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Abstract. Modeling and verifying real-world cyber-physical systems is chal-
lenging, which is especially so for complex systems where manually modeling
is infeasible. In this work, we report our experience on combining model learn-
ing and abstraction refinement to analyze a challenging system, i.e., a real-world
Secure Water Treatment system (SWaT). Given a set of safety requirements, the
objective is to either show that the system is safe with a high probability (so that
a system shutdown is rarely triggered due to safety violation) or not. As the sys-
tem is too complicated to be manually modeled, we apply latest automatic model
learning techniques to construct a set of Markov chains through abstraction and
refinement, based on two long system execution logs (one for training and the
other for testing). For each probabilistic safety property, we either report it does
not hold with a certain level of probabilistic confidence, or report that it holds
by showing the evidence in the form of an abstract Markov chain. The Markov
chains can subsequently be implemented as runtime monitors in SWaT.

1 Introduction

Cyber-physical systems (CPS) are ever more relevant to people’s daily life. Examples
include power supply which is controlled by smart grid systems, water supply which is
processed from raw water by a water treatment system, and health monitoring systems.
CPS often have strict safety and reliability requirements. However, it is often challeng-
ing to formally analyze CPS since they exhibit a tight integration of software control
and physical processes. Modeling CPS alone is a major obstacle which hinders many
system analysis techniques like model checking and model-based testing.

The Secure Water Treatment testbed (SWaT) built at Singapore University of Tech-
nology and Design [28] is a scale-down version of an industry water treatment plant in
Singapore. The testbed is built to facilitate research on cyber security for CPS, which
has the potential to be adopted to Singapore’s water treatment systems. SWaT consists
of a modern six-stage process. The process begins by taking in raw water, adding nec-
essary chemicals to it, filtering it via an Ultrafiltration (UF) system, de-chlorinating
it using UV lamps, and then feeding it to a Reverse Osmosis (RO) system. A back-
wash stage cleans the membranes in UF using the water produced by RO. The cyber
portion of SWaT consists of a layered communications network, Programmable Logic
Controllers (PLCs), Human Machine Interfaces (HMIs), Supervisory Control and Data
? Corresponding authors: Sun Jun, Shengchao Qin.
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Acquisition (SCADA) workstation, and a Historian. Data from sensors is available to
the SCADA system and recorded by the Historian for subsequent analysis. There are 6
PLCs in the system, each of which monitors one stage using a set of sensors embedded
in the relevant physical plants and controls the physical plants according to predefined
control logics. SWaT has a strict set of safety requirements (e.g., the PH value of the
water coming out of SWaT must be within certain specific range). In order to guarantee
that the safety requirements are not violated, SWaT is equipped with safety monitoring
devices which trigger a pre-defined shutdown sequence. Our objective is thus to show
that the probability of a safety violation is low and thus SWaT is reliable enough to
provide its service.

One approach to achieve our objective is to develop a model of SWaT and then
apply techniques like model checking. Such a model would have a discrete part which
models the PLC control logic and a continuous part which models the physical plants
(e.g., in the form of differential equations). Such an approach is challenging since
SWaT has multiple chemical processes. For example, the whole process is composed of
pre-treatment, ultrafiltration and backwash, de-chlorination, reverse osmosis and out-
put of the processed water. The pre-treatment process alone includes chemical dos-
ing, hydrochloric dosing, pre-chlorination and salt dosing. Due to the complexity in
chemical reactions, manual modeling is infeasible. Furthermore, even if we are able
to model the system using modeling notations like hybrid automata [11], the existing
tools/methods [23,9,22] for analyzing such complicated hybrid models are limited.

An alternative approach which does not require manual modeling is statistical model
checking (SMC) [35,16,7]. The main idea is to observe sample system executions and
apply standard techniques like hypothesis testing to estimate the probability that a given
property is satisfied. SMC however is not ideal for two reasons. First, SMC treats the
system as a black box and does not provide insight or knowledge of the system on why
a given property is satisfied. Second, SMC requires sampling the system many times,
whereas starting/restarting real-world CPS like SWaT many times is not viable.

Recently, there have been multiple proposals on applying model learning techniques
to automatically ‘learn’ system models from system executions and then analyze the
learned model using techniques like model checking. A variety of learning algorithms
have been proposed (e.g., [25,24,4,22]), some of which require only a few system exe-
cutions. These approaches offer an alternative way of obtaining models, when having a
model of such complex systems is a must. For instance, in [19,6,33,32], it is proposed
to learn a probabilistic model first and then apply Probabilistic Model Checking (PMC)
to calculate the probability of satisfying a property based on the learned model.

It is however far from trivial to apply model learning directly on SWaT. Existing
model learning approaches have only been applied to a few small benchmark systems.
It is not clear whether they are applicable or scalable to real-world systems like SWaT.
In particular, there are many sensors in SWaT, many of which generate values of type
float or double. As a result, the sensor readings induce an ‘infinite’ alphabet which
immediately renders many model learning approaches infeasible. In fact, existing model
learning approaches have rarely discussed the problem of data abstraction. To the best
of our knowledge, the only exception is the LAR method [32], which proposes a method
of combining model learning and abstraction/refinement. However, LAR requires many



system executions as input, which is infeasible in SWaT. In this work, we adapt the
LAR method so that we require only two long sequences of system execution logs (one
for training and the other for testing) as input. We successfully ‘verified’ most of the
properties for SWaT this way. For each property, we either report that the property is
violated with a certain confidence, or report that the property is satisfied, in which case
we output a model in the form of an abstract Markov chain as evidence, which could
be further validated by more system runs or expert review. Note that in practice these
models could be implemented as runtime monitors in SWaT.

