A key feature in designing a sampling
procedure is to determine the number of simulations necessary to generate an
estimation within acceptable margins of error and confidence.
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In many case studies, reducing the sample size while rigorously guaranteeing
the control of these error bounds is critical. For example, Secure Water Treat-
ment (SWaT)1 is a scaled-down but fully operational water treatment testbed
at the Singapore University of Technology and Design, capable of producing five
gallons of safe drinking water per minute. Probabilistic SWaT models have been
designed to understand the response of SWaT to a variety of cyber attacks [4].
However, the simulations are costly and time-consuming. Then checking whether
the probabilistic model is a faithful representation of this system is critical and
must be done efficiently, under the constraint that the system is executed as few
as possible.

Several classes of schemes such as Bayesian SMC [23], or rare event simula-
tion techniques [12,13] have been considered to address this problem. However,
in Bayesian SMC, the probability to estimate must be given by a prior ran-
dom variable whose density is based on previous experiments and knowledge
about the system. Rare event techniques can not be easily deployed for general
problems and for arbitrary class of probabilistic systems. Also, these techniques
require either the full knowledge of the probabilistic distribution of the system
or the design of an accurate score function. Finally, the error bounds remain
approximate in rare event simulation. These limitations motivate the recourse
to sequential algorithms based on exact error bounds for frequentist estimations.
This work is limited to this class of schemes.

In [10], the authors discussed the notion of absolute and relative margin of
error for SMC. The absolute error is defined as the magnitude of the difference
between a probability and an estimation of this probability whereas the relative
error is defined as the absolute error divided by the magnitude of the probability.
To guarantee that the absolute error is bounded, they introduced a procedure
relying on the Okamoto bound2 that, given fixed confidence and error param-
eters, determines a priori the number of Bernoulli samples required, which is
independent of the probability to estimate. Supporting relative errors (i.e., errors
which depend on the probability to quantify) is more difficult, although theo-
retical bounds exist. The relative error was initially handled by Dagum et al.’s
algorithm [7].

In [15], new sequential sampling schemes based on Massart bounds and exact
confidence intervals were proposed to handle absolute and relative error prob-
lems and were compared with other approaches, including some that have not
been necessarily used in the context of SMC. We refer the readers to [15] for a
comparison among these algorithms. The results were promising as they show
that the Massart sequential sampling schemes outperformed the standard algo-
rithms implemented in statistical model checkers like PRISM [16], PLASMA [11],
APMC [10], COSMOS [2] and UPPAAL-SMC [8]. It is worth saying that these
sequential Massart algorithms are not limited to a particular class of models and
could be easily implemented in any of these statistical model checkers.

1 https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/.
2 The Okamoto bound is sometimes called the Chernoff bound in the literature.
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In this work, we take the opportunity to discuss some features of the sequen-
tial Massart algorithms that were not initially considered and to explain with
more details on how to set up the algorithms. First of all, given error and con-
fidence parameters, ε and δ, it is necessary to provide a third parameter α such
that 0 < α < δ. In [15], α was set by default at δ/2. In an expanded version [14],
we showed empirically that α could not be optimised a priori since it is depen-
dent on the (unknown) probability to estimate. In this work, we give guidelines
about setting α up and we show that the gains in terms of sample size reduction
are quite significant if α is set up closer to zero.

These algorithms also require the recursive computation of confidence inter-
vals. For the sake of rigorousness, these confidence intervals were initially cho-
sen to be exact confidence intervals. However, these intervals are always rather
conservative. Instead, approximate confidence intervals are in general easier to
compute, their precision is better in the sense that their width is narrower but
their confidence is not always strictly guaranteed. In what follows, we will con-
sider two alternative approximate confidence intervals to measure empirically
the impact on the sample sizes and the reliability of our algorithms.

Finally, an important aspect of SMC is that its performance can be improved
by distributing the simulations on a multi-threaded system once the sample size
of the experiment has been determined. For sequential algorithms, extra work
must be done since the sample size is unknown a priori. In this work, we introduce
a simple procedure to handle this issue.

In Sect. 2, we formally state the absolute and relative specifications that
must be fulfilled by the SMC schemes. We also recall the basics of Monte Carlo
estimation and Okamoto and Massart bounds. In Sect. 3, we present the sequen-
tial Massart algorithms. We discuss the coverage parameter in Sect. 4. We show
in Sect. 5 the impact of approximate confidence intervals on the sampling size
reduction. In Sect. 6, we propose a simple algorithm to distribute our sequential
algorithms in a multi-threaded system. Section 7 concludes the article.

