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SmrtFridge: IoT-based, User Interaction-Driven Food Item &
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ABSTRACT
We present SmrtFridge, a consumer-grade smart fridge prototype
that demonstrates two key capabilities: (a) identify the individual
food items that users place in or remove from a fridge, and (b)
estimate the residual quantity of food items inside a refrigerated
container (opaque or transparent). Notably, both of these inferences
are performed unobtrusively, without requiring any explicit user
action or tagging of food objects. To achieve these capabilities, Smrt-
Fridge uses a novel interaction-driven, multi-modal sensing pipeline,
where Infrared (IR) and RGB video sensing, triggered whenever a
user interacts naturally with the fridge, is used to extract a fore-
ground visual image of the food item, which is then processed by
a state-of-the-art DNN classifier. Concurrently, the residual food
quantity is estimated by exploiting slight thermal differences, be-
tween the empty and filled portions of the container. Experimental
studies, involving 12 users interacting naturally with 19 common
food items and a commodity fridge, show that SmrtFridge is able
to (a) extract at least 75% of a food item’s image in over 97% of
interaction episodes, and consequently identify the individual food
items with precision/recall values of ∼ 85%, and (b) perform robust
coarse-grained (3 level) classification of the residual food quantity
with an accuracy of ∼ 75%.

CCS CONCEPTS
• Computing methodologies → Motion capture; Image segmen-
tation;
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1 INTRODUCTION
The notion of a smart fridge, which uses embedded sensors to track
the usage and quantity of stored food items, is a staple part of the
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vision of “Connected Devices” or IoT (Internet of Things) [10]. An
Internet-connected fridge that can automatically track the identity
and quantity of items placed inside it (with this information sub-
sequently being exposed via Web APIs) can enable several useful
applications–such as allowing a consumer to ascertain commonly-
used items that need to be replenished (when their quantity is low)
or purchased (if they are no longer present in the fridge) while
visiting the supermarket. Different sensing approaches have been
proposed in recent years to track such food item attributes, with
common approaches involving the use of per-object RFID tags [18],
RGB camera images [22] and weight sensors [4]. Each of these has
well-acknowledged adoption challenges–e.g., tagging individual
food items is currently impractical, whereas in-fridge RGB cameras
cannot perform quantity estimation (for opaque containers) and
suffer from occlusion (when objects are stacked together).

In this work, we develop a prototype sensing system, called
SmrtFridge, that uses a small number of commodity sensors to
provide two novel features needed in an eventual smart fridge:

• Interaction-Driven Capture of Food Items: Using a combi-
nation of infra-red (IR) and optical camera sensors, it is
able to automatically visually isolate & extract the specific
brand/type of food item container that a user either places
inside or removes from a fridge, without requiring any spe-
cial per-object tags (e.g., RFID tags). By then feeding such
extracted item images to “standard", state-of-the-art DNN-
based object recognition pipelines, SmrtFridge can then iden-
tify the food item objects with high accuracy. SmrtFridge’s
interaction-driven paradigm, where the sensing pipeline is
activated only during user-object interactions, is notable as it
both (i) reduces the likelihood of visual occlusion (compared
to prior approaches that focus on recognizing stationary
items inside the fridge) by using multiple images and (ii)
improves recognition accuracy by supplying the DNNs with
cropped, foreground images of food items, using just a single
camera1.

• Track Residual Fractional Quantity of Individual Containers:
By using such user-item interaction images captured by the
appropriately positioned IR sensor, it automatically deter-
mines the approximate remaining amount of liquid/semi-
solid content (relative to the container size) inside a food
item container (whether transparent or opaque), whenever
the container is re-inserted in the fridge.

SmrtFridge’s uses two novel capabilities, namely natural interaction-
driven image capture and residual quantity estimation, to perform
sensing of individual food item containers (e.g., the amount of milk

1This is contrast to technologies, such as Amazon Go™, which reportedly use multiple
store-mounted cameras & special product tags to identify individual items
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remaining in a milk carton) and requires no overt user action or
additional object-level tagging.
Key Challenges: To build a smart fridge that uses such natural
item-level interactions to identify food container items and their
residual content, we must address several challenges:

• How to Extract a Food Item: Individual users interact with
individual food item containers using a variety of different,
transient gestures–e.g., an individual might hold a single
milk container in the middle while removing it from the
fridge, while another grasp the same object with two hands.
A key challenge is to look at the sequence of image frames
captured by a camera sensor, during such natural interac-
tion episodes, and isolate/extract food item images, with an
accuracy that is suitable for state-of-the-art image classifiers.

• How to Overcome Varying Levels of Object Occlusion: As a user
extricates or inserts an individual food item into the fridge, it
is quite likely that the camera’s field of view will be obscured
by the user’s body parts (e.g., the user’s hand or fingers) at
different points of the motion trajectory, thereby occluding
the food container object. An important research question
thus is: How do we utilize a single static camera to robustly
recognize an individual food item object and reconstruct its
shape, even under occasional partial visibility?

• How to Estimate the Content of a Container: To generate
proactive alerts for specific conditions (e.g., when a milk
carton is becoming almost empty), we need a system that is
capable of recognizing and tracking changes in the content
of such containers. Past approaches (e.g., [4]) have suggested
the use of weight or visual sensors, but these cannot handle
opaque containers or track multiple items. Accordingly, we
tackle the question: How do we identify the changes in the
occupancy level of individual, potentially non-transparent,
containers, across such natural user interactions?

Figure 1 shows the high-level idea of SmrtFridge. Once the door is
opened, fridge-mounted cameras capture images of user interaction
(step 1). Subsequently, a combination of thermal & optical flow-
based approaches is used to identify & extract the image segment
corresponding to a food item (step 2). The extracted sub-image (step
3) is then fed to a Deep Neural Network (DNN) based classifier to
visually identify the food item brand/type, with final item recog-
nition based on weighted fusion of multiple images. Finally, when
the user subsequently re-inserts the item back in the fridge, an
ML-based pipeline operates over an IR image of the extracted food
item to quantify the fraction of the container that is empty (Step 4).
Note that, SmrtFridge currently does not attempt to (a) distinguish
between multiple item instances (e.g., two identical Coke™cans),
or (b) perform exact counting of food objects (such as bananas or
vegetables).
Key Contributions:We shall demonstrate a practical SmrtFridge
system that achieves our twin objectives through the 4-step process
mentioned above. We make the following key contributions:

• Dual Mode Visual Extraction of Individual Food Objects: We
demonstrate a novel segmentation technique that reliably
isolates the portion of an image frame pertaining to a food
item object. The segmentation technique combines two ap-
proaches: (a) a combined IR+ visual approach, which allows

easy visual isolation of the cold part of the image (very likely
corresponding to a refrigerated item); and (b) a pure visual
optical flow-based approach, which identifies foreground
food item content even when it is at the ambient (room)
temperature. Real-world user studies show that, in over 97%
of interaction episodes, SmrtFridge can extract the food item
with a bounding box that contains at least 75% of the item’s
pixels, and achieve a median Intersection Over Union (IoU)
value of 0.68 (which is higher than the 0.45-0.5 threshold re-
quired for state-of-the-art object detection frameworks [14]).