The remainders of the paper are organized as follows. Sec. 2 presents background
on SWaT, our objectives as well as some preliminaries. Sec. 3 details our learning ap-
proach. We present the results in Sec. 4 and conclude with related work in Sec. 5.

2 Background

In this section, we present the target SWaT system and state our motivation and goals.

System Overview The system under analysis is the Secure Water Treatment (SWaT)
built at the iTrust Center in Singapore University of Technology and Design [20]. It is
a testbed system which scales down but fully realized the functions of a modern water
treatment system in cities like Singapore. It enables researchers to better understand the
principles of cyber-physical Systems (CPS) and further develop and experiment with
smart algorithms to mitigate potential threats and guarantee its safety and reliability.

SWaT takes raw water as input and executes a series of treatment and output recy-
cled water eventually. The whole process contains 6 stages as shown in Figure 1. The
raw water is taken to the raw water tank (P1) and then pumped to the chemical tanks.
After a series of chemical dosing and a static mixer (P2), the water is filtered by an
Ultra-filtration (UF) system (P3) and UV lamps (P4). It is then fed to a Reverse Osmo-
sis (RO) system (P5) and a backwash process cleans the membranes in UF using the
water produced by RO (P6). For each stage, a set of sensors are employed to monitor
the system state. Meanwhile, a set of actuators controlled by the programming logic
controller (PLC) are built in to manipulate the state of the physical process. The read-
ings of sensors are collected and sent periodically to the PLC, while the PLC returns a
set of actuators values according to the control logics and the current sensor values. For
instance, the sensor LIT101 is used to monitor the water level of the Raw Water Tank.
The PLC reads its value and decides whether to set a new value to the actuators. For
example if LIT101 is beyond a threshold, the PLC may deactivate the valve MV 101
to stop adding water into the tank.

SWaT has many built-in safety mechanisms enforced in PLC. Each stage is con-
trolled by local dual PLCs with approximately hundreds of lines of code. In case one
PLC fails, the other PLC takes over. The PLC inspects the received and cached sensor
values and decides the control strategy to take. Notice that the sensor values are ac-
cessible across all PLCs. For example, the PLC of tank 1 may decide whether to start
pump P101 according to the value of LIT301, i.e., the water level of tank 3. In case
the controller triggers potential safety violations of the system according to the current
values of the sensors, the controller may shut down the system to ensure the safety. The



Fig. 1: Six stages of water treatment in SWaT [20].

system then needs to wait for further inspection from technicians or experts. Shutting
down and restarting SWaT however is highly non-trivial, which takes significant costs
in terms of both time and resource, especially in the real-world scenario. Thus, instead
of asking whether a safety violation is possible, the question becomes: how often a
system shutdown is triggered due to potential safety violations?

In total, SWaT has 25 sensors (for monitoring the status) and 26 actuators (for ma-
nipulating the plants). Each sensor is designed to operate in a certain safe range. If a sen-
sor value is out of the range, the system may take actions to adjust the state of the actua-
tors so that the sensor values would go back to normal. Table 1 shows all the sensors in
the 6 plants, their operation ranges. The sensors has 3 categories distinguished by their
prefixes. For instance, AITxxx stands for Analyzer Indicator/Transmitter; DPITxxx
stands for Differential Pressure Indicator/Transmitter; FITxxx stands for Flow Indi-
cator Transmitter; LITxxx stands for Level Indicator/Transmitter.

SWaT is also equipped with a historian which records detailed system execution
log, including all sensor readings and actuator status. Table 2 shows a truncated system
log with part of sensors. Each row is the sensor readings at a time point and each row is
collected every millisecond. Notice that different sensors may have different collection
period. The table is filled such that a sensor keeps its old value if no new value is
collected, e.g., AIT202 in Table 2. A dataset of SWaT has been published by the iTrust
lab in Singapore University of Technology and Design [27,10]. The dataset contains the
execution log of 11 consecutive days (i.e., 7 days of normal operations and another 4
days of the system being under various kind of attacks [27,10]).