2 Background

In the following, a stochastic system S is interpreted as a set of interacting
components in which the state is determined randomly with respect to a global
probability distribution. Let (Ω,F , μ) be the probability space induced by the
system with Ω a set of finite paths with respect to system’s property φ, F a
σ-algebra of Ω and μ the probability distribution defined over F .

2.1 Absolute and Relative Error Specifications

Given a probabilistic system S, a property φ and a probability γ, we write S |=
Pr(φ) = γ if and only if the probability that a random execution of S satisfies
φ is equal to γ. In principle, if γ is unknown, we can apply analytical methods
to determine this value. However, due for example to numerical imprecisions, we
often relax the constraints over γ and introduce the following notations:

S |=a
ε Pr(φ) = γ and S |=r

ε Pr(φ) = γ (1)
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The left formula means that a random execution of S satisfies φ with probability
γ plus or minus an absolute error ε, i.e. Pr(φ) ∈ [γ − ε, γ + ε]. The right formula
means that a random execution of S satisfies φ with probability γ up to some
relative error ε, i.e. Pr(φ) ∈ [(1 − ε)γ, (1 + ε)γ].

SMC applies to an executable system S and a property φ whose truth value
can be determined in finite time. In SMC, the satisfaction of property φ is
quantified by a Bernoulli random variable of unknown mean γ. This mean is
then approximated using a Monte Carlo estimation scheme. The output of the
scheme is thus not an exact value but an approximate one, given within certain
error bounds and a confidence parameter δ that is the probability of outputting
a false estimate. SMC thus requires a sampling scheme which outputs, after n
samples, an estimate γ̂n close to γ up to some absolute or relative ε-based error
with probability greater or equal than 1 − δ. Formally, we write:

S |=a
ε,δ Pr(φ) = γ̂n or S |=r

ε,δ Pr(φ) = γ̂n (2)

if and only if an algorithm outputs estimators while guaranteeing:

Pr(|γ̂n − γ| > ε) ≤ δ (3)

or respectively:
Pr(|γ̂n − γ| > εγ) ≤ δ. (4)

We call (3) the absolute error specification and (4) the relative error specification.

2.2 Monte Carlo Estimation

Let ω be a path sampled from space Ω with respect to distribution μ; z be a
function from Ω to {0, 1} assigning 1 if ω satisfies property φ and 0 otherwise;
and γ be the probability that an arbitrary path of the system satisfies φ. In SMC,
the behaviour of function z is interpreted as a Bernoulli random variable Z with
mean parameter γ. By definition, the average value γ is the integral of function
z with respect to distribution μ over space Ω: γ = Eμ[Z] =

∫
Ω

z(ω) dμ(ω) and
an estimator γ̂n is given by the Monte Carlo method by drawing n independent
samples ωi ∼ μ, i ∈ {1, . . . , n}, as follows:

γ̂n =
1
n

n∑

i=1

z(ωi) ≈ Eμ[Z] (5)

Let m =
∑n

i=1 z(ωi) be the number of successes and σ2 = γ(1 − γ) the variance
of Z. In what follows, for sake of simplicity, we use both notations γ̂n and m/n
to denote the estimate.

The purpose of the algorithms presented in Sect. 3 is to fulfil Specification (3)
or (4) with as few samples as possible. In other words, their goal is to improve the
performance of statistical model checkers with algorithms that output reliable
Monte Carlo estimates, in terms of precision and confidence. For this purpose,
they make use of the bounds below.
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2.3 Okamoto and Massart Bounds

In the literature, the Chernoff bounds [5] refer to exponential decreasing bounds,
in the number of simulations, of the probability of deviation between a Monte
Carlo estimate and its mean. Tighter bounds have been established since, notably
in [17]. Note that in their original respective works, these bounds are only one-
sided. In what follows, we give the two-sided versions of these bounds, for which
the proofs can be found in the expanded version of [15]3.

Absolute Error Bounds. Though the seminal work is due to Chernoff [5], the
following two-sided absolute error bound has been stated for binomial distribu-
tions by Okamoto in [19].

Theorem 1 (Okamoto bound). For any ε, 0 < ε < 1, we have the following
inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp(−2nε2) (6)

Given ε, δ, writing out δ = 2 exp(−2nε2), the Okamato bound can be used
to determine a minimal number n of simulations to perform a Monte Carlo plan
fulfilling the absolute error specification (3). The main advantage of the Okamoto
bound is that it does not depend on γ, the value to estimate. However, the bound
is very conservative and in many cases, a much lower sample size would achieve
the same absolute error specification.

