
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2018

Compositional reasoning for shared-variable concurrent programs Compositional reasoning for shared-variable concurrent programs

Fuyuan ZHANG

Yongwang ZHAO

David SANAN

Yang LIU

Alwen TIU

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Citation Citation
ZHANG, Fuyuan; ZHAO, Yongwang; SANAN, David; LIU, Yang; TIU, Alwen; LIN, Shang-Wei; and SUN, Jun.
Compositional reasoning for shared-variable concurrent programs. (2018). Proceedings of the 22nd
International Symposium on Formal Methods, Oxford, UK, 2018 July 15-17. 10951, 523-542.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/4649

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4649&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4649&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Fuyuan ZHANG, Yongwang ZHAO, David SANAN, Yang LIU, Alwen TIU, Shang-Wei LIN, and Jun SUN

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4649

https://ink.library.smu.edu.sg/sis_research/4649

Compositional Reasoning for Shared-variable
Concurrent Programs

Fuyuan Zhang1, Yongwang Zhao3, David Sanán1, Yang Liu1,
Alwen Tiu2, Shang-Wei Lin1, and Jun Sun4

1 School of Computer Science and Engineering, Nanyang Technological University, Singapore
2 Research School of Computer Science, Australian National University, Canberra, Australia

3 School of Computer Science and Engineering, Beihang University, Beijing, China
4 Singapore University of Technology and Design, Singapore

Abstract. Scalable and automatic formal verification for concurrent systems is
always demanding. In this paper, we propose a verification framework to sup-
port automated compositional reasoning for concurrent programs with shared
variables. Our framework models concurrent programs as succinct automata and
supports the verification of multiple important properties. Safety verification and
simulations of succinct automata are parallel compositional, and safety properties
of succinct automata are preserved under refinements. We generate succinct au-
tomata from infinite state concurrent programs in an automated manner. Further-
more, we propose the first automated approach to checking rely-guarantee based
simulations between infinite state concurrent programs. We have prototyped our
algorithms and applied our tool to the verification of multiple refinements.

1 Introduction

Automatic verification of concurrent programs is a challenging task. Due to interleav-
ing, the state space of a concurrent program could grow exponentially, which makes it
infeasible to directly reason about the global state space. A promising way of conquer-
ing the state explosion problem is compositional reasoning [18,33,26,25,36], which
aims at breaking the global verification problems into small localized problems. Ex-
tensive research [15,14,23,22,19,10] has been conducted on developing rely-guarantee
based automatic verification techniques for safety properties of concurrent programs.
However, to ensure that safety properties of concurrent programs are preserved after
compilation, it is also necessary to show that the checked programs are refined correct-
ly. To the best of our knowledge, all existing approaches to checking rely-guarantee
based simulations of concurrent programs [28] are manual.

In this paper, we propose a framework of automated compositional reasoning for
shared-variable concurrent programs, which supports both safety verification and re-
finement checking. In our framework, concurrent programs are modelled as succinc-
t automata, which can be viewed as an extension of program graphs [2]. A succinct
automaton consists of both component transitions, specifying behaviors of a local pro-
gram, and environment transitions, which overapproximate behaviors of other programs
in the environment. The idea of integrating these two types of transitions is the key to

2

ensure parallel compositionality. The development of our framework proceeds in the
following two directions.

The first direction focuses on parallel compositionalities of safety and simulations
of succinct automata, which are very useful in developing compositional proof of global
properties. For example, our definition of weak simulations between succinct automa-
ta allows compositional reasoning through establishing a local refinement relationship.
Let SA1 (resp. ŜA1) and SA2 (resp. ŜA2) be two succinct automata and SA1||SA2

(resp. ŜA1||ŜA2) be their parallel composition. Since our notion of weak simulation
is compositional, we can prove that SA1||SA2 weakly refines ŜA1||ŜA2 by proving
that SA1 (resp. SA2) weakly refines ŜA1 (resp. ŜA2). As safety properties of succinc-
t automata are preserved under refinements, parallel compositionalities of safety and
simulations allow us to extend safety properties of high level concurrent programs to
low level concurrent programs in compositional ways.

The second direction aims at automating our compositional reasoning techniques.
One difficulty of modelling concurrent programs as succinct automata is to find appro-
priate environment transitions that overapproximate the interleavings between concur-
rent programs. We show that such environment transitions can be inferred automatically
for succinct automata with infinite domains. Moreover, we have developed an SMT-
based approach to checking weak simulations between infinite state succinct automata.
To the best of our knowledge, we are the first to propose automatic verification of rely-
guarantee based simulations for infinite state shared-variable concurrent programs. We
have prototyped our tool in F# and verified multiple refinements in automated manner.

Our contributions are fourfold. First, we propose a new formalism, succinct au-
tomata, that facilitates automatic verification of multiple properties of shared-variable
concurrent programs. Second, we show compositionality results on safety properties
and simulations in our framework. Third, we show that succinct automata can be gen-
erated automatically from infinite state concurrent programs. Fourth, we provide an
SMT-based approach to verifying simulations for infinite state succinct automata.

2 Related Work

Extensive research has been conducted on the verification of concurrent programs. Ba-
sic approaches to conquering the state explosion problem of concurrent systems include
(but not limited to) symbolic model checking [4], partial order reduction [35,32,16],
abstraction [17,8,11,9], compositional reasoning [18,33,26,25,31] and symmetry reduc-
tion [24,7,13]. The formalism of succinct automata is inspired by rely-guarantee style
reasoning [26,25]. We mainly discuss related work on the compositional reasoning of
properties considered in this paper.

Safety Verification. Our approach to safety verification is closest to thread-modular
verification [15], where safety properties are characterized by a set of unsafe states
and a global system is safe iff unsafe states are not reachable. In this paper, we focus
on invariance properties of succinct automata. Checking strong invariants of succinct
automata is dual to verifying whether corresponding sets of unsafe states are reach-
able. Hence, the approach in [15] can be applied to verify strong invariants of (parallel)
succinct automata with finite domains. Work in [23,22,19,10] combined compositional

3

reasoning with abstraction refinement [8]. Moreover, [19,10] allow local variables of
different threads to be correlated, which makes their proof rules complete.

Simulations. Our work on checking weak simulations is related to previous ap-
proaches [3,29,5,28] on compositional reasoning of concurrent programs refinement.
In [3,29,5], parallel compositionality is achieved by allowing the environments to have
arbitrary behaviors, which is considered too strong in general. Our definition of weak
simulations for succinct automata is closely related to and inspired by [28], where a
rely-guarantee based simulation, called RGSim, for concurrent programs is proposed.
Their compositionality rules for RGSim form the basis of a relational proof method
for concurrent programs transformations. Our work differs with theirs mainly in that
we aim at developing automatic verification of weak simulations between succinct au-
tomata. Also, instead of treating all variables as global variables, we distinguish be-
tween local variables and global variables. This greatly reduces the state space of local
succinct automata. Compared to [21], which has proposed the first automated proof
system for refinement verification of concurrent programs, our approach to refinement
checking is more general and is not limited to any specific rules of refinement. Work
in [27] proposed an automated refinement checking technique for infinite state CSP
programs. Their approach is not developed for shared-variable concurrent programs.