Table 1: Safety properties.
Plant Sensor Description Operating range points

P1 FIT101 Flow Transmitter (EMF) 2.5− 2.6m3/h
LIT101 Level Transmitter (Ultrasonic) 500 - 1100mm

P2 AIT201 Analyser (Conductivity) 30 - 260µS/cm
AIT202 Analyser (pH) 6-9
AIT203 Analyser (ORP) 200 - 500mV
FIT201 Flow Transmitter (EMF) 2.4 - 2.5m3/h

P3 DPIT301 DP Transmitter 0.1 - 0.3 Bar
FIT301 Flow Transmitter (EMF) 2.2 - 2.4m3/
LIT301 Level Transmitter (Ultrasonic) 800 - 1000mm

P4 AIT401 Analyser (Hardness) 5-30ppm
AIT402 Analyser 150 - 300mV
FIT401 Flow Transmitter (EMF) 1.5 - 2m3/h
LIT401 Level Transmitter (Ultrasonic) 800 - 1000mm

P5 AIT501 Analyser (pH) 6-8
AIT502 Analyser (ORP) 100-250mV
AIT503 Analyser (Cond) 200- 300µS/cm
AIT504 Analyser (Cond) 5-10µS/cm
FIT501 Flow Transmitter 1-2m3/h
FIT502 Flow Transmitter (Paddlewheel) 1.1 - 1.3m3/h
FIT503 Flow Transmitter (EMF) 0.7 - 0.9m3/h
FIT504 Flow Transmitter (EMF) 0.25 - 0.35m3/h
PIT501 Pressure Transmitter 2-3 Bar
PIT502 Pressure Transmitter 0-0.2 Bar
PIT503 Pressure Transmitter 1-2 Bar

Objectives As discussed above, each sensor reading is associated with a safe range,
which constitutes a set of safety properties (i.e., reachability). We remark that we fo-
cus on safety properties concerning the stationary behavior of the system in this work
rather than those properties concerning the system initializing or shutting down phase.
In general, a stationary safety property (refer to [6] for details) takes the form S≤r(ϕ)
(where r is the safety threshold and ϕ is an LTL formula). In our particular setting, the
property we are interested in is that the probability that a sensor is out of range (either
too high or too low) in the long term is below a threshold. Our objective is to ‘verify’
whether a given set of stationary properties are satisfied or not.

Manual modeling of SWaT is infeasible, with 6 water tanks interacting with each
other, plenty of chemical reactions inside the tanks and dozens of valves controlling the
flow of water. A group of experts from Singapore’s Public Utility Board have attempted
to model SWaT manually but failed after months of effort because the system is too
complicated. We remark that without a system model, precisely verifying the system is
impossible. As discussed above, while statistical model checking (SMC) is another op-



Table 2: A concrete system log with the last column being the abstract system log after
predicate abstraction with predicate LIT101 > 1100.
FIT101 LIT101 MV 101 P101 P102 AIT201 AIT202 AIT203 FIT201 LIT101 >1100

2.470294 261.5804 2 2 1 244.3284 8.19008 306.101 2.471278 0
2.457163 261.1879 2 2 1 244.3284 8.19008 306.101 2.468587 0
2.439548 260.9131 2 2 1 244.3284 8.19008 306.101 2.467305 0
2.428338 260.285 2 2 1 244.3284 8.19008 306.101 2.466536 0
2.424815 259.8925 2 2 1 244.4245 8.19008 306.101 2.466536 0
2.425456 260.0495 2 2 1 244.5847 8.19008 306.101 2.465127 0
2.472857 260.2065 2 2 1 244.5847 8.19008 306.101 2.464742 0

tion to provide a statistical measure on the probability that a safety property is satisfied,
it is also infeasible in our setting.

Thus, in this work, we aim to verify the system by means of model learning. That is,
given a safety property, either we would like to show that the property is violated with
certain level of confidence or the property is satisfied with certain evidence. Ideally,
the evidence is in the form of a small abstract model, at the right level-of-abstraction,
which could be easily shown to satisfy the property. The advantage of presenting the
model as the evidence is that the model could be further validated using additional data
or through expert review. Furthermore, the models can serve other purposes. Firstly,
the models could be implemented as runtime monitors to detect potential safety viola-
tions at runtime. Secondly, we could also prevent future safety violations by predictive
analysis based on the model and take early actions.

3 Our approach

We surveyed existing model learning algorithms (for the purpose of system verification
through model checking) and found most existing model learning approaches [19,6,33]
are inapplicable in our setting. The reason is that the real-typed (float or double) vari-
ables in SWaT lead to an infinite alphabet. The only method which seems feasible is
the recently proposed model learning approach called LAR (short for learning, abstrac-
tion and refinement) documented in [32], which allows us to abstract sensor readings in
SWaT and automatically learn models at a proper level of abstraction based on a coun-
terexample guided abstraction refinement (CEGAR) framework. However, LAR was
designed to take many independent execution logs as input whereas we have only few
long system logs of SWaT. We thus adapt LAR to sLAR which learns system models
from a single long system log instead. In the following, we briefly explain how sLAR
works. Interested readers are referred to [32] for the detailed explanation of LAR.

Our overall approach is shown in Fig. 2. Given a training log and a safety property,
we first construct an abstract log through predicate abstraction and use a learner to
learn a model based on the abstract log. Then, the safety property is verified against
the learned model. If the verification returns true, we report true and output the learned
model as evidence. Otherwise, we test the property using a validator on the testing log. If
the validator finds that the property is violated, we report safety violation together with



Fig. 2: Overall approach.

the level of confidence we achieve. Otherwise, we use a refiner to refine the abstraction
and start over from the learner. Although sLAR is based on LAR, our goal of this case
study is to verify stationary properties of SWaT and construct a stationary probabilistic
model from one single long system log, which is different from LAR. Consequently,
the procedures to verify the property and validate the result of the verifier are different.
In the following, we present each part of our approach in details.