• Accurate, Robust Object Recognition: User studies show that
a single user-item interaction episode typically lasts for 5-10
seconds, with the food item being visible in 5-10 images cap-
tured by a 30fps commodity camera. We utilize a DNN-based
image recognition pipeline, which uses varying weights over
this ensemble of images, to reliably identify the specific food
item that is either being inserted or extracted. Experimen-
tal studies, conducted with 12 users and 19 common food
items, demonstrate that SmrtFridge can identify the food
item brand/type with 84+% precision & recall, whereas the
same DNNs achieve a baseline precision of only 53% and 20%
recall when supplied with the entire ‘un-cropped’ image2.

• Accurate, Robust Quantity Estimation:We show that, across 5
different items and 3 different quantities in paper containers,
the differential temperature gain rate of the container vs. the
liquid results in distinct thermal zones. We show that the
resulting thermal differences captured by a commodity IR
sensor are discernible when the food item is placed outside
the fridge for a period varying between 15 seconds to 15 min-
utes. By applying appropriate quantization and clustering
techniques on such thermal images, we show that we can
estimate the residual quantity of food items with a median
and mean errors of 11% and 14% respectively (of the overall
container capacity) and achieve 75% accuracy in classifying
the residual quantity into three broad levels.

• Practical SmrtFridge Prototype: Using commodity sensors
and embedded platforms (e.g., Raspberry PIs), we build a
prototype of SmrtFridge, comprising 1 IR sensor, 1 camera
and 1 door-contact sensor. We also empirically determine
the appropriate placement of these sensors, such that they
provide both good item visibility and high spatial coverage
under diverse, natural, user-item interaction patterns.

We anticipate that our proposal, of using IR+visual sensing to
capture user-item interactions, will strongly influence the sensor
choices and sensing pipelines of future IoT-equipped smart fridges.
Moreover, our core methodological innovations have applicability
beyond just fridges. For instance, the approach of dynamically fus-
ing IR+RGB sensing can be used to accurately extract segments of
objects with distinct thermal signatures, e.g., (a) to automatically
visually identify objects being unloaded off a refrigerated truck at
a warehouse (as such object contours could be easily isolated by
the IR sensor) or (b) automatically visually identify a specific com-
ponent being incorrectly welded (and thus having an anomalous

2The development of the item recognition DNN is not the focus of our work–we expect
DNN-based image recognition to improve over time
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(a) Step 1: Interaction Capture (b) Step 2: Item Extraction (c) Object Recognition (d) Quantity Estimation

Figure 1: High-Level Steps in SmrtFridge

thermal profile) by field workers at construction sites. Similarly, IR-
based sensing of thermal variations can be used for remote sensing
of hot/cold objects inside containers–e.g., (a) to perform remote
inspection of liquid quantities in cargo containers by simply placing
them in hot/cold environments and noting resulting possible ther-
mal variations (b) to verify the purity of unconsumed refrigerated
medicines, by combining thermal based quantity estimation of such
medicines with weight sensors to verify the specific density of the
liquid content.

2 RELATEDWORK
The related work in this field consists of both Smart Fridge-specific
prototypes and systems, as well as broader work in the area of
IR/visual camera-based sensing. The desired capabilities of a smart
fridge are often motivated by studies on food wastage [3, 6] which
found that 48% of food wastage is due to items that have passed
their expiration date, with 36.5% of the cases arising from food left
untended (without the user’s awareness) inside a fridge.
Smart Fridge prototypes: A widely adopted approach for track-
ing the contents of a fridge involves the use of RFID tags attached to
individual food objects. Noutchet [18] and Gu & Wang [8] propose
attaching RFID tags to each product, with an RFID reader scanning
each tag whenever an item is placed in or removed from the fridge.
While this approach may be useful once all packaged items are
universally tagged, its use at present would require extensive man-
ual effort in labelling each object before inserting in the fridge and
removing such tags before eventual discard. The Pervasive Fridge
system [20] also envisions a system that tracks food items and their
expiry dates (a feature that has been reported [5] to be extremely
desired by users) via a manual process that uses multiple modalities
(barcode scanning, audio input or text input) to explicitly add items
and their attributes (e.g., expiry dates).

The CloudFridge prototype [22] is one of the first systems to
build and evaluate a sensor-based prototype to track user-fridge
interactions in real-time and retrieve current and historical states
of food items. Similar to our approach, CloudFridge applies video-
based recognition to identify individual food items and uses multi-
ple additional proximity (IR) sensors to keep track of each item’s
location inside the fridge. Evaluations performed using full-frontal
images of the objects achieve precision values of ≈ 70%. However,
CloudFridge does not directly address the real-world problems of
extracting food item sub-images from videos of real-world human
interaction or of estimating the residual food amount in a container.
Along similar lines, the PerFridge system [17] augments a refrig-
erator with various sensors such as proximity (IR) and magnetic

sensors to track various forms of ‘wasteful’ behavior, such as leav-
ing a fridge door open for an excessively long duration or stacking
multiple items in one corner (resulting in improper air flow). Per-
Fridge does not, however, automatically identify food items or their
residual quantity, relying instead on a touch-screen interface for
explicit human input.

Several commercial smart fridge products have also recently
been announced. An example is the Liebherr smart fridge [2], which
uses an interior-mounted camera to classify food items inside the
fridge and a voice recognition system to process voice commands
(such as ordering food items). At present, we are, however, unable
to quantify the performance of such commercial systems under
densely-packed, occluded scenarios.

Analysis of Food & Other Content: There has been a variety
of innovative work, employing different sensing modalities (e.g.,
visual, weight and RF), to infer various attributes of container-based
food items. In the most recent and relevant work, Jiang et al. [11]
employ a CNN (convolutional neural network) based approach to
estimate four discrete levels of content inside a glass or transparent
bottle. Although the CNN is trained with various coloured plas-
tic/glass bottles, a purely visual sensing approach does not work
for non-transparent containers, e.g. paper cartons. A while back,
Chi et al. [4] had demonstrated a method for estimating the type of
food ingredients and their quantity using a combination of weight
sensors and camera-based identification of ingredients (on a spe-
cially instrumented countertop). More recently, Wang et al. [24]
has shown how phase/RSSI information from RFID tags mounted
on containers can help distinguish between different liquids in con-
tainers with accuracy as high as 94%. We believe that our use of
an IR sensor to identify the quantity of liquids/semi-solids inside
a container is a novel approach that exploits the temperature dif-
ferential between a fridge’s interior and its ambient surroundings.
IR-based thermal tracking has been proposed in [19] to monitor the
quality of vacuum-packed food containers. This approach, however,
monitors the whole container and does not attempt to use thermal
variations for residual quantity estimation.