Massart established in [17] a sharper bound that holds if the absolute error
ε is lower than probabilities γ and 1 − γ.

Theorem 2 (Absolute Error Massart bound). For all γ such that 0 < γ <
1 and any ε such that 0 < ε < min(γ, 1 − γ), we have the following inequality:

Pr(|γ̂n − γ| > ε) ≤ 2 exp
(−nε2ha(γ, ε)

)
(7)

where ha(γ, ε) =
{

9/2 ((3γ + ε)(3(1 − γ) − ε))−1
if 0 < γ < 1/2

9/2 ((3(1 − γ) + ε)(3γ + ε))−1
if 1/2 ≤ γ < 1

Figure 1 shows the number of samples per probability necessary to satisfy an
absolute error specification defined by ε = 0.01 and δ = 0.05 according to the
Okamoto and the Massart bounds. For values close to the boundaries, we can
see that the Okamoto bound is very conservative in comparison of the Massart
bound. However, the two bounds are similar for γ = 1/2.

3 A journal version with the proofs is currently submitted [14]. The proofs are
also available here: https://www.researchgate.net/publication/317823195 Sequenti-
al Schemes for Frequentist Estimation of Properties in Statistical Model Checking.
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Relative Error Bounds. In practice, the absolute error is set independently
of γ. However, it could be that the approximation is meaningless, especially if
the absolute error is large with respect to γ. In this case, setting a relative error
that remains ‘small’ with respect of γ may be adequate. The Massart bound has
a two-sided relative form.

Theorem 3 (Relative Error Massart bound). For γ, 0 < γ < 1 and any
ε, 0 < ε < (1 − γ)/γ, we have the following inequality:

Pr(|γ̂n − γ| ≥ ε γ) ≤ 2 exp
(−nε2hr(γ, ε)

)
(8)

with hr(γ, ε) =
{

9γ/2 ((3 + ε)(3 − γ(3 + ε)))−1
if 0 < γ < 1/2

9γ/2 ((3 − ε)(3 − γ(3 − ε)))−1
if 1/2 ≤ γ < 1

Fig. 1. Okamoto (dash) and Massart
(plain) bounds with absolute error ε =
0.01 and confidence parameter δ =
0.05.

Fig. 2. Massart bounds with relative
error ε = 0.1 and confidence parame-
ter δ = 0.05.

Figure 2 shows the number of samples per probability necessary to satisfy
a relative error specification defined by ε = 0.1 and δ = 0.05 according to the
relative error Massart bound. As expected, the sample size explodes when γ
tends to zero.

2.4 Bounds with Coverage

In contrast to the Okamoto bound, the Massart bounds depend on γ and they
are thus not directly applicable since γ is the probability that we want to esti-
mate. However, one may still exploit some information about γ. For example,
depending on the problem, one may know or numerically evaluate with cer-
tainty a rough interval in which γ evolves. In what follows, we denote C(γ, I)
the notional coverage of γ by a confidence interval I, that is the probability that
I contains γ.
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Theorem 4 (Absolute Error Massart Bound with coverage). Let a and b
be the lower and upper bounds of a confidence interval I and Ic be the complement
of I in [0, 1]:

Pr (|γ̂n − γ| > ε) ≤ 2 exp
(−nε2ha(x, ε)

)
+ C(γ, Ic) (9)

where function ha is defined in Theorem2 and x = b if b < 1/2, x = a if a > 1/2
and x = 1/2 if 1/2 ∈ I.

By default, a = 0, b = 1, C(γ, [0, 1]c) = 0 and the above theorem is consistent
with the Okamoto bound. We remark that even if an accurate estimation of γ
is not feasible within a reasonable time, Theorem4 can exploit coarse but exact
bounds a, b, calculated analytically. In that case, we would have C(γ, [a, b]c) = 0.
Finally, a similar theorem involving relative error can be established.

Theorem 5 (Relative Error Massart Bound with coverage). Let a be the
lower bound of a confidence interval I = [a, 1] and hr defined as in Theorem3.

Pr (|γ̂n − γ| > εγ) ≤ 2 exp
(−nε2hr(a, ε)

)
+ C(γ, [0, a[) (10)

Both theorems state that the probability of absolute or relative error is
bounded by the respective Massart bound applied over the most pessimistic
value of a confidence interval plus the probability that the interval does not
contain γ. We deduce from both theorems the following sample-size result:

Theorem 6. Let α < δ such that C(γ, Ic) < α. (i) Under the conditions of
Theorem4, a Monte Carlo algorithm A that outputs an estimate γ̂n fulfils Spec-
ification (3) if n > 1

ha(x,ε)ε2 log 2
δ−α .