3.1 The model

From an abstract point of view, SWaT is a system composed of n variables (including
sensors, actuators as well as those variables in the PLC control program) which capture
the system status. A system observation σ is the valuation of all variables at a time point
t. A system log L = σt0σt1 · · ·σtk is a sequence of system observations collected from
time point t0 to tk. Given a system log L, we write L(t) = σt to denote the system
observation at time t and Lp(t) to denote the system observations before t, i.e., from
t0 to t. In this case study, we use L and Lt to denote the training log and testing log
respectively. We also use T1 and T2 to denote their lasting time respectively.

Several machine learning algorithms exist to learn a stationary system model from
a single piece of system log [6,24,33]. However, applying these algorithms directly is
infeasible because of the real-typed (float or double) variables in SWaT, since system
observations at different time points are almost always different and thus the input al-
phabet for the learning algorithms is ‘infinite’. To overcome this problem, our first step
is to abstract the system log through predicate abstraction [29]. Essentially, a predicate
is a Boolean expression over a set of variables. Given a system log and a set of predi-
cates, predicate abstraction turns the concrete variable values to a bit vector where each
bit represents whether the corresponding predicate is true or false. For example, given a
predicate LIT101 > 1100, the concrete system log on the left of Table 2 becomes the
abstract system log on the right.

The models we learn from the log are in the form of discrete-time Markov Chain
(DTMC), which is a widely used formalism for modeling stochastic behaviors of com-
plex systems. Given a finite set of states S, a probability distribution over S is a function



µ : S → [0, 1] such that
∑

s∈S µ(s) = 1. Let Distr(S) be the set of all distributions
over S. Formally,

Definition 1. A DTMCM is a tuple 〈S, ıinit, P r〉, where S is a countable, nonempty
set of states; ıinit : S → [0, 1] is the initial distribution s.t.

∑
s∈S ıinit(s) = 1; and

Pr : S → Distr(S) is a transition function such that Pr(s, s′) is the probability of
transiting from state s to state s′.

We denote a path starting with s0 by πs0 = 〈s0, s1, s2, · · · , sn〉, which is a sequence
of states inM, where Pr(si, si+1) > 0 for every 0 ≤ i < n. Furthermore, we write
Paths

fin(M) to denote the set of finite paths ofM starting with s. We say that sj ∈ πs0

if sj occurs in πs0 . In our setting, we use a special form of DTMC, called stationary
DTMC (written as sDTMC) to model the system behaviors in the long term. Compared
to a DTMC, each state in an sDTMC represents a steady state of the system and thus
there is no prior initial distribution over the states.

Definition 2. An sDTMC is irreducible if for every pair of states si, sj ∈ S , there
exists a path πsi such that sj ∈ πsi .

Intuitively, an sDTMC is irreducible if there is path between every pair of states. For
an irreducible sDTMC, there exists a unique stationary probability distribution which
describes the average time a Markov chain spends in each state in the long run.

Definition 3. Let µj denote the long run proportion of time that the chain spends in
state sj: µj = limn→∞

1
n

∑n
m=1 I{Xm = sj |X0 = si} with probability 1., for all

states si. If for each sj ∈ S, µj exists and is independent of the initial state si, and∑
sj∈S µj = 1, then the probability distribution µ = (µ0, µ1, · · · ) is called the limiting

or stationary or steady-state distribution of the Markov chain.

In this work, we ‘learn’ a stationary and irreducible sDTMC to model the long term
behavior of SWaT. By computing the steady-state distribution of the learned sDTMC,
we can obtain the probability that the system is in the states of interests in the long run.

3.2 Learning algorithm

After predicate abstraction, the training log becomes a sequence of bit vectors, which
is applicable for learning. We then apply an existing learning algorithm in [24] to learn
a stationary system model. The initial learned model is in the form of a Probabilistic
Suffix Automata (PSA) as shown in Figure 3, where a system state in the model is
identified by a finite history of previous system observations. A PSA is an sDTMC
by definition. Each state in a PSA is labeled by a finite memory of the system. The
transition function between the states are defined based on the state labels such that
there is a transition s×σ → t iff l(t) is a suffix of l(s) ·σ, where l(s) is the string label
of s. A walk on the underlying graph of a PSA will always end in a state labeled by a
suffix of the sequence. Given a system log Lp(t) at t, a unique state in the PSA can be
identified by matching the state label with the suffixes of Lp(t). For example, · · · 010 is
in state labeled by 0 and if we observe 1 next, the system will go to state labeled by 01.
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Fig. 3: An example stationary model. The left is the PST representation, where each
state is associated with a label and a distribution of the next observation. The right is
the corresponding PSA model where leaves are taken as states.