3 Succinct Automata

Succinct automata aim to model both local behaviors of a program and its environ-
ment in a unified way, and to provide a convenient way to specify useful properties of
programs and to support compositional reasoning over them. We distinguish between
global variables and local variables when modeling concurrent programs.

3.1 Syntax and Semantics

Let Dom be a finite or infinite (numeric) domain and V = {v1, ..., vn} be a finite set of
variables ranging over Dom. An atomic predicate over V is of the form f(v1, ..., vn) ∼
b, where f : Domn → Dom is a function, ∼∈ {=, <,≤, >,≥} and b ∈ Dom. A
predicate over V is a Boolean combination of atomic predicates over V . We write V ′ for
{v′1, ..., v′n} that refers to variables in V after transitions. Let F(V) (resp. F(V ∪ V ′))
denote the set of predicates over V (resp. V ∪ V ′). A valuation is a function from
variables to a domain. Given a valuation v : V → Dom, we define n(v) : V ′ → Dom
as n(v)(v′i) = v(vi) for vi ∈ V . Given a predicate ψ ∈ F(V1) and a valuation v :
V2 → Dom, where V1 ⊆ V2, we write ψ(v) to denote that ψ evaluates to true under the
valuation v. We write ValV to denote the set of all valuations for variables in V .

Definition 1. A Succinct Automaton is a tuple SA = (Q, q0, V, Init, Inv,Env,Σ,Edge),
where

– Q is a finite set of locations and q0 ∈ Q is an initial location.
– V = VG ∪ VL and VG (resp. VL) is a finite set of global (resp. local) variables

ranging over Dom, where VG ∩ VL = ∅.
– Init ∈ F(V) defines initial values of variables at q0.
– Inv : Q→ F(V) constrains the values of variables at each location.

4

– Env : Q→ ValVG × ValVG specifies environment transitions at each location.
– Σ is a finite set of action labels which includes the silent action τ .
– Edge ⊆ Q × Σ × F(V ∪ V ′) × Q is a finite set of edges specifying component

transitions.

For each location q ∈ Q, transitions specified by Env(q) are made by the environ-
ment when SA stays at q. In the rest of the paper, we also use predicates or first order
formulas to specifyEnv(q) for convenience. For example, when using φ ∈ F(VG∪V ′G)
to specify Env(q), Env(q) is defined by Env(q) = {(vG, v′G) | φ(vG, n(v′G)) holds}.
An edge is of the form e = (q, σ, µ, q′), where µ defines the transition condition and is
of the form µ := G(V) ∧

∧
v′i∈V ′

v′i = fi(V), where G(V) is a guard for e and fi is a
function fi : Domn → Dom for 1 ≤ i ≤ n. Action labels in Σ are used when we check
weak simulations of succinct automata. The main purpose of Inv is to overapproximate
reachable states at each control location of a concurrent program. This also facilitates
the formalization of the compatibility condition on succinct automata (introduced later).
A succinct automaton is closed if its environment cannot modify its global variables.

The semantics of succinct automata is defined as a labeled transition system. A state
of a succinct automaton is a pair s = (q, v) of location q and valuation v : V → Dom.
We denote with SSA the state space of SA. A state (q, v) is an initial state iff q = q0
and Init(v) holds. We say that a predicate ψ is satisfied on (q, v) iff ψ(v) holds.

Let v1 : V1 → Dom and v2 : V2 → Dom be two valuations such that V1 ∩ V2 =
∅. We define v1 ⊕ v2 : V1 ∪ V2 → Dom by v1 ⊕ v2(v) = v1(v) for v ∈ V1 and
v1 ⊕ v2(v) = v2(v) for v ∈ V2. Let vG : VG → Dom (resp. vL : VL → Dom)
be valuations over global (resp. local) variables. In the rest of the paper, we also use
(q, vG ⊕ vL) to represent a state for convenience.

We define two types of transitions, namely component transitions and environ-
ment transitions, for succinct automata. There is a component transition between t-
wo states (q, v) σ→ (q′, v′) iff there exists an edge of the form (q, σ, µ, q′) ∈ Edge
and Inv(q)(v) ∧ µ(v ⊕ n(v′)) ∧ Inv(q′)(v′) holds. There is an environment transi-
tion between two states (q, v) env−→ (q′, v′) iff q = q′, Inv(q)(v) ∧ Inv(q)(v′) holds,
(vG, v′G) ∈ Env(q) and vL = v′L, where v = vG ⊕ vL and v′ = v′G ⊕ v′L. Notice that
in an environment transition, only values of global variables can be modified and values
of local variables remain unchanged.

A run of SA is a finite or infinite sequence of environment and component transi-
tions starting from an initial state (q0, v0):

(q0, v0)
env−→ (q0, v′0)

σ1→ (q1, v1)
env−→ (q1, v′1)

σ2→ (q2, v2) · · ·

We say that a predicate ψ is satisfied on a run iff it is satisfied on all states on that run.
A finite local path of SA is a sequence of edges π = e1, ..., en, where ei =

(qi, σi, µi, q
′
i), en = (qn, σn, µn, q

′
n) and q′i = qi+1 for 1 ≤ i < n.

We write (q, v) →∗ (q′, v′) if there exists a finite run of SA, (consisting of zero or
more transitions), from (q, v) to (q′, v′) and say that (q′, v′) is reachable from (q, v).
The set of reachable states of SA is the set of states reachable from initial states of
SA. Regarding environment transitions, we write (q, v) env

∗

−→ (q, v′) to denote a finite
sequence of environment transitions of SA starting from (q, v) to (q, v′). For component

5

P1: P2:
while (true) { while (true) {
flag1:=1; flag2:=1;
turn:=2; turn:=1;
await (flag2=0∨turn=1) { await (flag1=0∨turn=2) {
Critical Section; Critical Section;
} }
flag1:=0; flag2:=0;
} }

Fig. 1. A Simplified Peterson’s Algorithm

transitions, we write (q, v) τ
∗στ∗−→ (q′, v′) to mean that SA has first taken a finite number

of silent actions τ , followed by a component transition labelled by an action σ, and then
made another finite number of silent actions.

Example 1. We model a simplified Peterson’s algorithm using succinct automata as an
example. The pseudo code in Fig. 1 shows a simplified version of Peterson’s algorithm
with two processes P1 and P2.

In Fig. 2, we model the above two processes as SA1 = (Q1, q0, V, Init1, Inv1, Env1,
Σ1, Edge1) and SA2 = (Q2, p0, V, Init2, Inv2, Env2, Σ2, Edge2) respectively, where
V = {flag1, f lag2, critical1, critical2, turn}, Σ1 = {τ, c1} andΣ2 = {τ, c2}. Here,
we treat all variables as global variables. The automaton SA1 (resp. SA2) starts at lo-
cation q0 (resp. p0), where each variable has an initial value of 0, and has five locations
q0, q1, q2, q3 and q4 (resp. p0, p1, p2, p3 and p4). Invariants for locations are presented
in ovals. Component transitions are represented by solid line arrows, together with the
action labels and predicates on them. We omitted the predicates specifying the variables
whose values remain unchanged in component transitions. Environment transitions are
represented by dashed line arrows and predicates on these arrows specify the binary
relations that define environment transitions.