(ii) Similarly, under the conditions of Theorem5, a Monte Carlo algorithm
A that outputs an estimate γ̂n fulfils Specification (4) if n > 1

hr(a,ε)ε2 log 2
δ−α .

The bounds of Theorem 6 are more conservative than the bounds induced
by Theorems 2 and 3 because the Massart bounds are evaluated using the most
pessimistic value of the confidence interval [a, b]. In addition, our bound also
takes into account the probability that γ is not in I, implying that an additional
number of samples are required in the final sample size. In the absolute error case,
if a confidence interval I containing 1/2 is determined, applying the previous
theorem is unnecessary because the sample size is simply bounded with respect
to the Okamoto bound. Similarly, if a (or b) is lower-bounded (or respectively
upper-bounded) by 1/2 but still close to 1/2, the Okamoto bound is likely better.
However, if γ is closer to 0 or 1, the logarithmic extra number of samples is largely
compensated by the evaluation of the Massart bound in a or b.

3 Sequential Massart Algorithm

In this section, we recall the sequential Massart schemes for the absolute and rel-
ative error specifications. Both of them require three inputs: an error parameter
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ε, and two confidence parameters δ and α such that α < δ. To avoid confusion
between δ and α, below we call α the coverage parameter.

After each sample, we update a Monte Carlo estimator and a (1 − α)-
confidence interval for γ. Then, the most pessimistic bound of the confidence
interval is used in the Massart function to compute a new minimal sample size
n that satisfies Theorem 6. The process is repeated until the calculated sample
size is lower than or equal to the current number of runs. In the pseudo-code
of Algorithms 1 and 2, keywords GENERATE corresponds to a sample path
generation and function CONFINT to the evaluation of the confidence interval
(two-sided in the absolute error scheme but only one-sided in the relative error
scheme). Theorems 4 and 5 guarantee the correctness of our schemes since, for
any couple (m,n), if we are able to compute a (1 − α)-confidence interval I and
its coverage, the deviation probability is bounded by δ defined as the sum of the
coverage plus the Massart function evaluated at the most pessimistic value of I.

Absolute Error Sequential Algorithm. We initiate the algorithm with an
interval I0 in which γ belongs (by default, I0 = [0, 1]) and a worst-case (ε, δ)-
sample size n0 = M with M = � 1

2ε2 log 2
δ � determined by the Okamoto bound

(where �.� denotes the ceiling function). Once a trace ω(k) is generated and
monitored, the number of successes with respect to property φ and the total
number of traces are updated. Then, a (1−α)-confidence interval Ik is evaluated.
Iteration after iteration, the interval width tends to shorten and becomes more
and more accurate. Theorem 6-(i) is applied to determine a new sample size nk,
bounded from above by M if necessary. These steps are repeated until k ≥ nk

at which Specification (3) is rigorously fulfilled.

Relative Error Sequential Algorithm. We first assume the existence, in
a practical case study, of a threshold γmin, supposedly low, corresponding to
a tolerated precision error (e.g. a floating-point approximation). Estimating a
value below γmin is then unnecessary. The maximal number of simulations is
consequently bounded by the maximal Massart bound, M = � 1

ε2hr(γmin,ε) log 2
δ �.

The relative error scheme is similar to the absolute error scheme. Note however
that it is only necessary to determine a lower bound of Ik since hr is a decreasing
function in γ. Then, we determine a one-sided (1 − α)-interval of shape [ak, 1].
Theorem 6-ii is applied to determine a new sample size nk, upper bounded by
M if ak < γmin and the steps are repeated until k ≥ nk. If the final output γ̂k is
higher than γmin, Specification (4) is rigorously fulfilled. Otherwise, we can still
output that γ is lower than γmin with probability greater that 1 − δ.