Algorithm 1: Learn PST
1: Initialize T to be a single root node representing 〈〉;
2: Let S = {σ|fre(σ, α) > ε} be the candidate suffix set;
3: while S is not empty do
4: Take any π from S; Let π′ be the longest suffix of π in T ;
5: (B) If fre(π, α) ·

∑
σ∈Σ Pr(π, σ) · log Pr(π,σ)

Pr(π′,σ) ≥ ε
add π and all its suffixes which are not in T to T ;

6: (C) If fre(π, α) > ε, add 〈e〉 · π to S for every e ∈ Σ if fre(〈e〉 · π, α) > 0;
7: end while

To learn a PSA, we first construct an intermediate tree representation called Proba-
bilistic Suffix Tree (PST), namely tree(L) = (N, root, E) whereN is the set of suffixes
of L; root = 〈〉; and there is an edge (π1, π2) ∈ E if and only if π2 = 〈e〉 · π1. Based
on different suffixes of the execution, different probabilistic distributions of the next
observation will be formed. The central question is how deep should we grow the PST.
A deeper tree means that a longer memory is used to predict the distribution of the next
observation. The detailed algorithm is shown in Algorithm 1. The tree keeps growing
as long as adding children to a current leaf leads to a significant change (measured by
K-L divergence) in the probability distribution of next observation (line 5). After we
obtain the PST, we transform it into a PSA by taking the leaves as states and define
transitions by suffix matching. We briefly introduce the transformation here and readers
are referred to Appendix B of [24] for more details. For a state s and next symbol σ, the
next state s′ must be a suffix of sσ. However, this is not guaranteed to be a leaf in the
learned T . Thus, the first step is to extend T to T ′ such that for every leaf s, the longest
prefix of s is either a leaf or an internal node in T ′. The transition functions are defined
as follows. For each node s in T ∩ T ′ and σ ∈ Σ, let Pr′(s, σ) = Pr(s, σ). For each
new nodes s′ in T ′ − T , let Pr′(s′, σ) = Pr(s, σ), where s is deepest ancestor of s′ in
T . An example PST and its corresponding PSA after transformation is given in Fig. 3.
Readers are referred to [24] for details.



3.3 Verification

Once we learn an sDTMC model, we then check whether the learned model satis-
fies the given safety property. To do so, we first compute the steady-state distribution
of the learned model. There are several methods we could use for the calculation in-
cluding power methods, solving equations or finding eigenvector [2]. The steady-state
distribution tells the probability that a state occurs in the long run. Once we obtain
the steady-state distribution of the learned model, we could then calculate the proba-
bility that the system violates the safety property in the long run by summing up the
steady-state probability of all unsafe states. Assume µ is the steady-state distribution,
Su is the set of unsafe states in the learned model and Pu is the probability that the
system is in unsafe states in the long run. We calculate the probability of unsafe states
as Pu =

∑
si∈Su

µ{si}. We then check whether the learned model satisfies the safety
property by comparing whether Pu is beyond the safety threshold r. Take the PSA
model in Figure 3 as example. The steady-state distribution over states [1, 00, 10] is
[0.4, 0.31, 0.29]. States 1 is the unsafe state. The steady-state probability that the sys-
tem is in unsafe states is thus 0.4.

There are two kinds of results. One is that Pu is below the threshold r, which means
the learned model under current abstraction level satisfies the safety requirement. Then,
we draw the conclusion that the system is ‘safe’ and present the learned model as ev-
idence. The soundness of the result can be derived if the learned abstract model simu-
lates the actual underlying model [12]. However, since the model is obtained through
learning from limited data, it is not guaranteed that the result is sound. Nevertheless, the
model can be further investigated by validating it against future system logs or reviewed
by experts, which we leave to future works. The other result is that the learned model
does not satisfy the safety requirement, i.e., the probability of the system being in an
unsafe state in the steady-state is larger than the threshold. In such a case, we move
to the next step to validate whether the safety violation is introduced by inappropriate
abstraction [32] or not.

3.4 Abstraction refinement

In case we learn a model which shows that the probability of the system being in unsafe
states in long term is beyond the safety threshold, we move on to validate whether
the system is indeed unsafe or the violation is spurious due to over-abstraction. For
spuriousness checking, we make use of a testing log which is obtained independently
and compute the probability of the system being in unsafe states, which is denoted
by P t

u. The testing log has the same format with the training log. We estimate P t
u by

calculating the frequency that the system is in some unsafe states in the testing log. If P t
u

is larger than the threshold r, we report the safety violation together with a confidence
by calculating the error bound [26]. Otherwise, we conclude that the violation is caused
by too coarse abstraction and move to the next step to refine the abstraction.

Let N be the total number of states, and n be the number of unsafe states in the
testing log. Let Y = X1+X2+ · · ·+XN , where Xi is a Bernoulli random variable on
whether a state is unsafe. The confidence of the safety violation report is then calculated
as α = 1 − P{Y = n|Pu < r}. For example, for property LIT101 > 1000, if we



Algorithm 2: Algorithm CountST (MP , Lt)

1: Augment each transition (si, sj) inMP with a number #(si, sj) recording how many
times we observe such a transition in Lt and initialize them to 0;

2: Let t0 be the first time that suffix(Lt(t0)) matches a label of a state inMP and a time
pointer t = t0;

3: while t < T2 do
4: Refer toMP for the current state st;
5: Take Lt(t+ 1) from Lt and refer toMP to get the next state st+1;
6: Add #(st, st+1) by 1, add t by 1;
7: end while

observe 1009 times (n) that LIT101 is larger than 1000 and the total length of the
testing log is 100000 (N), then the estimated P t

u is 1009/100000 = 0.01009.
If we conclude that the current abstraction is too coarse, we continue to refine the

abstraction by generating a new predicate following the approach in [32]. The predicate
is then added to the set of predicates to obtain a new abstract system log based on the
new abstraction. The algorithm then starts over to learn a new model based on the new
abstract log. Next, we introduce how to generate a new predicate in our setting.