Visual Analysis of Food Items:A different line of work has ex-
plored the use of automated techniques to identify food items based
on image analysis. Nutrinet [16] applied a CNN-based approach to
recognize 520 commonplace food and drink items, typically cap-
tured by a smartphone camera, with an accuracy of ≈ 87%, whereas
Kagaya et al. [13] previously demonstrated how CNNs provided
better food recognition accuracy (using a public food blogging
dataset) than shallow classifiers, such as SVMs. More recently, the
Annapurna system [23] addressed the problem of identifying and
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extracting images of plated food items captured by a smartwatch-
embedded camera. Most such approaches are based on close-up
photos of food content that is assumed to constitute the foreground.
In SmrtFridge, we explicitly tackle this challenge of extracting out
the food object from images of natural human interaction, captured
by a fridge-embedded camera.

3 MOTIVATING SCENARIO & DESIGN GOALS
To motivate the capabilities of SmrtFridge, we envision a Smart
Fridge operating as follows:

• To prepare her breakfast, Alice opens the fridge and grabs a
juice carton, which she then proceeds to pour into a glass
on the kitchen countertop. During this operation, SmrtFridge
is triggered when Alice is retrieving her juice carton and infers
the retrieved item: Juice Carton Product A.

• Subsequently, Alice reaches into the fridge and grabs two
pouches of yoghurt, which she then empties into her break-
fast bowl. As before, SmrtFridge should be able to track the
new food items that Alice has retrieved—2 pouches of Yogurt
Product B. She proceeds to mix her cereal into the breakfast
bowl, for about 1-2 minutes.

• At this point, Alice places the juice carton back in the fridge.
SmrtFridgemonitors this act of inserting a food item, identifies
that the item is Juice Carton Product A, and also estimates
that the carton is now only 25% full. (This quantity estimation
can be transmitted to a back-end portal, which can asyn-
chronously trigger relevant actions–e.g., generating a ‘Low
Juice’ alert.)

• Finally, Alice also inserts a can of her favourite beverage in
the fridge, before closing the fridge door. SmrtFridge tracks
this object insertion, identifying the objects as “can of Beverage
Product C", and thereby updates the repository of the fridge’s
content.

It is important to note that this entire workflow is based on a user’s
natural interactions with the fridge: at no point is Alice required
to perform any specific additional action (e.g., scanning an item’s
barcode on a reader, tagging an item, annotating an image) to aid
SmrtFridge’s operation.While labels are needed to train image-based
item recognizer, this can be performed a-priori e.g., by external
companies that survey available food products.

3.1 Design Goals
The observations above drive the following SmrtFridge design goals.

• Identification of Product Labels: SmrtFridge must be able to
identify and label the individual food products with which
a user interacts. Generic item-agnostic alerts would be of
the form ‘item was extracted from the fridge at time t ’ and
are useful only for tracking fridge usage. In contrast, an
alert of the form ‘Juice Product X, with approx. 40% content
remaining, has been in your fridge for the past two weeks’
provides a user targeted, actionable feedback.

• NoAdditional Human Effort: To support unobtrusive tracking,
SmrtFridge must not require the user to perform any addi-
tional actions, beyondwhat she presently doeswith a conven-
tional fridge. This implies that SmrtFridge cannot employ ap-
proaches such as barcode scanners [20] or manually-entered

product logging [15] to obtain additional insights. Moreover,
SmrtFridge’s image-based item recognition pipelines must
work in-the-wild, i.e., with images of items that are not nec-
essarily centred or placed vertically.

• Need to Estimate Residual Amount in a Container: Past stud-
ies [12] have shown that users who are aware of the amount
of unconsumed food items in their fridge make less wasteful
consumption decisions. To support such insights, SmrtFridge
must be able to estimate the fraction of remaining liquids
inside specific containers. From a practical perspective, it
is imperative to perform such content estimation when the
user is inserting an item back into the fridge (as the user
would have typically consumed some fraction of the existing
content) so that the user can subsequently track (without
inspecting the refrigerator) the residual quantity of food.

3.2 SmrtFridge: Out of Scope
As consumers can certainly desire additional capabilities from a
smart fridge, we establish upfront the functions that SmrtFridge
does not currently support. Very specifically:

• No Product Expiration: SmrtFridge does not have any notion
of detecting the possible expiration dates of individual food
items. While SmrtFridge can provide the duration for which
an item has been residing in the fridge (and a rule-based
back-end may trigger alerts when a specified period has
been exceeded), more precise expiration tracking will require
coupling our mechanisms with alternative approaches (e.g.,
OCR-based parsing of expiration dates on containers).

• No Support for Unlabeled Food Items: SmrtFridge’s operational
logic is based on extracting visual images of a food container
or discrete food items (e.g., fruits), and then performing DNN-
based recognition of the product. Accordingly, SmrtFridge
cannot presently support recognition of unlabeled food items
(e.g., home cooked foods such as salads or curries), although
future versions can integrate ongoing deep learning work
on recognition of cooked foods (e.g., FoodAI [1]).

• Approximate Support for Quantity Estimation: SmrtFridge’s
IR sensing techniques help to provide coarse-level estimates
of residual food quantity in containers (e.g., less than 25%
remaining). However, SmrtFridge does not aim to measure
such food quantity precisely (e.g., 30 mg of juice). It is likely
that the addition of high-resolution weight sensors might
enable more precise quantity estimation of food items.

• No Tracking of Specific Item Instances: SmrtFridge’s visual
sensing effectively recognizes specific food types or brands
(e.g., a can of Coke), rather than specific individual item
instances.

4 SMRTFRIDGE SYSTEM OVERVIEW
As mentioned before, SmrtFridge’s key novelties (compared to prior
work) are in developing processing pipelines to (a) extract a food
item’s sub-image (a bounding box) from individual RGB image
frames (so that it can then be recognized using state-of-the-art
DNNs), and (b) estimate the residual food quantity in such food
containers. Before detailing these key functions in Sections 5 and 6
respectively, we first present the overall functioning of SmrtFridge,
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as illustrated in Figure 2. SmrtFridge’s sensing substrate includes:
(a) an RGB camera that visually captures the item-level interactions
that an individual performs with the fridge; (b) an infrared (IR)
camera that is used to both aid in food item extraction and quantity
estimation; and (c) a magnetic reed switch, attached to the door,
which detects the opening and closing of the fridge door (and thus
triggers the sensing pipeline).

The SmrtFridge workflow consists of the following steps:

(1) Episode Segmentation: The door contact sensor helps to iden-
tify the start and end of a single interaction episode–an
episode may involve the user retrieving or inserting one or
more (and possibly even none) items from/in the fridge. This
sensor acts as a trigger to the IR and RGB camera pipelines–
these cameras start capturing images whenever the door is
open until the user closes the door subsequently.