4 Discussion on the Coverage Parameter

Coverage parameter α must be chosen such that 0 < α < δ. Note that the sample
sizes at which Specifications (3) and (4) are fulfilled are guaranteed to be lower
or equal than the Okamoto and the maximal Massart bounds.
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Algorithm 1. Absolute Error Sequential Algorithm
Data:
ε, δ, α : the original parameters
M = � 1

2ε2
log 2

δ
�: the Okamoto bound

k = 0
m = 0: the number of successes
nk = M
Ik = [ak, bk] = [0, 1]: the initial interval in which γ is known to belong

1 while k < nk do
2 k ← k + 1

3 GENERATE ω(k)

4 z(ω(k)) = 1(ω(k) |= φ)

5 m ← m + z(ω(k))
6 Ik ← CONFINT(m, k, α)
7 if 1/2 ∈ Ik then
8 nk = M
9 else if bk < 1/2 then

10 nk = � 2
ha(bk,ε)ε2

log 2
δ−α

�
11 else
12 nk = � 2

ha(ak,ε)ε2
log 2

δ−α
�

13 nk ← min(nk, M)

Output: γ̂k = m/k

Algorithm 2. Relative Error Sequential Algorithm
Data:
ε, δ, α, γmin : the original parameters
M = � 1

ε2hr(γmin,ε)
log 2

δ
�

k = 0
nk = M
Ik = [ak, 1] = [γmin, 1]: the initial interval in which γ is supposed to belong

1 while k < nk do
2 k ← k + 1

3 GENERATE ω(k)

4 z(ω(k)) = 1(ω(k) |= φ)

5 m ← m + z(ω(k))
6 Ik ← CONFINT(m, k, α)
7 if γmin ≥ ak then
8 nk = M
9 else

10 nk = � 1
ε2hr(ak,ε)

log 2
δ−α

�
11 nk ← min(nk, M)

Output: γ̂k = m/k
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If α tends to zero, the (1 − α)-confidence interval converges to [0, 1]. In the
absolute error case, since 1/2 belongs to the confidence interval, ha(x, ε) =
ha(1/2, ε) = 2. Then, according to Theorem6-(i), Specification (3) is fulfilled
when n is greater than 1

2ε2 log 2
δ , that is equivalent to the Okamoto bound. In

the relative error case, the sample size fulfilling Specification (4) tends to infinity
because hr(a, ε) tends to zero when a tends to zero. As mentioned previously, n
however can be bounded in practice by M = � 1

ε2hr(γmin,ε) log 2
δ �. In both cases,

setting α too close to zero thus does not improve the predetermined bounds.
Similarly, when α tends to δ, log 2

δ−α tends to infinity. Consequently, the sample
sizes are respectively bounded by the Okamato bound and M in the absolute
and relative error case.

However, determining a priori a value for α that would minimise the sample
size on average is a conundrum. A closed-form expression would depend on ε
and δ, but also on probability of interest γ. Given ε = 0.01 and δ = 0.05, Fig. 3
shows for different probabilities the sample size (averaged over 150 experiments)
necessary to achieve Specifications (3) and (4) with various α. In the absolute
error case, the minimal sample size is empirically achieved for 10−4 < α < 10−3

given γ = 0.02 and for 0.01 < α < 0.015 given γ = 0.25. Similarly, in the
relative error case, the minimal sample size is achieved for 0.0015 < α < 0.003
given γ = 0.1 and for 0.006 < α < 0.0125 given γ = 0.7.

Since γ impacts the choice of an optimal α but is unknown, it is not possible
to optimise α a priori. Though the empirical observations cannot be generalised
to any triples (ε, δ, γ), it is worth remarking that all our results suggest a quicker
convergence to the maximal bound when α converges to δ than when α con-
verges to zero. This comes from the logarithmic speed of convergence in α of the
confidence interval to the estimate given fixed number of samples and successes.

Figure 4 shows how the bounds of a (Wald) (1−α)-confidence interval evolves
when α varies between 10−5 and 0.05, given two different estimates m/n. The
figure would be similar with any other intervals described in Sect. 5. When α is
low, the variations in the bounds of the confidence interval are more important.
But when α tends to 0.05, the variations are smoother and the width of the
intervals does not vary much. So, the Massart function at the bounds of the
confidence interval does not vary much as well in this case.

5 Approximate Versus Exact Confidence Intervals

At line 6 of Algorithms 1 and 2, we iteratively compute an intermediate (1−α)-
confidence interval for γ. For the sake of rigorousness, we initially used exact
Clopper-Pearson confidence intervals [6]. This confidence interval is directly
derived from the binomial distribution and not from its approximation. It guar-
antees that the actual coverage is always equal to or above the nominal confi-
dence level. In others words, a (1 − α)-Clopper-Pearson confidence interval ICP

guarantees that C(γ, ICP ) ≥ 1 − α and its closed-form expression can be eas-
ily computed: ICP = [β−1

(
α
2 ,m, n − m + 1

)
, β−1(1 − α

2 ,m+ 1, n − m) ] with
β−1(α, u, v) being the α-th quantile of a Beta distribution parametrised by u and
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(a) Absolute error ε = 0.01 and γ = 0.25. (b) Absolute error ε = 0.01 and γ = 0.02.