Finding spurious transitions A spurious transition in the learned model is a transition
whose probability is inflated due to the abstraction. Further, a transition (si, sj) is spu-
rious if the probability of observing si transiting to sj in the actual system PM(si, sj)
is actually smaller than PMP

(si, sj) in the learned model [32]. Without the actual sys-
tem model, we estimate the actual transition probability based on the testing log. Given
the learned modelMP and the testing log Lt, we count the number of times si is ob-
served in Lt (denoted by #si) and the number of times the transition from si to sj in
is observed Lt (denoted by #(si, sj)) using Alg. 2. The actual transition probability
P (si, sj) is estimated by P̂M(si, sj) = #(si, sj)/#si. Afterwards, we identify the
transitions satisfying PMP

(si, sj) − P̂M(si, sj) > 0 as spurious transitions and order
them according to the probability deviation.

Predicate generation After we obtain a spurious transition (si, sj), our next step is
to generate a new predicate to eliminate the spuriousness. The generated predicate is
supposed to separate the concrete states of si which transit to sj (positive instances)
from those which do not (negative instances). We collect the dataset for classification in
a similar way to Alg. 2 by iterating the testing log. If si is observed, we make a decision
on whether it is a positive or negative instance by telling whether its next state is sj .
With the labeled dataset, we then apply a supervised classification technique in machine
learning, i.e., Support Vector Machines (SVM [5,1]) to generate a new predicate. Then,
we add the predicate for abstraction and start a new round.

3.5 Overall algorithm

The overall algorithm is shown as Alg. 3. The inputs of the algorithm are a system log L
for training, a system log Lt for testing, a property in the form of S≤r(ϕ). During each



Algorithm 3: Algorithm sLAR(L,Lt, S≤r(ϕ))
1 let P be the predicates in ϕ;
2 while true do
3 construct abstract trace LP based on training log L and P ;
4 apply Alg. 1 to learn a stationary modelMP based on LP ;
5 checkMP against ϕ;
6 ifMP |= ϕ then
7 report ϕ is verified, the modelMP ;
8 return;

9 use the testing log Lt to validate the property violation;
10 if validated then
11 report ϕ is violated with confidence;
12 return;

13 identify the most spurious transitions 〈s, s′〉 inMP ;
14 collect labeled dataset D+(s,MP , Lt) and D−(s,MP , Lt);
15 apply SVM to identify a predicate p separating the two sets;
16 add p into P ;

iteration of the loop from line 2 to 16, we start with constructing the abstract trace based
on L and a set of predicates P . The initial set of predicates for abstraction is the set of
predicates in the property. Next, an abstract sDTMCMP is learned using Algorithm 1.
We then verifyMP against the property. If the property is verified, the system is verified
and MP is presented as the evidence. Otherwise, we validate the verification result
using a testing log Lt at line 9. If the test passes, we report a safety violation together
with the confidence. Otherwise, at line 13, we identify the most spurious transition and
obtain a new predicate at line 15. After adding the new predicate into P , we restart
the process from line 2. If SVM fails to find a classifier for all the spurious transitions,
Alg. 3 terminates and reports the verification is unsuccessful. Otherwise, it either reports
true with a supporting model as evidence or a safety violation with confidence.

4 Case study results

In the following, we present our findings on applying the method documented in Sec-
tion 3 to SWaT. Given the 11 day system log [10], we take the 7 day log under normal
system execution and further split it into two parts for training (4 days) and testing (3
days) respectively. The main reason we split them into training and testing log is to
avoid over-fitting problem without the testing data. Note that the historian makes one
record every second. The training log and testing log contains 288000 and 208800 sys-
tem observations respectively. The properties we verified are whether the steady-state
probability that a sensor runs out of its operating range is beyond or below a threshold.
Let Ptrain, Plearn and Ptest be the probability that a sensor is out of operating range in
the training log, learned models and the testing log respectively. In our study, we set the
threshold r in each property as 20 percent larger than the probability observed in the



actual system for a long time, during which the system functioned reliably. The idea is
to check whether we can establish some underlying evidence to show that the system
would satisfy the property indeed.

The experiment results of all sensors are summarized in Table 3. The detailed im-
plementation and models are available in [30]. The first column is the plant number.
Column 2 and 3 are the sensors and their properties to verify which are decided by their
operating ranges. The following 4 columns show the probability that a sensor value is
out of operating range in the training log, the safety threshold, the probability in the
learned model and the probability in the testing log respectively. Column ‘result’ is the
verification result of the given safety properties. ‘SUC’ means the property is success-
fully verified. ‘FAL’ means the property is not verified. ‘VIO’ means the property is
violated. Column ‘model size’ is the number of states in the learned model. Column ε
is the parameter we use in the learning parameter. The last column is the running time.