We now briefly explain SA1. At location q0, the environment transition is specified
by ϕ1 = (flag′1 = flag1 ∧ critical′1 = critical1) ∧ (critical′2 = 1 ⇒ flag′2 =
1), meaning that SA2 never modifies the values of flag1 and critical1 and that if
SA2 enters the critical section after the transition, denoted by critical′2 = 1, we have
flag′2 = 1. Then, SA1 takes a silent action to set flag1 to 1, meaning that it wants
to enter the critical section, and enters q1. At location q1, the environment transition
is specified by ϕ2 = (flag′1 = flag1 ∧ critical′1 = critical1) ∧ (critical′2 = 1 ⇒
(flag′2 = 1 ∧ turn′ = 2)). Compared with ϕ1, we see that if SA2 enters the critical
section when SA1 is at q1, flag′2 (resp. turn′) must be 1 (resp. 2). This is because SA2

must wait until its turn, denoted by turn = 2, to enter the critical section once SA1

has set flag1 to 1. After taking another silent action, SA1 arrives at q2. At location q2,
if flag2 = 0 ∨ turn = 1, SA1 takes the action c1 and enters the critical section. By
entering q4, SA1 leaves the critical section. Finally, SA1 resets flag1 to 0 and comes
back to q0.

6

flag1 = 0 /\

critical1 = 0

q0

τ: flag1’=1

τ: turn’=2

c1: (flag2 = 0 \/ turn = 1) /\

critical1’ =1

τ: flag1’ = 0

SA1:
𝜑1

flag1 = 1 /\

critical1 = 1
q3 𝜑2

flag1 = 1 /\

critical1 = 0
q2 𝜑2

flag1 = 1 /\

critical1 = 0
q1 𝜑2

c2: (flag1 = 0 \/ turn = 2) /\

critical2’ =1

flag2 = 0 /\

critical2 = 0

flag2 = 1 /\

critical2 = 0

flag2 = 1 /\

critical2 = 0

flag2 = 1 /\

critical2 = 1

p0

p3

p2

p1

τ: flag2’=1

τ: turn’=1

τ: flag2’ = 0

SA2:
𝜓1

𝜓2

𝜓2

𝜓2

τ: critical1’ =0

flag1 = 1 /\

critical1 = 0
𝜑2

q4

flag2 = 1 /\

critical2 = 0
𝜓2

τ: critical2’ =0

p4

Fig. 2. Succinct automata for the Simplified Peterson’s algorithm

The environment transitions of SA2 are defined by ψ1 = (flag′2 = flag2 ∧
critical′2 = critical2) ∧ (critical′1 = 1 ⇒ flag′1 = 1) and ψ2 = (flag′2 =
flag2 ∧ critical′2 = critical2) ∧ (critical′1 = 1⇒ (flag′1 = 1 ∧ turn′ = 1)).

3.2 Parallel Composition

In rely-guarantee reasoning, the guarantee of one thread should imply the rely con-
ditions of other threads. Similarly, we impose a compatibility condition on succinct
automata running in parallel. Let q1 (resp. q2) be an arbitrary location in SA1 (re-
sp. SA2). Informally, the compatibility condition guarantees that if SA1 (resp. SA2)
makes a component transition from q1 (resp. q2) to q′1 (resp. q′2), SA2 (resp. SA1) can
mimic this transition by its environment transitions at q2 (resp. q1). We formalize the
compatibility condition as follows.

Definition 2. SA1 and SA2 are compatible iff for all (q1, vG⊕vL1) ∈ SSA1 , (q2, vG⊕
vL2) ∈ SSA2 such that Inv1(q1)(vG ⊕ vL1) and Inv2(q2)(vG ⊕ vL2), we have

1. If (q1, vG ⊕ vL1
)
σ1→ (q′1, v′G ⊕ v′L1

), then (q2, vG ⊕ vL2
)
env−→ (q2, v′G ⊕ vL2

).
2. If (q2, vG ⊕ vL2

)
σ2→ (q′2, v′G ⊕ v′L2

), then (q1, vG ⊕ vL1
)
env−→ (q1, v′G ⊕ vL1

).

Succinct automata running in parallel execute their component transitions in an in-
terleaved manner. The formal definition of parallel composition of compatible succinct
automata is defined as follows.

Definition 3. Let SA1 = (Q1, q
1
0 , VG∪VL1 , Init1, Inv1, Env1, Σ1, Edge1) and SA2 =

(Q2, q
2
0 , VG∪VL2 , Init2, Inv2, Env2, Σ2, Edge2) be two compatible succinct automa-

ta. The parallel composition of SA1 and SA2 is a succinct automaton SA1 ‖ SA2 =
(Q, q0, VG ∪ VL, Init, Inv,Env,Σ,Edge), where

– Q = Q1 ×Q2, q0 = (q10 , q
2
0), VL = VL1

∪ VL2
and Σ = Σ1 ∪Σ2.

7

– Init = Init1 ∧ Init2.
– Inv((q1, q2)) = Inv1(q1) ∧ Inv2(q2) for each q1 ∈ Q1 and q2 ∈ Q2.
– Env((q1, q2)) = Env1(q1) ∩ Env2(q2) for each q1 ∈ Q1 and q2 ∈ Q2.
– ((q1, q2), σ, µ, (q

′
1, q
′
2)) ∈ Edge iff either:

1. there exists an edge (q1, σ, µ, q
′
1) ∈ Edge1 and q2 = q′2, or

2. there exists an edge (q2, σ, µ, q
′
2) ∈ Edge2 and q1 = q′1.

After parallel composition, SA1 and SA2 share a common environment. The en-
vironment of SA1 ‖ SA2 for location (q1, q2) is the intersection of the environments
of SA1 and SA2 for location q1 and q2 respectively. Intuitively, for each finite run of
the parallel composition of two compatible succinct automata, there is a corresponding
finite run in each of its components.

4 Compositional Reasoning for Succinct Automata

4.1 Safety Verification of Succinct Automata

Safety properties require that bad things should not happen. Invariants are a particular
kind of safety properties that are useful in specifications. For example, the mutual ex-
clusion property is an invariant which specifies that no more than one thread is in its
critical section at any time. We introduce compositional reasoning methods for invariant
verification of succinct automata and checking other safety properties can be reduced
to invariant verification.

Recall that a predicate λ ∈ F(V) is an invariant of a transition system TS if λ is
satisfied on all reachable states of TS. Unlike in a transition system, we have two kinds
of transitions, local and environment. The way we treat them leads us to define two
types of invariants of succinct automata, strong and weak. When treating both kinds of
transitions equally, we reach the notion of strong invariants.