(2) Item Image Extraction: This process concurrently executes
two different pipelines. The first pipeline uses only the visual
(RGB) camera data to first compute object motion vectors,
followed by clustering and thresholding of such vectors to
extract the image of the food item. The second pipeline uses
the thermal (IR) camera to obtain the relevant coordinates
of objects that are significantly colder than the ambient ther-
mal values, and then obtain the image of the food item by
extracting the corresponding coordinates in the RGB camera.

(3) Image-based Food Item Recognition: The extracted RGB im-
ages (or sequence of images), ideally corresponding to a
food item, is then passed through a CNN-based recognizer.
The CNN is pre-trained by an external entity (e.g., an im-
age analytics company) with a, preferably large, corpus of
representative images of various food items. For each image
frame, the CNN then outputs the likely label (along with
the confidence values). Because the item-specific user in-
teraction (within an episode) lasts for several seconds, the
extraction process retrieves a sequence of multiple (typically
30-40) images, of which 5-10 contain the food item. This
series of CNN output labels are then further fed through a
classifier that uses the frequency of occurrence and associ-
ated confidence levels to output the food item label with the
highest likelihood, above a minimum threshold.

(4) Residual Food Quantity Estimation: In parallel to the above
process, IR images are also fed through a quantity estimation
pipeline. This pipeline works on the principle of differential
heating of the container vs. the food content inside and is thus
triggered only when the user is inserting items into the fridge.
(Such a temperature differential is absent when the user is
taking out a currently refrigerated item.) The extracted food
item’s IR image is fed through an unsupervised classifier that
demarcates the container pixels into two spatially contiguous
clusters. The partial area of the colder cluster (corresponding
to the non-empty portion of the container), relative to the
area of the overall container, is then used to estimate the
residual food quantity (by volume percentage).

(5) Additional Workflow Steps: Once we have determined the
food item and its remaining quantity, SmrtFridge can appro-
priately update a repository of refrigerated food contents.
Similar to prior work, such changes (‘bottle of product A,

30% full’ inserted) may be pushed to a Web server, which
can be instrumented to generate relevant alerts (e.g., “send
an SMS if a container with residual quantity ≤20% has been
sitting in the fridge without any user interaction for more
than a week"). Note that such a Web back-end has not been
implemented in the present SmrtFridge prototype.

5 VISUAL IDENTIFICATION OF FOOD ITEM
SmrtFridge’s process for extracting food items includes two alterna-
tive pipelines (one purely using visual images vs. another fusing IR
and visual images), coupled with a CNN-based item classifier.

5.1 IR-driven Image Extraction
In this relatively more straightforward approach, we utilize the
insight that a refrigerated item will typically be much colder than
either the interacting human’s body or the ambient temperature.
Accordingly, an IR camera should be able to easily isolate such a
cold item, as the food item’s pixels will be much darker than other
ambient objects. Accordingly, we attempt to use a pixel intensity-
based segmentation approach. In this approach, during an ongoing
interaction episode, we extract the cold item from the thermal image
(a frame with timestamp t ) by selecting all pixels below a threshold
value Thtemp . We compute the Cartesian coordinates of all the
selected pixels, thus segmenting the cold item from the thermal
image. We then calculate a bounding box (i.e., the smallest rectan-
gular region that contains the entire contour area) to represent the
segmented object.

Once the item’s bounding box in the IR camera’s coordinates
is identified, we utilize the fact that both the IR and RGB cameras
concurrently and continuously record images/videos, albeit with
different FoV (field of view), during an interaction episode. Because
the two cameras are fixed, we transform the IR camera’s coordinates
into the RGB camera’s frame of reference using an a-priori com-
puted transformation matrix. However, empirically (because our
Raspberry Pi-based implementation does not support a real-time
OS), we observe that the frames of the two cameras are not always
synchronized. Accordingly, we select all the RGB frames that have
a timestamp (t − ∆, t + ∆), where ∆ represents the time offset: for
each of these frames, we extract the sub-image corresponding to
the (transformed) RGB bounding box coordinates. Separately, the
optical flow approach (Section 5.2), applied to selected RGB frames
(t ∈ {t − ∆, t + ∆}), provides another set of candidate images. Each
of these “potential food item” images (two per frame) is then sent
to the downstream item recognition DNN classifier.

5.2 Purely Visual Extraction
The IR-driven approach is not applicable when a food item’s temper-
ature matches the ambient room temperature–e.g., an item bought
from a grocery store is being inserted for the first time. To provide
an alternative means of food item tracking under this broader set
of conditions, we utilize the fact that a user’s interaction with a
food item (either removing or inserting into the fridge) involves a
directional motion either away from or towards a fridge-mounted
camera. The approach, illustrated in Figure 3 first applies the prin-
cipal of optical flow to identify the image segments that are moving
(across consecutive frames), thereby eliminating the parts of the
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Figure 2: Overview of SmrtFridge’s Workflow.

Figure 3: Visual Item Extraction Steps

image that correspond to a static background. Such optical flow
estimation identifies motion vectors (direction and displacement
magnitude) for each pixel in an image.

We then identify the parts of an image with significant move-
ment–i.e., withmotionmagnitude higher than aminimum threshold
ThM . The resulting pixels (Figure 3(b)) are likely to contain the
food item, as well as other moving objects captured in the camera’s
field of view (FoV), such as the user’s limbs, the moving fridge door
and even background movement (e.g., an animal moving in the
background). The static background portions of the image (e.g.,
parts of the fridge door) are first removed through standard back-
ground subtraction techniques. To then isolate the food item from
additional movements, we first employ spatial clustering. More pre-
cisely, we create a feature vector where each pixel’s feature consists
of its coordinates, as well the magnitude and direction of its motion
vector–i.e., {x,y, motion-mag, motion-dir}. We employ the K-Means
clustering technique to cluster the pixels into distinct, spatially
disjoint, motion clusters, and then pick the cluster with the highest
average motion magnitude (AMM) value (Figure 3(c)). This is based
on our intuition that the food item of interest is usually the moving
object closest to the camera, and thus extremely likely to have the
largest displacement magnitude from the camera’s perspective.

The resulting cluster (Figure 3(c)) consists of both the food item,
as well as possibly additional background pixels. To better isolate

the image segment corresponding to the food object, we then ex-
ecute the Canny edge detection algorithm, followed by standard
morphological operations (e.g., erosion and dilation) to help con-
nect some of the disconnected edges. The resulting edges are then
passed through a contour detection algorithm to obtain an outline
of the food item, before fitting a bounding box (Figure 3(d)) over this
contour to represent the image. As this bounding box image is from
a scaled-down version of the initial RGB frame (the down-scaling
was initially performed to speed up the computation), we finally
scale-up the bounding box coordinates, using template matching,
to select the high-resolution sub-image (Figure 3(e)) that represents
the extracted food item. As before, each such ‘food item’ is sent to
the downstream item recognition DNN classifier.

5.3 The Food Item Recognition Process
Given the extracted item, we then use a well-known CNN-based
deep learning classifier, the ResNet v2 (152 layers) [9] to classify
the food item. Note that (see Figure 2) that this classifier receives
multiple possible food item images. Specifically, the combined IR-
Visual pipeline provides one coordinate-transformed image for each
RGB frame with a timestamp within ∆ of an IR frame, whereas the
Motion-thresholding approach provides an image for every RGB
frame with a foreground cluster exceeding the motion threshold.