Summary of results In total, we managed to evaluate 47 safety properties of 24 sensors.
Notice that the sensor from P6 is missing in the dataset. Among them, 19 properties are
never observed to be violated in the training log. We thus could not learn any models
regarding these properties and conclude that the system is safe from the limited data we
learn from. This is reasonable as according to the dataset, the probability violating the
property is 0. For the rest 28 properties, we successfully verified 24 properties together
with a learned abstract Markov chain each and reported 4 properties as safety violation
with a confidence.

We have the following observations from the results. For those properties we suc-
cessfully verified, we managed to learn stationary abstract Markov chains which closely
approximate the steady-state probability of safety violation (evaluated based on the
probability computed based on the testing log). It means that in these cases, sLAR is
able to learn a model that is precise enough to capture how the sensor values change.
Examples are FIT101 > 2.6, LIT301 > 1000, LIT301 < 800 and LIT401 > 1000.
Besides, it can be observed that the learned abstract models are reasonably small, i.e.,
usually with less than 100 states and many with only a few states. This is welcomed
since a smaller model is easier to comprehend and thus more meaningful for expert
review or to be used as a runtime monitor. An underlying reason (why a small model is
able to explain why a property is satisfied) is perhaps the system is built such that the
system modifies its behavior way before a safety violation is possible. Besides, we iden-
tify two groups of states which are of special interest. One of them are FIT401 < 1.5,
FIT502 < 1.1, FIT503 < 0.7 and FIT504 < 0.25. The 4 properties have the
same probability 0.0117 of safety violation in the training log and 0 in the testing log.
We learn the same models for all of them and Plearn equals 0 which is the same as
the testing log. We could observe that these sensors have tight connections with each
other. Moreover, these sensors are good examples that our learned models generalize
from the training data and are able to capture the long run behaviors of the system with
Plearn equals Ptest, which is 0. The same goes for the other group of properties, i.e.,
FIT501 < 1, PIT501 < 20 and PIT503 < 10.

For those properties we reported as safety violations, i.e.,AIT401 > 100,PIT501 >
30, PIT502 > 0.2 and PIT503 > 20, a closer look reveals that these sensors all have
high probability of violation (either 0.7156 or 0.989) in the training log. Our learned



models report that the probability of violation in the long term is 1, which equals the
probability in the testing log in all cases. This shows that our learned models are precise
even though the properties are not actually satisfied.

Discussions 1) We give a 20% margin for the safety threshold in the above experi-
ments. In practice, the actual safety threshold could be derived from the system relia-
bility requirement. In our experiments, we observe that we could increase the threshold
to obtain a more abstract model and decrease the threshold to obtain a more detailed
model. For instance, we would be more likely to verify a property with a loose thresh-
old. 2) The parameter ε in Algorithm 1 effectively controls the size of learned model. A
small ε used in the model learning algorithm leads to a learned model with more states
by growing a deeper tree. However, it is sometimes non-trivial to select a good ε [33].
In our experiment, we use 0.01 as the basic parameter. If we can not learn a model (the
tree does not grow), we may choose a more strict ε. Examples are LIT401 > 1000 and
AIT504 > 10. This suggests one way to improve existing model learning algorithms.
3) Each sensor has a different collection period and most of them are changing very
slowly, thus the data is not all meaningful to us and we only take a data point from the
dataset every minute to reduce the learning cost. 4) One possible reason for the safety
violation cases is that the system has not exhibited stationary behaviors within 7 days
as the probability of safety violations is 1 in the testing data for all these cases.

Limitation and future work Model learning will correctly learn an underlying model
in the limit [18,24]. However, since our models are learned from a limited amount of
data from a practical point of view, they are not guaranteed to converge to the actual
underlying models. One of our future work is how to further validate and update the
learned models from more system logs. In general, it is a challenging and interesting
direction to derive a confidence for the learned model (as a machine learning problem)
or the verification results based on the learned models (as a model checking problem)
given specific training data. Or alternatively, how can we derive a requirement on the
training data to achieve a certain confidence. Some preliminary results on the number
of samples required to achieve an error bound are discussed in [13].

5 Conclusion and related work

In this work, we conducted a case study to automatically model and verify a real-world
water treatment system testbed. Given a set of safety properties of the system, we com-
bine model learning and abstraction refinement to learn a model which 1) describes
how the system would evolve in the long run and 2) verifies or falsifies the properties.
The learned models could also be used for further investigation or other system analysis
tasks such as probabilistic model checking, simulation or runtime monitoring.

This work is inspired by the recent trend on adopting machine learning to automati-
cally learn models for model checking. Various kinds of model learning algorithms have
been investigated including continuous-time Markov Chain [25], DTMC [19,6,33,31,34]
and Markov Decision Process [18,3]. In particular, this case study is closely related to
the learning approach called LAR documented in [32], which combines model learning
and abstraction refinement to automatically find a proper level of abstraction to treat the



problem of real-typed variables. Our algorithm is a variant of LAR, which adapts it to
the setting of stationary probabilistic models [6].