Definition 4. A predicate λ ∈ F(V) is a strong invariant of SA if λ is satisfied on all
reachable states of SA.

When focusing on runs of succinct automata where environment transitions pre-
serve λ, we reach the notion of weak invariants. Here, we say that an environment
(resp. a component) transition (q, v) env−→ (q, v′) (resp. (q, v) σ→ (q′, v′)) preserves λ
if λ(v) implies λ(v′). The intention of weak invariants is as follows: For a program T
modelled as SA, if λ is a weak invariant of SA, then, running in any environment that
preserves λ, T can guarantee that λ is preserved in all its local transitions.

Definition 5. A predicate λ ∈ F(V) is a weak invariant of SA if λ is satisfied on all
runs of SA where environment transitions preserve λ.

The notion of weak invariants is more general than strong invariants. In the follow-
ing, we focus on compositionality of weak invariants. We first impose a noninterference
condition on local weak invariants. This condition is to guarantee that local transition-
s of any component that preserve its own local weak invariant cannot invalidate local
weak invariants of other components. Let λ1 (resp. λ2) be a weak invariant of SA1

8

(resp. SA2). Formally, we use noninterfere(λ1, λ2) to mean the following condition:
((λ1 ∧ λ2 ∧ λ′1) ⇒ λ2[V

′
G/VG]) ∧ ((λ1 ∧ λ2 ∧ λ′2) ⇒ λ1[V

′
G/VG]), where λ′i is

derived from λi by substituting all its variables with corresponding primed variables
and λi[V ′G/VG] is derived by substituting all global variables in VG with corresponding
primed variables in V ′G for i = 1, 2. The parallel compositionality of weak invariants of
succinct automata are formalized in the following theorem, which says that local weak
invariants satisfied by all the components of the parallel composition of succinct au-
tomata guarantee a global weak invariant satisfied by the entire system as long as local
weak invariants satisfy the noninterference condition.

Theorem 1. Let SA1 and SA2 be compatible. Assume that noninterfere(λ1, λ2) and
λ1 (resp. λ2) is a weak invariant of SA1 (resp. SA2). We have that λ1 ∧ λ2 is a weak
invariant of SA1||SA2.

Example 2. To show that the simplified Peterson’s algorithm in Fig. 1 guarantees mu-
tual exclusion, we check whether critical1 = 0 ∨ critical2 = 0 is a weak invariant of
SA1||SA2 in Fig. 2. We define λ1 and λ2 by λ1 = λ2 = (critical1 = 0 ∨ critical2 =
0). It is easy to verify that λ1 (resp. λ2) is a weak invariant of SA1 (resp. SA2). Also, it
is easy to see that noninterfere(λ1, λ2) holds trivially as λ1 = λ2. According to The-
orem 1, we know that critical1 = 0 ∨ critical2 = 0 is a weak invariant of SA1||SA2,
which implies that P1 and P2 in Fig. 1 cannot be in the critical section at the same time.

Example 3. We show the correctness of the abstract concurrent GCD programs (T1 and
T2) in Fig. 3(a). (The code is taken from [28].) To check that T1||T2 really compute
the greatest common divisor (gcd) of variables a and b, we first model T1 (resp. T2) as
SA1 (resp. SA2). The construction of SA1 is shown in Fig. 4 (left), where ϕ = (a′ =
a) ∧ (a < b ∨ b′ = b). We omit the construction of SA2 due to space limitation.

For convenience, we introduce two auxiliary variables A and B to SA1 and SA2.
The value of A (resp. B) equals to the initial value of the input variable a (resp. b) and
remain unchanged. Let λ1 = λ2 = (gcd(a, b) = gcd(A,B)), where gcd is a function
that returns the gcd of its input. It is easy to verify that λ1 (resp. λ2) is a weak invariant
of SA1 (resp. SA2). Also, it is easy to see that noninterfere(λ1, λ2) holds. According
to Theorem 1, we know that gcd(a, b) = gcd(A,B) is a weak invariant of SA1||SA2,
which implies that T1||T2 really compute the gcd of the input values of a and b.

4.2 Simulations of Succinct Automata

We define weak simulations between succinct automata as follows.

Definition 6. A binary relation θ ⊆ SSA1×SSA2 is a weak simulation for (SA1, SA2)
w.r.t. a precondition κ ∈ F(V1 ∪ V2) and an invariant ι ∈ F(V1 ∪ V2), denoted by
SA1 �(κ,ι)

θ SA2, iff we have the following:

1. κ(v1, v2) implies ((q1, v1), (q2, v2)) ∈ θ, where both q1 and q2 are initial.
2. ((q1, v1), (q2, v2)) ∈ θ implies ι(v1, v2), Inv1(q1)(v1), Inv2(q2)(v2) and the fol-

lowing:

9

T1: T2:
m:=0; n:=0;
while (m=0) { while (n=0) {

atomic { atomic {
if (a=b) if (a=b)
m:=1; n:=1;

if (a>b) if (a<b)
a:=a-b; b:=b-a;

} }
} }

(a) Abstract GCD Programs

T ′
1: T ′

2:
m:=0; n:=0;
while (m=0) { while (n=0) {

x1:=a; y1:=a;
x2:=b; y2:=b;
if (x1=x2) if (y1=y2)

m:=1; n:=1;
if (x1>x2) if (y1<y2)

a:=x1-x2; b:=y2-y1;
} }

(b) Concrete GCD Programs

Fig. 3. Concurrent GCD Programs

a. if (q1, v1)
env−→ (q1, v′1) and (q2, v2)

env∗−→ (q2, v′2) and ι(v′1, v′2), then we have
that ((q1, v′1), (q2, v′2)) ∈ θ.

b. if (q1, v1)
σ1→ (q′1, v′1) and σ1 6= τ , then there exist (q′2, v′2) ∈ SSA2

and σ2 ∈ Σ2

such that σ2 = σ1, (q2, v2)
τ∗σ2τ

∗

−→ (q′2, v′2) and ((q′1, v′1), (q′2, v′2)) ∈ θ.

c. if (q1, v1)
τ→ (q′1, v′1), then there exists (q′2, v′2) ∈ SSA2

such that (q2, v2)
τ∗→

(q′2, v′2) and ((q′1, v′1), (q′2, v′2)) ∈ θ.

Conditions 2.b and 2.c constrain local behaviors of SA1 and SA2 and are similar to
standard notions of weak simulations [30]. Condition 2.a constrains the environments
of the two succinct automata and requires that the weak simulation should not be affect-
ed by the environments as long as the valuations of variables in V1 and V2 are related by
ι. Note that if merely we were to require that an environment transition from q1 is simu-
lated by zero or more environment transitions from q2, the resulting simulation relation
would not be compositional under parallel composition. Our way of dealing with envi-
ronments in defining simulation or bi-simulation relations is not without precedent. For
example, in process calculi, e.g., higher-order calculi [34] or cryptographic calculi [1],
environments are treated separately from local transitions, and one typically requires
certain relations to hold between the environments, e.g., as in the relation ι we have
above. Condition 2.a is the key for compositionality in our notion of weak simulation.