The item recognition process consists of the following steps:
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(1) Given K different classes of food items, we first train a multi-
class CNN classifier that outputs K + 1 labels: each of the
K food items + a null class (corresponding to a ‘non-food’
classification).

(2) During the test phase, each interaction involves a sequence
of say S image frames, provided by both the IR+MV and
MV-only methods. Each frame was then individually passed
through the classifier, generating a probability/confidence
value for each of the K+1 labels. Let pki k = {1, . . . ,K +
1}, i = {1, . . . , S} represent the probability of the kth class
for the ith frame.

(3) For each such frame, if the highest likelihood class is K + 1
(the non-food or background class), then we discard the
corresponding frame (this occurred ∼50% of the time).

(4) For the remaining L frames, we compute the cumulative like-
lihood of each of the K food item classes using the FREQ-
CONF method: for each class, we compute the frequency
of identification, as well as the sum of confidence values
(across L frames) within the episode, and then select the
most-frequent class that has the highest frequency probabil-
ity/likelihood across the L frames.

(5) Finally, we select the food item label that has the highest
cumulative likelihood value across all the frames. An alter-
native strategy of just using the classification output from
a single ‘randomly-selected’ frame may reduce the energy
consumption but has much lower accuracy (Section 8.3).

6 RESIDUAL FOOD QUANTITY ESTIMATION
Besides identifying the food item removed or replaced, SmrtFridge
also quantifies (at a coarse granularity) the quantity of residual food
inside the identified container. Quantifying such content is vital
for several possible applications e.g. informing users if the quantity
of juice in a container falls below a minimum threshold (e.g., 20%),
or if a close-to-full container has been lying inside the fridge for a
very long duration. For our exposition, we estimate quantity as a
fraction of the container volume e.g., if a 1000 ml juice container
presently has 3

5
th (600 ml) of juice remaining, the quantity should

be ideally estimated to be 60%.

6.1 The IR-based Approach
SmrtFridge uses a non-intrusive quantity estimation technique that
is both robust to different ambient lighting conditions and the
opaqueness of the food container. In this technique, an inexpensive
relatively low-resolution IR camera is used to record and extract
the food item’s thermal profile, when the user is re-inserting an
item back inside the fridge. The technique is motivated by a fun-
damental observation on differential specific heat properties of a
container and the item that it contains. In particular, whenever
a currently refrigerated food item is removed and placed outside,
its temperature will start to increase as it absorbs ambient heat
(assuming room temperature is higher than the item temperature).
For a full container, all parts of the container (containing the solid
or liquid food item) will gain heat at a similar rate, whereas in a
partially filled container, there will be a difference between the rates
at which the empty & filled portions of a container warm. Table 1
lists the specific heat capacity of some of the common liquid/solid

Food Item | Container Material
Juice 3.4 Plastic 0.4
Milk 3.93 Glass 0.2
Water 4.18 Paper 0.33
Yogurt 3.52 Air 0.718 (Cv )

Table 1: Specific Heat of Substances (KJ/kg/ C)

(a) Cold items at t=0 (b) Cold items at t = 20 secs

Figure 4: Thermal Intensity Differential after 20 seconds

food items and typical container material. In general, we see that
the food items have significantly higher specific heat than typical
container material: intuitively, the part of the container in direct
contact with the food item (liquid or solid) will share its acquired
heat conductivity with the item, and thus become cooler than the
empty portion (which will heat faster). Moreover, the larger the
specific heat of the food item, the higher the difference between
itself and the container and thus the larger the expected differential
between the thermal intensity of the empty vs. filled parts of the
container.

Our hypothesis is that the thermal camera can utilize this tem-
perature difference to estimate the remaining quantity inside the
container. Such differentiation will, of course, depend on the ther-
mal resolution of the IR camera; we found that commodity cameras
(e.g., the Raspberry PI compatible Bricklet camera3) typically have
resolution of 0.1◦C or lower. As an illustration of this hypothesis,
Figure 4 shows two thermal images, each containing two cold con-
tainers (the left one being full and the right one partially filled).
Image 4a is a thermal image when both the containers were just
taken out from the refrigerator (t = 0) whereas Image 4b shows the
thermal image of the same containers after they were kept outside
for t = 20 seconds. We see that the thermal image of the partially
filled container shows two regions of different pixel intensities, with
the empty region having higher temperature values (less dark pix-
els) and the ‘filled’ region having lower temperature values (darker
pixels). We shall leverage this difference in pixel intensities to es-
timate the size of the empty portion of the container and thereby
derive the quantity of the food item inside the container.

6.2 Processing Pipeline
Figure 5a shows the thermal camera installed inside our test refrig-
erator, while Figure 5b shows two representative thermal images
captured when two different food items are being kept inside the
refrigerator. After the thermal images are captured, each image is
passed through the following processing pipeline (illustrated in
Figure 6):

3https://www.tinkerforge.com/en/shop/thermal-imaging-bricklet.html
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(a) Camera setup inside the
fridge

(b) Sample thermal images
taken by thermal camera

Figure 5: Thermal Camera Sensing

• Partial Capture Check: Due to the continuous capture of
images during the user-item interaction episode, the thermal
camera will generate multiple images of the food container.
Because of the underlying motion dynamics, some images
will capture the item only partially, while others will obtain
a larger, clearer view. To eliminate partial captured images
(which can be ignored for estimating quantity), we check to
see if the container’s contour intersects with the boundary
of the captured image. If so, the container has likely been
captured only partially; we thus discard the image.

• Cold Item Segmentation & Noise Removal: Given the ther-
mal image, we follow the pixel intensity based segmentation
steps outlined in Section 5.1 to extract the image segment
corresponding to the food item container, which may con-
tain additional extraneous pixels (often due to heat leakage
around the cold item container, whereby pixels that are near
the cold container have an intermediate temperature value
that is lower than the ambient temperature). To remove these
neighboring intermediate pixels, we use clustering and con-
tour detection. First, we cluster all the segmented cold points
into two clusters, one containing the intermediate neigh-
borhood pixels (and empty part of container) and another
containing the “filled-part" of the container itself. Second,
we find contours from both the clusters, labeling the contour
with the larger perimeter value as the outer contour (this con-
tains all the neighborhood intermediate cells) and the other
as the inner contour. To selectively discard only the neigh-
borhood pixels, we first obtain the top-most point (highest y
coordinate) of the inner contour. Because the empty part of
the container is always above the filled portion (due to grav-
ity), we then discard those pixels from the outer contour that
lie below this top-most point (i.e., have smallery coordinates)
and combine the remaining pixels (which we anticipate to
correspond to the empty portion of the container) with the
pixels of the inner contour to obtain the container’s contour.