This case study aims to formally and automatically analyze a real-world CPS by
modeling and verifying the physical environment probabilistically. There are several
related approaches for this goal. One popular way is to model the CPS as hybrid au-
tomata [11]. In [23], a theorem prover for hybrid systems is developed. dReach is an-
other tool to verify the δ-complete reachability analysis of hybrid system [9]. Never-
theless, they both require users to manually write a hybrid model using differential
dynamic logic, which is highly non-trivial. In [22], the authors propose to learn hy-
brid models from a sample of observations. In addition, HyChecker borrows the idea
of concolic testing to hybrid system based on a probabilistic abstraction of the hybrid
model and achieves faster detection of counterexamples [15]. sLAR is different as it
is fully automatic without relying on a user-provided model. SMC is another line of
work which does not require a model beforehand [7]. However, it requires sampling the
system many times. This is unrealistic for our setting since shutting down and restarting
SWaT yield significant cost. Besides, SMC does not provide insight on how the system
works but only provides the verification result. Our learned models however can be used
for other system analysis tasks.

Several case studies are related to our case study in some way. In [17], the authors
applied integrated simulation of the physical part and the cyber part to an intelligent
water distribution system. In [8], the authors use model learning to infer models of
different software components for TCP implementation and apply model checking to
explore the interaction of different components. In [14], a case study on self-driving car
is conducted for the analysis of parallel scheduling for CPS. In [21], automata learning
is applied in different levels of a smart grid system to improve the power management.
As far as we know, our work is the first on applying probabilistic model learning for
verifying a real-world CPS probabilistically.
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Table 3: Experiment results.
Plant Sensor Property Ptrain r Plearn Ptest Result Model Size ε Time

P1 FIT101 >2.6 0.2371 0.2845 0.2371 0.233 SUC 26 0.01 300
<2.5 0.5092 0.611 0.5092 0.5245 SUC 31 0.01 298

LIT101 >800 0.1279 0.1535 0.1271 0.1141 SUC 130 0.01 4
<500 0.1485 0.1782 0.147 0.0977 SUC 54 0.01 2

P2 AIT201 >260 0.6044 0.7253 0.647 1 SUC 2 0.01 31
<250 0 – – – – – – –

AIT202 >9 0 – – – – – – –
<6 0 – – – – – – –

AIT203 >500 0.0362 0.043 0.0363 0 SUC 2 0.01 27
<420 0.7654 0.9185 0.7654 1 SUC 2 0.01 32

FIT201 >2.5 0 – – – – – – –
<2.4 0.2577 0.3092 0.2567 0.2529 SUC 59 0.01 4

P3 DPIT301 >30 0 – – – – – – –
<10 0.2006 0.2407 0.1991 0.1799 SUC 119 0.01 4

FIT301 >2.4 0 – – – – – – –
<2.2 0.2217 0.266 0.2209 0.1756 SUC 42 0.01 4

LIT301 >1000 0.134 0.1608 0.135 0.1299 SUC 60 0.01 4
<800 0.0877 0.1052 0.0876 0.0609 SUC 69 0.01 2

P4 AIT401 >100 0.7156 0.8587 1 1 VIO 2 0.002 35
<5 0.2844 0.3413 0 1 SUC 2 0.01 33

AIT402 >250 0 – – – – – – –
<150 0 – – – – – – –

FIT401 >2 0 – – – – – – –
<1.5 0.0117 0.014 0 0 SUC 2 0.01 37

LIT401 >1000 0.0035 0.0042 0.0037 0.0034 SUC 208 0.002 455
<800 0.1227 0.1472 0.123 0.079 SUC 70 0.01 2

P5 AIT501 >8 0 – – – – – – –
<6 0 – – – – – – –

AIT502 >250 0 – – – – – – –
<100 0 – – – – – – –

AIT503 300 0 – – – – – – –
<200 0 – – – – – – –

AIT504 >10 0.9983 1 0.9983 1 SUC 2 0.001 37
<5 0 – – – – – – –

FIT501 >2 0 – – – – – – –
<1 0.011 0.0132 0 0 SUC 3 0.01 38

FIT502 >1.3 0.0356 0.0427 0.0361 0.3241 SUC 9 0.01 15
<1.1 0.0117 0.014 0 0 SUC 2 0.01 38

FIT503 >0.9 0 – – – – – – –
<0.7 0.0117 0.014 0 0 SUC 2 0.01 38

FIT504 >0.35 0 – – – – – – –
<0.25 0.0117 0.014 0 0 SUC 2 0.01 38

PIT501 >30 0.989 1 1 1 VIO 3 0.01 38
<20 0.011 0.0132 0 0 SUC 3 0.01 38

PIT502 >0.2 0.989 1 1 1 VIO 3 0.01 37
PIT503 >20 0.989 1 1 1 VIO 3 0.01 37

<10 0.011 0.0132 0 0 SUC 3 0.01 38
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Büning. Learning behavior models for hybrid timed systems. In AAAI, volume 2, pages
1083–1090, 2012.
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