Given κ and ι, we say that SA1 is weakly simulated by SA2 (or SA1 weakly refines
SA2) with respect to κ and ι, denoted by SA1 �(κ,ι) SA2, if there exists a weak
simulation θ such that SA1 �(κ,ι)

θ SA2. We say that SA1 is weakly simulated by SA2,
denoted by SA1 � SA2, if there exist κ and ι such that SA1 �(κ,ι) SA2. The relation
� on succinct automata is reflexive but not transitive. However, the relation� on closed
succinct automata is transitive. This allows us to chain together two refinement steps
when reasoning about simulations between closed succinct automata.

Theorem 2. The relation � on closed succinct automata forms a pre-order.

For succinct automata that are not closed, we can still chain together successive
refinement steps if the environment transitions of related succinct automata satisfy a
certain condition. We formalize this in the following theorem.

10

SA1’:
ψ

τ: x1 ≠ x2

σ2: m’ = 1

τ: x1’ = a

τ: x2’ = b

τ: x1 = x2

p0

p1

p2

p3

ψ

ψ

ψ

ψ

m = 0

m = 0m = 0

ψ

τ: x1 > x2

τ: x1 ≤ x2

σ3: a’ = x1 - x2

p7

p6

p5

true

σ0: m’ = 0

ψ

ψ
p4

a > b

σ1: m = 0

true

m = 0

SA1:

σ3: a > b /\

a’ = a - b

q2

σ2: a = b /\

m’ = 1

q1 φ

φ
true

true

σ0: m’ = 0

φq0

σ1: m = 0τ: a < b /\

V=V’

true

true

Fig. 4. Succinct automata for Concurrent GCD

Theorem 3. Assume that SA1 �(κ1,ι1)
θ1

SA2 and SA2 �(κ2,ι2)
θ2

SA3. Let κ, ι ∈ F(V1∪
V3) be predicates such that κ(v1, v3) (resp. ι(v1, v3)) holds iff there exists v2 such that
κ1(v1, v2) ∧ κ2(v2, v3) (resp. ι1(v1, v2) ∧ ι2(v2, v3)) holds. We have that SA1 �(κ,ι)

θ2◦θ1

SA3 if the following holds: Assume that (q1, v1)
env−→ (q1, v′1), (q3, v3)

env∗−→ (q3, v′3),
ι(v1, v3) and ι(v′1, v′3). For any v2 such that ι1(v1, v2) ∧ ι2(v2, v3) and for all q2 ∈ Q2,
there exists v′2 such that (q2, v2)

env−→ (q2, v′2) and ι1(v′1, v′2) ∧ ι2(v′2, v′3).

Given θ1 ⊆ SSA1×SŜA1
and θ2 ⊆ SSA2×SŜA2

, we define θ1⊗θ2 ⊆ SSA1||SA2
×

S
ŜA1||ŜA2

as follows: (((q1, q2), v), ((q̂1, q̂2), v̂)) ∈ θ1⊗θ2 iff ((q1, vG⊕vL1
), (q̂1, v̂G⊕

v̂L1
)) ∈ θ1 and ((q2, vG ⊕ vL2

), (q̂2, v̂G ⊕ v̂L2
)) ∈ θ2, where v = vG ⊕ vL1

⊕ vL2
and

v̂ = v̂G ⊕ v̂L1 ⊕ v̂L2 .
To ensure compositionality of weak simulations, we also impose a noninterference

condition on ι1 and ι2 here. We reuse noninterfere(ι1, ι2) to denote the following
condition: ((ι1∧ι2∧ι′1)⇒ ι2[V

′
G/VG][V̂G

′
/V̂G])∧((ι1∧ι2∧ι′2)⇒ ι1[V

′
G/VG][V̂G

′
/V̂G]).

The following theorem shows that weak simulations of succinct automata are preserved
under parallel composition.

Theorem 4. Assume that SA1 (resp. ŜA1) and SA2 (resp. ŜA2) are compatible and
that noninterfere(ι1, ι2). We have that SA1 �(κ1,ι1)

θ1
ŜA1 and SA2 �(κ2,ι2)

θ2
ŜA2

implies SA1||SA2 �(κ1∧κ2,ι1∧ι2)
θ1⊗θ2 ŜA1||ŜA2.

Example 4. We show that the abstract concurrent GCD programs (T1 and T2) in Fig.
3(a) are refined by the concrete GCD programs (T ′1 and T ′2) in Fig. 3(b). The bodies of
the while loops in T1 and T2 are executed atomically and are refined to corresponding
code in T ′1 and T ′2 to allow interleaving.

In Fig. 4, we model thread T1 (resp. T ′1) as SA1 (resp. SA′1), where ϕ = (a′ =
a) ∧ (a < b ∨ b′ = b) and ψ = (a′ = a) ∧ (a < b ∨ b′ = b). Let κ1 and ι1 be
defined by κ1 = (a = a ∧ b = b ∧m = m) and ι1 = (a = a ∧ b = b ∧m = m). In
our experiment, using the verification tool we have implemented, we have verified that
SA′1 �

(κ1,ι1)
θ1

SA1 holds for some θ1. Similarly, we have modeled T2 (resp. T ′2) as SA2

11

(resp. SA′2) and checked in our experiment that SA′2 �
(κ2,ι2)
θ2

SA2 holds for some θ2.

By Theorem 4, we have that SA′1||SA′2 �
(κ1∧κ2,ι1∧ι2)
θ1⊗θ2 SA1||SA2.

4.3 Safety Property Preservation under Refinement

It is obvious that strong invariants are preserved under refinements. We show in the fol-
lowing that weak invariants of succinct automata are also preserved under refinements.

We writeWS(θ, Env1, Env2) to mean that: if ((q1, v1), (q2, v2)) ∈ θ and

(q1, v1)
env−→ (q1, v′1), there exists (q2, v′2) ∈ SSA2

such that (q2, v2)
env∗−→ (q2, v′2) and

((q1, v′1), (q2, v′2)) ∈ θ. If WS(θ,Env1, Env2) holds, for each run in SA1, we can
construct a corresponding run in SA2 such that the two runs are related by θ. Thus, we
have the following lemma that links reachability and weak simulations.

Lemma 1. Assume that SA1 �(κ,ι)
θ SA2 holds for some θ, κ and ι, whereWS(θ, Env1,

Env2) holds. For all states (q1, v1) ∈ SSA1 and (q2, v2) ∈ SSA2 such that ((q1, v1),
(q2, v2)) ∈ θ, if (q1, v1) →∗ (q′1, v′1) for some (q′1, v′1) ∈ SSA1

, there exists (q′2, v′2) ∈
SSA2

such that (q2, v2)→∗ (q′2, v′2) and ((q′1, v′1), (q′2, v′2)) ∈ θ.

As invariants verification can be reduced to reachability problems, we can prove by
contradiction that the following theorem holds.