• Occluded pixels: Depending on the interaction pattern, some
part of the container can be occluded by the user’s hand.
This occlusion is also evident (as high brightness pixels) in
the thermal image, and can cause an under-estimation of the
container volume. To overcome this occlusion, we use an
interpolation strategy, where we first extend the detected
contour to a more regular (often rectangular) shape. The
occluded pixels within this extended contour are then given
an estimated thermal value, computed as the median of the
neighboring non-occluded pixels.

Figure 6: Quantity Estimation Processing Pipeline

• Clustering: Finally, we apply clustering on the pixel values
of the extended container contour obtained from the previ-
ous step. Intuitively, if the item container is full, then there
should only be a single cluster, whereas a partially filled item
should be separable into two clusters. We use the Silhouette
Coefficient method [21] to resolve between these two alter-
natives. If the number of preferred clusters is 2, we compute
the fractional quantity of the food item by dividing the pixel
count of the “food item” (lower temperature) cluster by the
total pixels in both the filled and empty clusters.

• Averaging: Finally, given multiple valid images for a given
interaction episode, the final quantity estimate is obtained
by averaging the fractional estimates of each image.

6.3 Controlled Study & Validation
We performed preliminary controlled studies using the SmrtFridge
prototype (which we shall describe next in Section 7) to understand
the basic feasibility of this IR-based quantity estimation process. In
particular, we experimented with a paper container that was filled
to 60% of its capacity with 3 different liquids and initially placed
inside the fridge. The container was then brought out of the fridge
and placed outside for a variable duration, before being re-inserted
into the fridge. The IR-based quantity estimation technique was
then applied to the images captured during the user’s interaction
during this re-insertion phase. We studied two distinct questions:

• How does estimation accuracy vary with different food items?
To address this question, we experimented with 3 distinct
liquids {juice, milk, water} placed inside the container.

• How long does a container need to placed outside for the ther-
mal differentiation to be discernible? Intuitively, if this ambi-
ent exposure time is too short, the thermal difference would
be too negligible to permit proper clustering; conversely, if
the duration was too long, then both the empty and filled por-
tions of the containerwould reach (or be close) to the ambient
temperature and be indistinguishable. To address this ques-
tion, each of the 3 liquids was placed outside the fridge for a
duration Ta that varied between {0,5,15,30,60,90,150,200,450,
800,1100,1800} seconds.

Figure 7 plots the estimation error for all 3 liquids, as a function
of the ambient exposure duration Ta . We see that:

• The quantity estimation error is typically less than 15-20%
for all liquids, indicating our IR-based approach provides good
coarse-grained quantity discrimination capability.

• This error is relatively insensitive to the ambient duration
(Ta ), as long as this duration varies between 5 secs–15 min-
utes. (The vast majority of daily user interactions with refrig-
erated items should involve keeping the item outside for at
least 5 secs, and no more than 15 minutes.) Our results thus
suggest that our IR-based approach is applicable to a very wide
variety of user interaction patterns, even though its accuracy
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Figure 7: Difference in Estimated and Actual Quantity (%)
wrt Item Exposure Time outside Refrigerator

would degrade if a container was left outside too briefly (<5
secs) or for too long (>20 mins).

7 SMRTFRIDGE PROTOTYPE
To empirically demonstrate the feasibility of our techniques for
IR+visual based food item identification and IR-based quantity es-
timation, we have built and tested a SmrtFridge prototype. The
prototype (costing less than USD 300) was built using a commodity
fridge (Toshiba GR-R20STE, double door with 184L capacity), with
the following sensors controlled by a Raspberry Pi 3 model B:

• Visible Light Camera sensor : Raspberry Pi camera module V2
• IR/Thermal Camera sensor: Thermal imaging bricklet 4. One
important property is that the IR sensor has a relatively
low resolution (80 by 60 pixels). While higher-resolution IR
sensors might offer better accuracy, they were significantly
more expensive.

• Door Contact sensor : Normally open magnetic reed switch.

7.1 Placement of Sensors
One of the important empirically-determined choices relates to the
placement of the sensors. In particular, the IR and RGB camera
sensors need to be appropriately positioned to support multiple
concurrent objectives: (a) maximize gesture coverage–i.e., support
the video based capture of user-item interactions performed in a
variety of ways, across different shelves of the fridge; (b) mini-
mize occlusion–i.e., ensure that the food item is maximally visible
within individual frames (to aid proper computation of the residual
quantity); (c) maximize visible frames–slightly different from the
above objectives, the goal here is to have the item be visible in the
maximum number of possible frames (to maximize the chances of
correct food item classification).

We empirically experimented with various positions, of which
the three most choices are illustrated in Figure 8. (The figure also
shows sample images captured from each of these positions.) Note
also that we explicitly chose positions where the sensors were
an integrated part of the fridge frame/body–accordingly, we did
not consider choices that involved placing the sensors externally.

4https://www.tinkerforge.com/en/shop/thermal-imaging-bricklet.html

Figure 8: Potential camera deployment positions. Position 3
is preferred due to {greater coverage, lower occlusion}.

On analyzing sample video frames (obtained from our controlled
studies) we observed the following characteristics:

• Position 1: Here the camera (IR+ RGB) sensors are installed
on top of the refrigerator, thus providing a top view of the
items while they are being added/removed from the fridge.
Although this view is likely to capture most of the item in-
teractions, it is often unable to capture the height of the
containers properly (see Figure 8) especially when the con-
tainers are picked from the lower racks, leading to lower
accuracy of quantity estimation.

• Position 2: Here the thermal and visible light camera sensors
are deployed on the left side (closer to the door) of the refrig-
erator. In this case, the captured items often include items
kept in the trays mounted on the fridge door. While such
images can possibly be eliminated by optical flow techniques,
the presence of such cold items is likely to increase the error
of the thermal segmentation process.

• Position 3: This is the case when both thermal and visible
light camera sensors are deployed on the right side (away
from the door hinge) of the refrigerator. From our sample
observations, we found that the vast majority of interactions
(across a variety of ‘removing’ or ‘inserting’ gestural pat-
terns) were visible with this placement, with the camera’s
field-of-view (FoV) primarily capturing the user-item interac-
tions. Furthermore, occlusion of the food items was also very
rare. Accordingly, we have used Position 3 as the preferred
placement in our prototype.

We believe that, while these observational insights can benefit
future fridge design, additional model-specific studies would be
needed to determine optimal placement in other scenarios (e.g.,
single vs. double door fridges).