(c) Relative error ε = 0.1 and γ = 0.1 (d) Relative error ε = 0.1 and γ = 0.7.

Fig. 3. Number of simulations for α

(a) m = 3000 and n = 10000. (b) m = 1000 and n = 10000.

Fig. 4. Lower and upper bounds of (Wald) (1 − α)-confidence intervals given different
number of successes m and a fixed number of samples n.
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v. Unfortunately, to quote [3], “the Clopper-Pearson interval I is wastefully con-
servative and is not a good choice for practical use, unless strict adherence to the
prescription C(γ, I) ≥ 1 − α is demanded”. In our algorithms this prescription
is necessary to rigorously apply Theorems 4 and 5.

5.1 Approximate Confidence Intervals

However, given a confidence interval, we evaluate a worst-case value of the Mas-
sart bound. Since our approach is likely to be conservative, it remains interesting
to replace the computation of exact confidence intervals by simpler approxima-
tions.

The Wald confidence interval is the most standard approximate confidence
interval. Denoting Φ(.) the standard normal distribution function and zδ/2 =
Φ−1(1 − δ/2) the (1 − δ/2)th quantile of the normal distribution, the notional
(1 − δ)-confidence interval for γ is given by I =

[
γ̂n − zδ/2

σ√
n
, γ̂n + zδ/2

σ√
n

]
, by

virtue of the central limit theorem. However, in practice, σ2 is replaced by a
sample approximation σ̂2

n = γ̂n(1 − γ̂n)/n (and if n is small, zδ/2 by tδ/2,n−1 the
quantile of the Student’s t-distribution with n − 1 degrees of freedom). Then,
the Wald approximate (1 − δ)-confidence interval ĨW is given by:

ĨW =
[
γ̂n − zδ/2σ̂n, γ̂n + zδ/2σ̂n

]
(11)

The coverage of γ by Wald interval ĨW , may be significantly below the (desired)
notional coverage: C(γ, ĨW ) < C(γ, I) = 1− δ. More details about this topic are
available in [3].

The Agresti-Coull confidence Interval consists of replacing the number of
samples n by n + z2

δ and the number of successes m by m + z2
δ/2 in the Wald

confidence interval (11):

ĨAC =

[
m + z2

δ/2
n + z2

δ

± zδ/2

√
1

n + z2
δ

m + z2
δ/2

n + z2
δ

(

1 − m + z2
δ/2

n + z2
δ

) ]

(12)

This approximate confidence interval is recommended in several textbooks
[3,20] to overcome the flaws of the Wald interval. Its coverage remains excellent,
even close to probabilities 0 and 1 and may represent a good compromise between
exactness and conservativeness (see [3] for more details).

5.2 Absolute Error Scheme Results

We repeated each set of experiments 200 times with the three different confi-
dence intervals for several values of γ, ε and δ. We set α = δ/50 = 10−3 in these
experiments. We estimated the empirical coverage by the number of times Spec-
ification (3) is fulfilled divided by 200 and computed the average, the standard
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deviation and the extrema values of the estimations γ̂ and the sample size. For
the sake of clarity, as our results are consistent for all ε, δ and are symmetric
with respect to γ = 1/2, we summarize the most relevant results for ε = 0.01,
δ = 0.05 and 0 < γ ≤ 1/2 in Table 1.