Theorem 5. Assume that SA1 �(κ,ι)
θ SA2 holds for some θ, κ and ι, whereWS(θ,

Env1, Env2) holds, and for each initial state (q1, v1) ∈ SSA1
, there exists an initial

state (q2, v2) ∈ SSA2
such that κ(v1, v2). Let λ1 ∈ F(V1) and λ2 ∈ F(V2) be two

predicates such that ¬λ1(v1) ∧ ι(v1, v2) implies ¬λ2(v2). If λ2 is a weak invariant of
SA2, then λ1 is a weak invariant of SA1.

Example 5. We give a short example to show that gcd(a, b) = gcd(A,B) is a weak
invariant of the concrete GCD programs, which implies that the concrete GCD pro-
grams also compute the gcd of the input variables. First, we know from Example 3 that
gcd(a, b) = gcd(A,B) is a weak invariant of the abstract GCD programs. Second, we
know from Example 4 that the concrete GCD programs refine the abstract GCD pro-
grams. Hence, from Theorem 5, we can prove that gcd(a, b) = gcd(A,B) is also a
weak invariant of the concrete GCD programs.

5 Automatic Verification of Succinct Automata

We focus on two aspects of automated verification of succinct automata: generation
of succinct automata from infinite state concurrent programs and refinement check-
ing between infinite state succinct automata. We prototyped our tool in the functional
programming language F# in over 3700 lines of code and used Z3 [12] in our imple-
mentation. We applied our tool to check multiple weak simulations between concurrent
C programs. Experimental results are included in the appendix for review.

12

5.1 Generation of Succinct Automata

The hardest part of generating succinct automata from infinite state concurrent program-
s is to construct their invariant components and environment components. Intuitively,
invariant components overapproximate reachable states at control locations of concur-
rent programs and environment components abstract the transitions of other programs
in the environment. To construct these components, we perform separate forward reach-
ability analysis for each concurrent program on abstract domains, and for component
transitions of a concurrent program that modify global variables, corresponding envi-
ronment transitions are generated for other concurrent programs in the environment.
We present our algorithm for generating succinct automata in Algorithm 1.

The main function in Algorithm 1 is Generate-SAs. Given two concurrent pro-
grams T1 and T2, it first constructs two intermediate automata SA1 and SA2, where
Inv1, Env1, Inv2 and Env2 are not specified. At this step, SA1 and SA2 are essen-
tially the program graphs of T1 and T2. Then, it initializes Invi and EnvSeti. Here,
EnvSeti is used to keep track of changes of global variables made by SAj , where
i 6= j and i, j = 1, 2. After that, it starts fixed-point iterations (Line 21-26) to over-
approximate reachable states at each location by calling function Reach and generate
corresponding environment transitions by calling function GenEnvTrans. After the
least fixed points are reached, it constructs Envi from EnvSeti. If the relation speci-
fied by EnvSeti is not reflexive, we explicitly add VG = V ′G to make Envi reflexive.

FunctionReach performs the forward reachability analysis for SAi, whereEnvSeti
specifies the environment transitions of SAi. Function PostComp(Invi(q), µ) (Line 4)
calculates a predicate that overapproximates states reachable from Invi(q) by executing
a component transition whose transition condition is µ. Function PostEnv(Invi(q),
EnvSeti) (Line 6) calculates a predicate that overapproximates states reachable from
Invi(q) by executing environment transitions specified by EnvSeti.

FunctionGenEnvTrans takes Invi andEdgei of SAi and generates environment
transitions for SAj , where i 6= j and i, j = 1, 2. For each edge (q, σ, µ, q′) ∈ Edgei
that modifies global variables, we generate a corresponding pair (Invi(q), µ) (Line 14)
to be used to specify environment transitions of SAj . Function GenEnvTrans is the
key to guarantee the compatibility of SA1 and SA2.

We have the following theorem that guarantees the compatibility of SA1 and SA2.

Theorem 6. SA1 and SA2 generated by Algorithm 1 are compatible.

From Theorem 6, it’s easy to prove by contradiction that SA1||SA2 overapproxi-
mates T1||T2, which means for each execution trace of T1||T2, there is a corresponding
run of SA1||SA2.

In our prototype, the abstract domain we use is Boxes [20] and an element on the
Boxes domain is implemented as a corresponding Linear Decision Diagram (LDD) [6].
To guarantee the termination of the iteration in Reach, we used widening techniques
[11] for the Boxes domain, which is not listed in Algorithm 1 due to space limitation.
On the other hand, we point out here that Algorithm 1 is a general algorithm that can
be implemented on top of other abstract domains and the correctness of Theorem 6 is
independent of the abstract domains underlying Algorithm 1.

13

Algorithm 1: Generating Succinct Automata from Concurrent Programs
Input: Concurrent programs T1 and T2.
Output: Compatible SA1 and SA2 that models T1 and T2.

1 Function Reach(SAi, EnvSeti)is
2 repeat
3 foreach (q, σ, µ, q′) ∈ Edgei do
4 Invi(q

′) := Invi(q
′) ∨ PostComp(Invi(q), µ)

5 foreach q ∈ Qi do
6 Invi(q) := Invi(q) ∨ PostEnv(Invi(q), EnvSeti)

7 until No more reachable states are added to Invi(q) for all q ∈ Qi
8 return Invi
9

10 Function GenEnvTrans(Invi, Edgei, j)is
11 EnvSetj := ∅
12 foreach (q, σ, µ, q′) ∈ Edgei do
13 if µ modifies global variables then
14 EnvSetj := EnvSetj ∪ (Invi(q), µ)

15 return EnvSetj
16

17 Function Generate-SAs(T1, T2)is
18 Construct intermediate succinct automata SA1 and SA2

19 Invi(q) := false for all q ∈ Qi and i = 1, 2
20 EnvSeti = ∅ for i = 1, 2
21 repeat
22 Inv1 := Reach(SA1, EnvSet1)
23 Inv2 := Reach(SA2, EnvSet2)
24 EnvSet1 := GenEnvTrans(Inv2, Edge2, 1)
25 EnvSet2 := GenEnvTrans(Inv1, Edge1, 2)

26 until Least Fixed Points are Reached
27 Construct Envi from EnvSeti and make Envi reflexive for i = 1, 2
28 return SA1 and SA2

5.2 Refinement Checking between Succinct Automata

We propose an SMT-based approach (Algorithm 2) to checking weak simulations be-
tween infinite state succinct automata. One difficulty in developing an SMT-based ap-
proach here comes from Condition 2.a in Definition 6, because environment transition-
s of the abstract succinct automata can be executed arbitrary finite number of times.
However, we have noticed in practice that the length of local paths of succinct automa-
ta whose action labels are of the form τ∗στ∗ or τ∗ are usually bounded. Hence, in
Algorithm 2, we only specify the execution of environment transitions of the abstract
succinct automata up to a bound k, which is precalculated by our prototyped tool.