7.2 Object Recognition DNN
To identify the food item objects, we utilize the well-known ResNet
v2 Model (152 layers) with pre-trained ImageNet weights. The
classifier is trained, using TensorFlow on an Intel Core i7-7700 CPU
@ 3.60GHz with 64GB RAM & NVIDIA GeForce GTX 1080 Ti
GPU, The classifier had 19(objects) + 1(background) class and 2000
images per class. To generate the training set (in a commercial
setting, such training data could be crowd-sourced directly from
food manufacturers), we (a) used a camera to record videos of the
food items under different conditions, such as varying zoom levels,
object rotation, background lighting and occlusion levels; and (b)
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S.No Parameter Values
1 Liquid Types Juice, Milk, Water
2 Content Quantity 100%, 60%, 30%
3 Container Material Paper
4 Time Outside Refrigerator 20 Seconds
Table 2: Quasi-Controlled Study Specs (Quantity

Estimation)

downloaded corresponding Web images using Google’s Custom
Search engine. Also, for the ‘null’ (background) class, we shot videos
of various indoor lab settings. From this dataset, we utilized 80%
for training, 10% for validation and 10% testing, achieving a test
accuracy of 97.6%. Our training dataset didn’t include in-fridge
videos of any item.

8 PERFORMANCE ANALYSIS
We now study the real-world performance of the various compo-
nents of the SmrtFridge system.

8.1 Data Collection & User Studies
Our results are based on two separate studies:

• Naturalistic User Study: In this study, conducted with an
explicit institutional IRB approval, 12 different users (mem-
bers of the general public) initially performed natural fridge-
based interactions with 15 different & common food items–
e.g., chocolate milk, orange juice, guava juice, etc. Users were
asked to insert and remove such items from the fridge mul-
tiple times, without any restriction on how long the item
could remain outside. In a subsequent phase, 7 new users par-
ticipated in an expanded study, which included 4 additional
fruit & vegetable items (oranges, broccoli, green peppers,
eggplant). This user study is used principally to study the
efficacy of the item identification process.

• Quasi-Controlled Micro Study: The goal of this separate
study (detailed in Table 2) was to ascertain the accuracy
of item quantity estimation, under varying quantity levels,
different vertical angles and for different liquid food items.
In this study, 7 users perform natural-like interactions with
different items, but with explicit instructions on (a) the items
to be kept inside or removed from the fridge and (b) how long
the items were kept outside (the ambient exposure time).

8.2 Item Extraction
We first evaluate the performance of SmrtFridge’s item extraction
pipelines. We use two principal metrics:

(a) Intersection Over Union (IoU ), which evaluates the rela-
tive overlap between the (manually annotated) ground-truth
bounding box of the item (BBGT )and the bounding box
(BBEst )computed by the automated SmrtFridge pipeline. It
is computed as BBGT ∩BBEst

BBGT ∪BBEst .
(b) Item Coverage ICov (= BBGT ∩BBEst

BBGT ), which computes the
ratio of the intersection area of the ground-truth and com-
puted bounding boxes to the ground-truth bounding box.

Figure 9 plots the fraction of extracted images (across all episodes
in the user study) whose IoU exceeds the specified threshold. We

Pipeline ICov >=95% ICov >=75%
MV only 82.4 97.3

IR assisted MV 83.3 97
Table 3: Percentage of Episodes vs. ICov

15 class Classifier 19 class Classifier
Approach Precision Recall Precision Recall

Motion Vector
(MV) Only 0.82 0.79 0.83 0.81

IR driven MV 0.80 0.78 0.81 0.79
MV+IR Merged

Pipelines 0.83 0.83 0.84 0.84

Table 4: DNN-based Item Identification accuracy (per
Episode)

compute the IoU scores separately when using (a) just the RGB
motion vector pipeline (mv_only), (b) just the IR-driven mapping to
RGB coordinates (ir_driven _mv(thermal)) and (c) the proposed IR-
driven motion vector (ir_driven _mv) pipeline that utilizes the best
of both pipelines. We see that the combined approach provides the
best extraction performance: over 80% of images have IoU values
greater than 0.6 (object detection frameworks typically require
IoU values higher than 0.45-0.5). In contrast, the pure RGB motion
vector-based approach performs the poorest, achieving IoU values
greater than 0.6 in less than 20% of the images.

To further understand the importance of high IoU values (i.e.,
ensuring that the extracted image faithfully captures the food item),
Figure 10 plots the precision/recall values for DNN-based item iden-
tification for those images whose IoU value exceeds the correspond-
ing x-axis value. We observe that the item identification accuracy
increases with IoU, reaching 95+% when the IoU value exceeds 0.7.

Figure 11 plots the distribution of ICov values, for both the
combined and the RGB motion-vector only methods. We see that
the combined technique achieves ICov values of 0.8 or higher in
80% of the interaction episodes. The higher ICov values observed
for the “RGB motion-vector only” occur because this approach
typically extracts a larger fraction of the image but also includes
a disproportionately larger ‘background’ component (hence, the
lower IoU score). As we shall show in Section 8.3, the presence of a
larger background leads to poorer performance of the DNN-based
item identifier. To further illustrate the preciseness of SmrtFridge’s
item extraction process, Table 3 quantifies the number of episodes
(out of a randomly selected 20% of the total episodes) that contain at
least 1 extracted item image with ICov values higher than {75%,95%}.

8.3 Item Identification
We now study item identification accuracy, based on the extracted
images (from an initial study with a 15-item classifier & 12 individu-
als, followed by a 19-item classifier with additional fruit & vegetable
items & 7 users), achieved by our ResNet-based DNN.

Table 4 plots the item classification results (for episodes involv-
ing the original 12 users who interacted with the original 15 food
item classes), for both the 15-class classifier and the subsequent
19-class classifier. We see that the combined pipeline results in the
highest and identical precision/recall values (of ∼0.84). Moreover,
the results are fairly stable over the 15-class and 19-class classifiers.
As a point of comparison, the food item precision/recall is 74% and
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Figure 9: Relationship between IoU
scores and percent of episodes above it

Figure 10: IoU score vs image
identification precision recall

Figure 11: % of Episodes vs. Minimum
ICov

72% respectively, for the episodes involving the 7 new users, who
interacted solely with the 4 new fruits & vegetable items.

We observe that:

• The overall item recognition accuracy is high but not as high
as the 97%+ accuracy reported on the externally curated
training data. In large part, this is due to the lack of sufficient
relevant training data for our classifiers. In particular, the
training corpus consists entirely of images of items extracted
from the Web or shot in close proximity by a video camera.
These training images are quite distinct from the partial
views of items captured by the SmrtFridge RGB+IR sensors.
We fully anticipate that the accuracy will improve as the
corpus is continuously expanded in the real world (similar
to approaches used by consumer ML-based devices such as
Amazon’s Alexa™) to include more such in-the-wild images.

• The accuracy is lower for the newer episodes that involved
the 4 new food items. This was principally due to the lack of
sufficient appropriate training images—unlike canned items,
fruits and vegetables have greater diversity in shape and
color, and thus require more diverse training data.

Alternative Classification Strategies: To further underline the
importance of accurate sub-image extraction, we computed the ac-
curacy of a baseline where the DNN classifier operated on full-HD
images (containing both the food item and miscellaneous back-
ground content). The DNN classifier then performed very poorly,
achieving precision and recall values of only 0.53 and 0.20. Simi-
larly, if the classification is performed only on 1 extracted image (as
opposed using the highest cumulative likelihood across all frames),
the item identification accuracy drops to 0.48.