Table 1. Results of the absolute error scheme with ε = 0.01 and δ = 0.05

γ 0.005 0.01 0.02 0.05 0.1 0.3 0.5

Coverage (Wald), α = δ/50 1 0.925 0.97 0.995 0.98 0.995 0.99

γ̂ min (Wald) 0 0 0 0.039 0.089 0.29 0.49

γ̂ max (Wald) 0.011 0.022 0.028 0.057 0.113 0.314 0.512

N̄ (Wald) 480 835 1629 3765 6893 15687 18445

Coverage (AC), α = δ/50 1 0.995 0.995 1 0.99 0.995 0.98

γ̂ min (AC) 0 0 0.01 0.041 0.088 0.29 0.487

γ̂ max (AC) 0.011 0.018 0.029 0.058 0.111 0.31 0.511

N̄ (AC) 710 1047 1753 3782 6874 15692 18445

Coverage (CP), α = δ/50 1 1 0.995 0.995 0.99 0.99 1

γ̂ min (CP) 0 0.003 0.01 0.04 0.089 0.29 0.488

γ̂ max (CP) 0.009 0.015 0.028 0.058 0.114 0.311 0.508

N̄ (CP) 971 1318 2031 4095 7192 15826 18445

Replacing Clopper-Pearson intervals by Agresti-Coull intervals (respectively
denoted CP and AC in Tables 1 and 2) has no negative impact on the coverage
of the experiment, while the ratio of the average sample sizes obtained with
the Agresti-Coull and Clopper-Pearson intervals decreases from 1 to 0.73. This
illustrates the wasteful amount of samples using the Clopper-Pearson method,
especially for the small probabilities. Regarding the Wald confidence interval,
the results are in general even better. However, we remark that for one set of
experiments (γ = 0.01, ε = 0.01, δ = 0.05, α = 10−3), the empirical coverage were
below the theoretical level (1− δ) (in bold red in Table 1). This illustrates one of
the issues encountered when using the Wald interval: the interval is too narrow.
Then, the Massart function is evaluated on a too optimistic extremal point of
the Wald interval that prematurely causes the termination of Algorithm1. In
order to optimise the performance of our algorithm, we thus recommend the use
of the Agresti-Coull confidence interval.

5.3 Relative Error Scheme Results

As for the absolute error algorithm, we repeated our relative error scheme 200
times per set of experiments with Wald and Clopper-Pearson intervals. We have
not reported the empirical coverage since the empirical coverages were all equal
to 1. This suggests that our relative error scheme remains conservative, even
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Table 2. Sample size average of the relative error schemes, given ε and δ.

γ 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001

N̄ Wald, (ε, δ, α) = (0.05, 0.01, 0.001) 573 2016 4617 10508 39927 83858 437847 4400530

N̄ CP, (ε, δ, α) = (0.05, 0.01, 0.001) 648 2119 4701 10686 40303 84880 438929 4438120

N̄ Wald, (ε, δ, α) = (0.1, 0.01, 0.001) 148 548 1220 2734 10204 21502 111522 1121966

N̄ CP, (ε, δ, α) = (0.1, 0.01, 0.001) 204 583 1273 2822 10484 21930 112880 1135687

N̄ Wald, (ε, δ, α) = (0.1, 0.05, 0.001) 94 361 828 1838 6922 14642 75644 761563

N̄ CP, (ε, δ, α) = (0.1, 0.05, 0.001) 156 431 905 1970 7333 15310 67511 789934

N̄ Wald, (ε, δ, α) = (0.05, 0.05, 0.001) 374 1366 3132 7162 27200 57368 298397 3004281

N̄ CP, (ε, δ, α) = (0.05, 0.05, 0.001) 471 1489 3296 7422 27951 58724 301258 3043438

if we replace the exact confidence interval by an approximation. The sample
sizes are always lower with the Wald intervals. However, they tend to become
similar when γ tends to zero since the lower bound of the respective intervals are
alike. We have not performed our relative error scheme with the Agresti-Coull
confidence intervals since the Agresti-Coull interval contains ĨW (γ) and is less
conservative than ICP (γ). The results would have thus been similar. Given these
results, we also recommend the use of an approximate confidence interval, the
Agresti-Coull confidence interval being a good compromise between rigorousness
and performance.

Last but not least, it is worth recalling that the coverage of the Agresti-Coull
confidence interval remains conservative for probability values lower than 0.1 or
greater than 0.9. In between, it is possible to find couples (n, γ) for which the
coverage of the interval is below the desired 1 − α level. But, as far we know,
this remains rare and the distance between the coverage and 1−α never exceeds
1% in the literature (e.g. [1,3]).

6 Distributing the Algorithms

The standard absolute error Monte Carlo scheme can be easily distributed.
Indeed, once the sample size has been calculated with the Okamoto bound,
the simulations are executed independently of each other. In what follows, we
call ’server’ the root node of a network of computational devices and ’client’
the leaf nodes. In a multi-thread system, the clients correspond to independent
computational threads on a machine. In a multi-client network, the server glob-
ally manages the estimation and the clients perform the simulations. Each client
executes a number of traces equal to the Okamoto bound divided by the num-
ber of threads used by the server (assuming for the sake of simplicity that the
remainder is equal to zero). Once the client has finished its simulation task, it
communicates the number of successes to the server. The server centralises the
information from all the clients and the estimator is computed at the level of
the server.