Proving SA1 �(κ,ι) SA2 amounts to showing the existence of a simulation relation
θ such that SA1 �(κ,ι)

θ SA2. We define first order formulas Ψ(q1,q2) over V1 ∪ V2 for a

14

Algorithm 2: An Algorithm to Check Weak Simulations of Succinct Automata
Input: SA1 and SA2 and parameters κ and ι.
Output: If the algorithm return Yes, SA1 �(κ,ι) SA2 holds. If the algorithm returns No,

SA1 �(κ,ι) SA2 does not hold.
1 Function GenConstraints(SA1, SA2, Θ, ι)is
2 foreach (q1, q2) ∈ Θ do
3 C1 := Ψ(q1,q2) ⇒ ((ΦEnv1(q1) ∧ ι[V

′
1/V1])⇒ Ψ(q1,q2)[V

′
1/V1])

4 constraints := constraints ∪ {¬C1}
5 foreach 1 ≤ j ≤ k do
6 Cj2 := Ψ(q1,q2) ⇒ ((ΦEnv1(q1) ∧ ΦEnv2(q2)j∧
7 ι[V ′

1/V1][V
j
2 /V2])⇒ Ψ(q1,q2)[V

′
1/V1][V

j
2 /V2])

8 constraints := constraints ∪ {¬Cj2}
9 foreach e = (q1, σ, µ, q

′
1) ∈ Edge1 do

10 C3 := Ψ(q1,q2) ⇒ (G⇒ (WP (e′,
∨
π∈Πσ(q2)WP (π, Ψ(q′1,q

′
2)
))))

11 where G is the guard of e, e′ is derived from e by substituting its guard
12 with True, and π ends at location q′2
13 constraints := constraints ∪ {¬C3}

14 return constraints

15

16 Function UpdatePsi(constraints, V1, V2, Θ)is
17 foreach (q1, q2) ∈ Θ do
18 Ψ ′

(q1,q2)
:= Ψ(q1,q2)

19 foreach ¬(Ψ(q1,q2) ⇒ Φ) ∈ constraints do
20 if ¬(Ψ(q1,q2) ⇒ Φ) is satisfiable then
21 if ¬(Ψ(q1,q2) ⇒ Φ) is a type 1 constraint then
22 Ψ ′

(q1,q2)
:= Ψ ′

(q1,q2)
∧ ∀V Φ

23 where V = FreeV ar(Φ)\(V1 ∪ V2)

24 if ¬(Ψ(q1,q2) ⇒ Φ) is a type 2 constraint then
25 Ψ ′

(q1,q2)
:= Ψ ′

(q1,q2)
∧ Φ

26 foreach (q1, q2) ∈ Θ do
27 Ψ(q1,q2) := Ψ ′

(q1,q2)

28 if none of the constraints are satisfiable then
29 return Fixed Point Reached
30 else
31 return Continue Iteration

32

33 Function Check-Weak-Simulation(SA1, SA2, κ, ι)is
34 Θ := GenPairs({(qinit1 , qinit2)})
35 foreach (q1, q2) ∈ Θ do
36 Ψ(q1,q2) := ι ∧ Inv1(q1) ∧ Inv2(q2)
37 constraints := ∅
38 repeat
39 constraints := GenConstraints(SA1, SA2, Θ, ι)
40 result := UpdatePsi(constraints, V1, V2, Θ)

41 until result = Fixed Point Reached
42 if κ⇒ Ψ(qinit1,qinit2) is valid then
43 return Yes
44 else
45 return No

15

set of pairs of locations (q1, q2) ∈ Q1 × Q2. The intention is that when our algorithm
terminates, we can construct a relation θ = {((q1, v1), (q2, v2)) | Ψ(q1,q2)(v1, v2) holds}
such that θ satisfies Condition 2 in Definition 6.

Our algorithm follows the basic fixed point iteration method. The main function in
Algorithm 2 is Check-Weak-Simulation. It first computes a set Θ that contains all
the pairs (q1, q2) for which we need to define constraints. Then, it defines the initial val-
ue of Ψ(q1,q2) for each (q1, q2) ∈ Θ. In each fixed point iteration (Line 38-41), we first
generate constraints for each (q1, q2) ∈ Θ that specify Condition 2 of Definition 6 by
calling function GenConstraints. Then, we refine the value of Ψ(q1,q2) through func-
tion UpdatePsi according to the satisfiability of the constraints generated for (q1, q2).
When the greatest fixed point is reached, it is guaranteed that Condition 2 of Definition
6 is satisfied. Finally, we check whether Condition 1 of Definition 6 is also satisfied
(Line 42).

Due to space limitation, we omit the pseudo code for the functionGenPairs (called
in Line 34) and explain it briefly as follows. LetΠσ(q) denote the set of finite local paths
π such that π starts from q and the action labels along π are of the form τ∗στ∗ (resp.
τ∗), when σ 6= τ (resp. σ = τ). GenPairs is a recursive function which takes a set Θ
of pairs of locations as input and returns another set of pairs of locations. Let Θ′ be an
empty set. First, for each (q1, q2) ∈ Θ, it adds to Θ′ the set of (q′1, q

′
2) such that there

exists an edge (q1, σ, µ, q
′
1) and a path π ∈ Πσ(q2) that ends in q′2. Then, GenPairs

makes a recursive call GenPairs(Θ′\Θ) and returns Θ ∪GenPairs(Θ′\Θ).
FunctionGenConstraints generates following constraints¬C1,¬C1

2 , ...,¬Ck2 and
¬C3 for each (q1, q2) ∈ Θ. Formulas C1 and Cj2 (Line 3 and 6-7) are used to specify
Condition 2.a in Definition 6, where ΦEnv1(q1) is a predicate that specifies the execu-
tion of environment transitions Env1(q1) once and ΦEnv2(q2)j is a predicate specifying
the execution of environment transitions Env2(q2) for j steps. In Line 7, we write V j2
to mean {vj1, ..., vjn} for V2 = {v1, ..., vn}. Formula C3 (Line 10) specifies Condition
2.b and 2.c. We use WP (e, Ψ) (resp. WP (π, Ψ)) to denote the weakest precondition
such that Ψ holds after taking a component transition (resp. a sequence of component
transitions) by executing e (resp. π).

Function UpdatePsi checks the satisfiability of all the constraints generated by
GenConstraints. If a constraint ¬(Ψ(q1,q2) ⇒ Φ) is satisfiable, Ψ(q1,q2) fails to satisfy
Condition 2 in Definition 6. In this case, we strengthen Ψ(q1,q2) in Line 21-25 depending
on the type of the constraint. Here, type 1 (resp. type 2) constraints refer to those of the
form ¬C1 and ¬Cj2 (resp. ¬C3) generated by GenConstraints.

6 Conclusions and Future Work

In this paper, we have laid the theoretical underpinning for succinct automata, which is a
formalism for formal verification of shared-variable concurrent programs. In our frame-
work, safety verification and simulations of concurrent programs are parallel composi-
tional and algorithmic. Succinct automata-based approaches can be applied to extend
safety verification of concurrent programs from the source code level down to the binary
level in a compositional way.