8.4 Quantity Estimation
We then use the quasi-controlled study to evaluate SmrtFridge’s
coarse-grained quantity estimation technique. Figure 12 plots the
estimated quantity for 3 different liquids {juice, milk, water}, and
3 different fractional quantities {30%,60%,100%}. The plot shows
that these 3 levels are distinguishable (distinct mean values, with
low overlap between 5/95% confidence intervals). However, the
estimates are significantly more noisy for juice when the container
is only 30% full). Studies with additional semi-solid items {yogurt,

ketchup, peanut butter} show that the estimation error remains
within 10-20%, indicating the robustness of our technique.
Coarser Estimation/Classification:While fine-grained quantity
estimation is challenging for certain (liquid, container) combina-
tions, coarser-grained estimates are acceptable for many applica-
tions. For example, an application that generates alerts (when the
food quantity becomes very low) may just need to know when
the quantity drops below, say, 20%. Accordingly, we now study the
accuracy of the coarser-grained classifier that assigns the captured
IR image into one of 3 bins/classes: 30|60|100%. For this ternary
classification problem, we achieve a classification precision of 75%
and recall of 71%. Overall, our results suggest that IR-based tech-
niquemay be useful for obtaining coarse-grained quantity estimates
(average error of ∼15%).

Figure 12: Median Accuracy of Quantity Estimation

Item Insertion Angle vs Accuracy:We also studied whether the
estimation accuracy depends on the container’s inclination angle.
Figure 13a shows mean quantity estimation error, as % of whole
container, when a juice container was put inside at 7 different
horizontal angles (via a controlled study) ranging from θ = 0-180◦
(vertical → θ = 90◦). We see that the estimation error is usually
within 10-25% (and thus sufficient for coarse-grained resolution),
unless the container is horizontal θ = {0, 180}◦. As an intuitive
explanation, note that most food containers are taller and narrower.
The same residual quantity thus results in a larger empty height
when the container is vertical, and a much smaller empty height
when horizontal. Moreover, we observed that even modest hand
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(a) Quantity Estimation Error vs.
Item Angle

(b) Thermal Clusters for
θ = 90◦, 0◦(content = 30%)

Figure 13: Food item inclination angle performance

movements during the interaction can cause the liquid to splash
vertically inside the container and ‘contaminate’ the empty portions
“above". Given the relatively low spatial resolution of our IR camera,
the clustering error (illustrated in Figure 13b) is thus much larger
when the container is horizontal, than when vertical.

8.5 Additional Performance Characteristics
Supporting Multiple Items:While the SmrtFridge pipeline sup-
ports the user’s concurrent interaction with multiple items, we
observed that such interaction (e.g., retrieving a milk carton and a
yogurt container together) is very unusual (never occurred in our
Naturalistic study). To understand the performance of SmrtFridge
under such possible multi-item interactions, we collected data for 8
episodes, where 2 users were explicitly instructed to retrieve 2 items
concurrently. In this admittedly small sample, SmrtFridge’s clus-
tering technique reliably identified 2 distinct items and extracted
them with IoU values between 0.63-0.71. However, more detailed
studies are needed, as such concurrent retrieval may give rise to
other non-obvious usage artifacts (e.g., occlusion of one items).
Energy Consumption:As per surveys 5, households tend to inter-
act with their fridge about 15-25 times per day. Via measurements
with 40+ distinct episodes, we found that average energy consump-
tion is 7.5mWh/episode for the quantity estimation pipeline, and
90mWh/episode for the item extraction & recognition pipeline. In
contrast, the yearly average energy consumption of a typical fridge
(e.g. Toshiba GR-R20STE 185L), is 566 kWh. Accordingly, SmrtFridge
is expected to impose an additional overhead of only 0.15% on a
fridge’s energy consumption.

9 DISCUSSION
Privacy Concerns: SmrtFridge’s use of an outward-facing camera
can raise privacy concerns: consumers may be wary of devices that
not only capture images of food items but also, potentially, that of
the individual and the residence’s background, even if all image pro-
cessing is performed locally on the fridge. We believe that commercial
products can address this issue via appropriate design and place-
ment of cameras, while utilizing SmrtFridge’s interaction-driven
paradigm. In particular, instead of the outward-facing camera setup,
we can deploy multiple narrow-FoV (field-of-view) cameras on the
rim of the fridge, such that they are capable of only taking ‘sideways’
5https://www.housebeautiful.com/uk/lifestyle/storage/news/a2110/
fridge-food-cupboard-habits/

images of the fridge. However, such a setup can increase occlusion
(at least on one side). Accordingly, we may need to modify the
image extraction pipeline to accommodate multiple simultaneous
images (of varying occlusion) from multiple cameras.
Extending to Other Food Types: The experimental results pre-
sented here focused primarily on discrete container-enclosed items,
as discrete food items (e.g., oranges & eggplant). However, the
quantity estimation of such discrete items is currently unexplored
and will require newer approaches–e.g., thermal segmentation is
unlikely to be able to distinguish between 1, 2 or 3 bananas.

Additional Sensors for Finer-grained Sensing: SmrtFridge’s
current visual recognition pipeline recognizes only food item types/
brands, and not instances. For example, if a fridge has 2 Coke cans
(both 50% full), the system cannot distinguish between them if
one of them is removed and returned (with 30% residual content).
Additional sensor types may help overcome such limitations. For
example, explicit weight sensors (load cells), can help provide fine-
grained estimates of changes in the fridge’s weight, which can then
be used to discriminate between multiple identical items. A single
100 lb (≈ 45 kg) Futek LSB200 sensor6 can detect load changes
as small as 10 grams. Other novel sensors may enable additional
functionality, such as detection of expired food items. For example,
Goel et al. [7] have applied hyper-spectral imaging to infer the
aging of food items such as fruits.

10 CONCLUSION
We have demonstrated the SmrtFridge prototype, which innova-
tively combines infra-red (IR) and visual (RGB) camera sensors to
provide two unique smart fridge capabilities: (i) food item identifi-
cation and (ii) residual quantity estimation. SmrtFridge’s interaction-
driven sensing paradigm utilizes the clear images of a food item,
captured during the transient period when the user either removes
it from or places it into the fridge. By combining IR-based extraction
of the cold portions of the image with an optical flow-based seg-
mentation technique, we show that SmrtFridge can provide cropped
images that contain ≥75% of a food item’s pixels in over 95% of
interaction episodes. This precise extraction helps a DNN-based
classifier identify the food item with over 84% accuracy (which can
be further improved with a larger corpus of relevant food item im-
ages). In a parallel process, the minor variations in thermal intensity
between the filled and empty portions of a container can be used to
achieve coarse-grained classification of the residual food content
(between three levels: 30|60|100%) with ∼75% accuracy. We believe
that our work lays the foundation for utilizing multiple such IR and
RGB sensors as part of a platform for highly accurate, unobtrusive
monitoring of food item consumption.
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