But for sequential algorithms, the sample size is a priori unknown and the
estimator should be updated on-the-fly until Specification (3) or (4) holds. In
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Algorithm 3. Distributed Absolute Error Sequential Algorithm
Data:
ε, δ, β : the original parameters
M = � 1

2ε2
log 2

δ
�: the Okamoto bound

K = 0
m = 0: the number of successes
nK = M
IK = [aK , bK ] = [0, 1]: the initial interval to which γ is known to belong

1 j = 0
2 while K < nK do

3 Server sends m, K and M (j) = M−K

r(j) to r(j) clients.

4 Each client i, 1 ≤ i ≤ r(j), samples at most M−K

r(j) traces.

5 mi = 0
6 ki = 0

7 while K + ki <
nK+ki

r(j) and ki < M−K

r(j) do

8 ki ← ki + 1

9 GENERATE ω(ki)

10 z(ω(ki)) = 1(ω(ki) |= φ)

11 mi ← mi + z(ω(ki))
12 IK+ki ← CONFIDENCE INTERVAL(m + mi, K + ki, β)
13 if 1/2 ∈ IK+ki then
14 nK+ki = M
15 else if bK+ki < 1/2 then
16 nK+ki = � 2

ha(bK+ki
,ε)ε2

log 2
δ−β

�
17 else
18 nK+ki = � 2

ha(aK+ki
,ε)ε2

log 2
δ−β

�
19 nK+ki ← min(nK+ki , M)

20 m = m +
∑r(j)

i=1 mi

21 K = K +
∑r(j)

i=1 ki

22 nK ← UPDATE(m, K, ε, δ, β)
23 j = j + 1

Output: γ̂K = m/K

what follows, we propose a distributed algorithm for the absolute error that
reduces the amount of central processing and reduces the amount of time due
to communication between the clients and the server.

6.1 A Distributed Version of the Absolute Error Scheme

The following idea can be easily adapted to the relative error scheme. For the
sake of readability, we only explain how to distribute our absolute error sampling
scheme. Initially the server computes the Okamato bound, divides the simulation
work between r(0) clients and sends to the clients the parameters of the algorithm
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ε, δ, β, the current number of successes m = 0 and samples K = 0 and the
maximal number of samples M (0) = M/r(0) that each client, indexed by i, may
perform.

Each client executes simulations as in Algorithm 1 but stops as soon as its
sample size ki is greater than nki

/r(0). Once all the clients communicated their

local number of successes and samples, the server updates m =
∑r(0)

i=1 mi, K =
∑r(0)

i=1 ki and computes a global nK to check whether K < nK or not. If K ≥ nK

holds, then the server outputs γ̂K = m/K and Specification (3) is fulfilled. The
simulations are all independent and the clients do not communicate with the
other clients their local results. Then, since the server waits for all the clients’
local results before updating nK , the correctness of the algorithm is preserved.
The idea behind stopping client i once ki > nki

/r(0) is the following: if all
the clients (roughly) communicate the same number of successes and samples,
m ≈ r(0)mi, K ≈ r(0)ki and consequently K ≥ nK . However, if the local results
are very different, it could be that K < nK . Then, the server divides the maximal
remaining samples M − K between all the available clients r(1) and sends them
the updated values of m and K. The procedure is repeated until K ≥ nK . Note
that the number of available clients r(j) may change from one step to another.

Gain in Time. This distributed version of the algorithm potentially involves
several rounds of communication between a server and the clients. However, the
number of rounds j likely remains small. For the sake of simplicity, we assume
that the number of clients r is constant. Let c be the cost in time of the commu-
nication between a server and a client and d be the average cost of one execution
trace. We can reasonably assume that the cost of the intermediate calculations
is negligible in comparison of c and d and that d is significantly greater than c.
Then, the amount of time taken by the whole experiment is roughly jcr + dK/r
instead of dK where the overhead cost jcr due to communication is largely
compensated by the gain due to the division of dK by r.

7 Conclusion

In this work we discussed several optimisations and features for the sequential
Massart algorithm introduced in [15]. In particular, it appears that in practice,
using approximate instead of exact confidence intervals in the algorithm facili-
tates at least faster preliminary analysis. Moreover, the Agresti-Coull confidence
interval reduces the sample size without significant impact on the coverage. Also,
even if setting up optimally the coverage parameter a priori is not possible, it
seems likely to set it up closer to zero than δ. Last but not least, we showed that
the schemes can be efficiently distributed on high performance parallel compu-
tational architectures.
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