16

At the current stage, our prototype is able to verify refinements between concurrent
C programs. Compared with manual proofs, our automated verification technique saves
considerable time. In our future work, we will study how to generate succinct automa-
ta from assembly code and further develop our tool so that it can verify refinements
between concurrent C programs and assembly code.

7 Acknowledgement

This research is supported (in part) by the National Research Foundation, Prime Min-
isters Office, Singapore under its National Cybersecurity R&D Program (Award No.
NRF2014NCR-NCR001-30) and administered by the National Cybersecurity R&D Di-
rectorate.

Reference

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus. Inf.
Comput., 148(1):1–70, 1999.

2. C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.
3. S. D. Brookes. Full abstraction for a shared variable parallel language. In Proceedings of

the 8th Annual Symposium on Logic in Computer Science (LICS 1993), Montreal, Canada,
pages 98–109, 1993.

4. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 10ˆ20 states and beyond. Inf. Comput., 98(2):142–170, 1992.

5. S. Burckhardt, M. Musuvathi, and V. Singh. Verifying local transformations on relaxed mem-
ory models. In Proceedings of the 19th International Conference on Compiler Construction
(CC 2010), Paphos, Cyprus, pages 104–123, 2010.

6. S. Chaki, A. Gurfinkel, and O. Strichman. Decision diagrams for linear arithmetic. In Pro-
ceedings of the 9th International Conference on Formal Methods in Computer-Aided Design,
(FMCAD 2009), Austin, Texas, USA, pages 53–60, 2009.

7. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model checking.
In Proceedings of the 5th International Conference on Computer Aided Verification (CAV
1993), Elounda, Greece, pages 450–462, 1993.

8. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

9. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Trans.
Program. Lang. Syst., 16(5):1512–1542, 1994.

10. A. Cohen and K. S. Namjoshi. Local proofs for global safety properties. Formal Methods in
System Design, 34(2):104–125, 2009.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th Sym-
posium on Principles of Programming Languages (POPL 1977), Los Angeles, California,
USA, pages 238–252, 1977.

12. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In Proceedings of the 14th
International Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS 2008), Budapest, Hungary, pages 337–340, 2008.

13. E. A. Emerson and A. P. Sistla. Symmetry and model checking. In Proceedings of the
5th International Conference on Computer Aided Verification (CAV 1993), Elounda, Greece,
pages 463–478, 1993.

17

14. C. Flanagan, S. N. Freund, and S. Qadeer. Thread-modular verification for shared-memory
programs. In Proceedings of the 11th European Symposium on Programming (ESOP 2002),
Grenoble, France, pages 262–277, 2002.

15. C. Flanagan and S. Qadeer. Thread-modular model checking. In Proceedings of the 10th
International SPIN Workshop (SPIN 2003), Portland, OR, USA, pages 213–224, 2003.

16. P. Godefroid. Using partial orders to improve automatic verification methods. In Proceed-
ings of the 2nd International Conference on Computer Aided Verification (CAV 1990), New
Brunswick, NJ, USA, pages 176–185, 1990.

17. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In Proceedings of
the 9th International Conference on Computer Aided Verification (CAV 1997), Haifa, Israel,
pages 72–83, 1997.

18. O. Grumberg and D. E. Long. Model checking and modular verification. ACM Trans.
Program. Lang. Syst., 16(3):843–871, 1994.

19. A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement for ver-
ifying multi-threaded programs. In Proceedings of the 38th Symposium on Principles of
Programming Languages (POPL 2011), Austin, TX, USA, pages 331–344, 2011.

20. A. Gurfinkel and S. Chaki. Boxes: A symbolic abstract domain of boxes. In Proceedings
of the 17th International Static Analysis Symposium, (SAS 2010), Perpignan, France, pages
287–303, 2010.

21. C. Hawblitzel, E. Petrank, S. Qadeer, and S. Tasiran. Automated and modular refinement
reasoning for concurrent programs. In Proceedings of the 27th International Conference on
Computer Aided Verification (CAV 2015), San Francisco, CA, USA, pages 449–465, 2015.

22. T. A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference. In Pro-
ceedings of the 2004 Conference on Programming Language Design and Implementation
(PLDI 2004), Washington, DC, USA, pages 1–13, 2004.

23. T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refine-
ment. In Proceedings of the 15th International Conference on Computer Aided Verification
(CAV 2003), Boulder, CO, USA, pages 262–274, 2003.

24. C. N. Ip and D. L. Dill. Better verification through symmetry. In Proceedings of the 11th
International Conference on Computer Hardware Description Languages and their Appli-
cations (CHDL 1993), Ontario, Canada, pages 97–111, 1993.

25. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages 321–
332, 1983.

26. C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. Program. Lang. Syst., 5(4):596–619, 1983.

27. S. Kundu, S. Lerner, and R. Gupta. Automated refinement checking of concurrent systems.
In Proceedings of the 2007 International Conference on Computer-Aided Design (ICCAD
2007), San Jose, CA, USA, pages 318–325, 2007.

28. H. Liang, X. Feng, and M. Fu. Rely-guarantee-based simulation for compositional verifi-
cation of concurrent program transformations. ACM Trans. Program. Lang. Syst., 36(1):3,
2014.

29. A. Lochbihler. Verifying a compiler for java threads. In Proceedings of the 19th European
Symposium on Programming (ESOP 2010), Paphos, Cyprus, pages 427–447, 2010.

30. R. Milner. Communication and concurrency. PHI Series in computer science. Prentice Hall,
1989.

31. J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Software Eng.,
7(4):417–426, 1981.

32. D. Peled. Combining partial order reductions with on-the-fly model-checking. In Proceed-
ings of the 6th International Conference on Computer Aided Verification (CAV 1994), Stan-
ford, California, USA, pages 377–390, 1994.

18

33. A. Pnueli. In transition from global to modular temporal reasoning about programs. In K. R.
Apt, editor, Logics and Models of Concurrent Systems, pages 123–144. Springer-Verlag New
York, Inc., New York, NY, USA, 1985.

34. D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations for higher-order
languages. In Proceedings of the 22nd IEEE Symposium on Logic in Computer Science
(LICS 2007), Wroclaw, Poland, pages 293–302, 2007.

35. A. Valmari. A stubborn attack on state explosion. In Proceedings of the 2nd International
Conference on Computer Aided Verification (CAV 1990), New Brunswick, NJ, USA,, pages
156–165, 1990.

36. Q. Xu, W. P. de Roever, and J. He. The rely-guarantee method for verifying shared variable
concurrent programs. Formal Asp. Comput., 9(2):149–174, 1997.

	Compositional reasoning for shared-variable concurrent programs
	Citation
	Author

	Compositional Reasoning for Shared-variable Concurrent Programs
	Introduction
	Related Work
	Succinct Automata
	Syntax and Semantics
	Parallel Composition

	Compositional Reasoning for Succinct Automata
	Safety Verification of Succinct Automata
	Simulations of Succinct Automata
	Safety Property Preservation under Refinement

	Automatic Verification of Succinct Automata
	Generation of Succinct Automata
	Refinement Checking between Succinct Automata

	Conclusions and Future Work
	Acknowledgement

